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The quantum-mechanical free energy F of a hard-sphere gas at high temperature is a series
in powers of the thermal wavelength X= (2xa /mkT); the coefficients of this series can be
expressed in terms of the classical correlation functions. The result to first order is

(0)F F

where F is the classical free energy, N the total number of particles, p the number density,
k T Boltzmann's factor times the temperature, a the hard-sphere diameter, g2(a) the classi-
cal pair-correlation function at contact. The corresponding expression for the pressure is

p p(0) ~ 2X e p'0)

2' a' ap p

where P is the classical pressure. The principle of a systematic derivation of higher-
order terms in X is given.

At high temperature, the quantum effects in the equation of state of a gas are small and appear as cor-
rections. In the special case of a hard-sphere gas, these corrections cannot be obtained by %'igner and
Kirkwood's expansion' in powers of h', the terms of which diverge (a is Planck's constant divided by 2v).
An expansion in powers of 0 may, however, exist and will be described in the present paper. The classi-
cal thermodynamic quantities and correlation functions are assumed to be known, and we wish to express
the quantum corrections in terms of these classical quantities.

As a first hint, since the wave functions vanish when two spheres contact, we may expect that the sphere
surfaces will keep away from one another by a distance of the order of the thermal wave length X = (2''/
mkT)'I (m is the mass of a sphere, k is Boltzmann's constant, T is the absolute temperature). Quantum
effects therefore can be taken into account in a first approximation through an increase of the hard-sphere
diameter a by a quantity of the order of X. It will be shown more precisely that first-order quantum ef-
fects amount to the replacement of a by a+ (X/24 ). In classical mechanics, the pressure P&'& is of the
form

P"' = »pf (p~'),

where p is the number density and f some function. The quantum expression p for the pressure is given
to first order as

(0 Bp X (p) 3 X 2 8 p
2W2 2W2
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A systematic expansion of the free energy in powers of X can be obtained as follows. We consider N
hard spheres in a volume Q. Let W(rl, .. ., r~) be the quantum-mechanical total spatial distribution
function. ' 8' is normalized in such a way that 8' = 1 when all spheres are far away from one another; 8'
goes continuously to zero as two spheres approach one another, and vanishes when two spheres intersect.
Let W&'&(rl, ... , r ) be the classical limit of W. Since W&'& =0 when Wvanishes and W&'& =1 when Wdoes
not vanish, one has

m'= w«) v,
a fundamental relation which allows us at will to use W") as a weight function when we perform any inte-
gration upon W.

Now W can be expanded as a sum of products of Ursell functions U~.

W(rl, . .., r~) =1+U2(rl, r2)+ + U3(rl, r2, r3)+ ~ ~ ~ + U4(rl, r2, r3, r4)+ ~ ~ ~ + U2(rl, r2)U2(r3, r4)+ ~ ~ ~ .

Each term in (4) corresponds to one of the possible partitions of the N particles in clusters; a cluster
of l particles contributes a factor UE, and we have used the fact that U, = 1. The Ursell functions are de-
fined as usual from the set of the 8' functions for different values of N through the relations
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W(r, ) = U, (r, ) = 1, W(r„r ) = U, (r, )U,(r )+ U, (r„r ), etc.

U~ has the cluster property that it goes to zero as soon as the surface-to-surface distance between one
sphere it refers to and all the other ones i.s large compared to X.

We now proceed to the computation of the configuration integral Q=/W(ri, ..., rN)dri ~ drN. Let Q@&

be the classical limit of Q, and let

gf(ri ~ ~, rf ) = 0 J W (ri ~ 1N)dr'I 1' ' 'drN/t&& (6)

be the classical I-body correlation function. One gets from (3), (4), »d (6)

Q =@ ( +)&g fg (F~r)g ,(F„F)drdF + + ~&fg (F„Fr)ET,(F„F„r)drd,F dF + ~ ~ ~

r)f)r(gr r, r„r r )[g (r„r, r„r )+ (gFr F) g( F, F)+ )dr drrdr dF)+ . (7)

As a consequence of the cluster property of the Uf functions, a term Uf UFF&
~ ~ U„ in (4) contributes to (7)

an integral of order X~- 1+FF& —1+ ' ' + F& —1, and (4) can be truncated in a well-defined way, if one is in-
terested only in terms up to a given order in A.. In addition to these powers of X, there wiQ be terms like
exp[- c(a/&). ) ] which will be generated by the exchange parts' of the UI functions; such terms are negligi-
ble, but their presence shows that one may hope at best to obtain asymptotic series.

To first order in X, it is enough to keep in (4) the N(N- 1)/2 terms U„and therefore

Q= QFO&[I+N(N- 1)c2/0],

where c, = (1/20) Jg,(r„r,)U,(r„r,)dr, dr„.

c, is of order &).. Taking the logarithms in (8) and expanding with respect to X, one finds for the free energy
E the classical value E+& plus a correction of order X as follows:

F/NkT F&0&/NkT (1/N) In(Q/Q" &) F&a& /NkT —pc, ,

where (N- 1)/0=N/0 = p. Itis enoughtotakefor Um the zeroth-order term~ in anexpansionin powers of X/a:

U,(r„r,) = —exp(- [2FF(F —a)'/&). '] ], F &a,

where r = lr, —r2l. Incidentally, U2 has a "quantum range" beyond a which is

—1, U, (~)dr=&/2W,

and this provides a heuristic justification for the result (2). In the present derivation, we use (11) in (9)
and obtain

c, = ',g, (a)4FF-a' f U, (F ) = —(&F/VY)g, (a)a'&).

and, from (10),

F/NkT =F&'&/NkT+ (~/W) g, (a)a'p& .
The pressure can be obtained from the free energy (14) by taking the derivative

, 8 E
P =P ——~

8p N

(14)

If one expresses g, (a) in (14) in terms of the classical pressure p('& through the well-known expression

p&'& /kT = p+ -,'&Fg, (a)a'p',

one recovers (2). The virial expansion of (2)

kT =Pp =
l&2

provides the corrections of first order in X to all the virial coefficients:

a, =a,l'&[I+(I- 1)(2/2W)& /a].



Higher-order terms in X for the free energy could in principle be obtained in a similar way, but one
should first compute Uf functions for higher values of f and to higher orders in»). /a. Consider for instance
the second-order term in X. We must keep in (4) not only the N(N- 1)/2 terms U2, but also the N(N 1-)

x (N 2)-/6 terms U, and the N(N 1-)(N- 2)(N- 2)/8 terms U, U,. Therefore,

(,) () ~(N- )) N(Ã ))(N- 2)-N(N ))(N- R-)(Z- )))
Q c2+ Qz ca+ QB ~ j

where cf =(Q//) 'Jg f(r 1, ..., r f) Uf(r 1, ..., rf)(frl ~ drf,

and d=(BQ) 'Jg (r„..., r~)U, (r„r )2U (2r Sr~)dr,dr~ryr4.

The free energy now is given by

E E&» 1
1 Q E(» N 1-(N- 1)(N- 2) (N- 1)(N- 2)(N- 2) N(N 1)-

q(o» perp Q 2 Q ca QI» (f + 2Q c2 +

(21)

The integrals c~ are finite in the thermodynamic limit, but cf is infinite. It is convenient to introduce the
integral

f =(f- -', Qc,'= (1/SQ) J [g,(r„r„r„r,)-g,(r„r, g},(