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Measurements of the velocity of sound as a function of pressure yield an inhomogeneous dif-
ferential equation for the second virial coefficient. The formal solution of this equation is pre-
sented and the possible importance of the homogeneous solution of the equation for ‘He data be-

low 20°K is discussed.

1. INTRODUCTION

Measurements of the sound velocity as a func-
tion of pressure in a gas have been used'™% to de-
termine the second virial coefficient B(T'). The
coefficient of the linear term in the pressure is
the inhomogeneous term in a linear differential
equation for B(T). The object of this note is to
display the formal solution of this equation, and
to discuss the possible importance of the solution
of the homogeneous version of this equation.

The solution of the differential equation for B(T)
is presented in Sec. II together with some mathe-
matical comments on the analysis of experimental
data. An application of this solution to *He data
in the 2°K to 20°K temperature range is given in
Sec. III. Section IV contains a discussion.

II. FORMAL SOLUTION FOR B(T)

For a nonideal gas the expansion® of the square
of the sound velocity’ Win powers of the pressure

»,
W2=W2[1+@2/RT)fp+e-+], (1)

has coefficients which are related to the absolute
temperature T, the gas constant R, the ratio of
ideal-gas specific heats v,, the atomic weight M,
and the virial coefficients. For a monatomic gas,
the coefficient of the linear pressure term depends
on B(T) through the relation

AT)=B(T)+3TdB/dT +& T?d®B/dT?. (2)

This is an inhomogeneous differential equation

for B(T) in terms of f(T). It has both a homoge-
neous solution (B real)

Bh(T):(oz/Tz)cos[(7/2)“2 InT +¢] , ®3)

with @ and ¢ constants to be determined by the
boundary conditions, and a particular solution

15 1 T : ey L
BP(T)=HF fT dt tf(t)s1n<(7/2)’ 1n7> > (4)

where 7 is an arbitrary constant.
The complete solution of Eq. (2) is thus

B(T) = (17(”;') cos<(7/2)1’2 lnTI +¢(T))
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+\/'i'; le fTT dttf(t)sin((7/2)”2 1n§>.

(5)

The constants in Eq. (5) are to be specified by
information additional to that contained in f(T).4

These results may be extended to the case! where
a dilute-gas specific heat is nearly constant in
some temperature range. The numerical coeffi-
cients in Eq. (2) are then modified, but there is
a solution similar to Eq. (5). If the specific heat
is strongly temperature dependent, this form of
the solution is not applicable.

The usual method'~? of solving Eq. (2) has been
to assume an expansion of B(7T) in a finite series
of inverse powers of T,

B~ a1 ", ®)
nn
and to determine the coefficients in this expansion
by a least-squares fit to the experimental values
of f(T). This does not make any explicit treat-
ment of the homogeneous term, Eq. (3).*

However, in the limit of zero temperature,
theoretical considerations®® require that B(T)
has the following functional dependences:

B~C/T¥*+Cp)/T+Cy+v2-. (7)

Neither the expansion Eq. (6) nor the homogeneous
term Eq. (3) are adequate representations of B(T)
for this limit. (7"/% does not have an expansion in
powers of T.) However, this is not sufficient rea-
son to reject these functions in applications to fi-
nite temperature data.

For fitting data over a range of finite tempera-
tures, Eq. (6) may be reinterpreted. In this view,
the function B(T) is expanded about some tempera-
ture T, in a power series in (1/T~1/T,), the
series is truncated, and the terms in it are re-
arranged to give the functional form Eq. (6). How-
ever, if the coefficients in this form are deter-
mined by Eq. (2), By(T) might be introduced into
B(T) since it, too, has an expansion in powers of
(1/T-1/T,). Thus over some range of finite
temperatures, B(T) could be represented by a
combination of Egs. (3) and (6), although in prac-
tice these functional forms need not be particularly
useful.
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IIl. APPLICATION TO *He DATA

Prior determinations!™3 of B(T) from Eq. (2)
have proceeded by assuming a functional form
for B(T) and then adjusting the coefficients in
this form to fit the experimental values of f(7)
over some limited temperature range. Equation
(5) may be used to evaluate B(T) from such data
without assuming a functional form for B(T).

As an example of such a calculation, the data
of Grimsrud and Werntz,? Plumb and Cataland,’
and Keller?® are used to specify the constants in
Eq. (5). The experimental values®" of f(T) are
shown in Fig. 1. Here 7 is taken to be 2.15°K,
the temperature of Keller’s E isotherm.® The
integrand of Eq. (5) is shown in Fig. 2 for two
temperatures (T4 =3.95°K and Tg=3.34°K) of
other Keller isotherms.® The integral is evalu-
ated graphically for these temperatures, and then
a and ¢ are determined by fitting Eq. (5) to Kel-
ler’s values® for B(T) at 2.15°K and either 3.95°K
(Case A) or 3.34°K (Case B). The results are

(A) a=-935 cm?(°K)*/mole, ¢=-0.51 rad,
(8)
(B) a=~-880 cm*(°K)?’/mole, ¢= —0.39 rad.
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FIG. 1. f(T)[Eq. (1)] as a function of absolute
temperature T'. The data of Grimsrud and Werntz,
Ref. 2, are shown with the statistical errors assigned
by those authors. The data of Plumb and Cataland,
Ref. 7, were derived from their Table II. The smooth
line was drawn by eye through the data for use in inter-
polations.
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FIG. 2. The integrand of Eq. (5) is shown as a func-
tion of £ (in °K) for two values of T. The values of
f @) were obtained from the smooth line interpolation
in Fig. 1. The value of the integral in Eq. (5) is given
by the area under these curves.

These values could be combined with further mea-
surements of f(T) to determine B(T) at higher
temperatures.

This calculation does not specify the magnitude
of the homogeneous term which should be added
to a solution of the form of Eq. (6). To estimate
this effect, the Boyd, Larsen, and Plumb?® solu-
tion for B(T) is compared with extrapolations of
Keller’s values® to 2 and 4°K, assuming no ex-
perimental error in either determination. Then,
by ascribing the difference between these B(T)
values to a term By(T), its coefficients are de-
termined to be (with InT replaced by In(7/2), i.e.,
using a 7 of 2°K)

a=~ 125 cm®(°K)?/mole, ¢=-0.9 rad. 9)

Boyd, Larsen, and Plumb® found, in the 2 to 10°K
range, the coefficients in an assumed functional
form

B(T)=a+b/T+¢/T?2. : (10)

Their value of ¢ was (69+42) cm3(°K)?/mole. The
a term is comparable to this; using the values of
Eq. (9) it contributes about - 0.6 cm3®/mole to
B(T) at 10°K. This is about a 3% effect.
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A similar calculation for *He using Keller’s
values® for B(T) and the Grimsrud and Werntz?
solution from f(T) shows a 1% effect at 10°K. This
and the values in Eq. (9) are very sensitive to
errors in the experimental values used.

IV. DISCUSSION

Grimsrud and Werntz? and Boyd, Larsen, and
Plumb?® have recently analyzed sound-velocity
measurements on gaseous helium to obtain values
for B(T) which agree to within about 10% with
values obtained by Keller?®?® directly from iso-

therm measurements. These analyses have
essentially obtained particular solutions to Eq. (2)
without considering the homogeneous solution.

The result obtained here is that a difference
between B(T) derived from isotherm measure-
ments and from sound velocity measurements is
not necessarily to be ascribed to experimental
error in either set of measurements. There is
a possible difference between these values of
B(T) which varies roughly as the inverse square
of the temperature. The numerical magnitude of
this effect is not determined precisely with the
present accuracy of the measurements, but it
may amount to 3% in B(7) for *He at 10°K.

*This work has been supported by the University of
Wisconsin Research Committee with funds granted by
the Wisconsin Alumni Research Foundation.
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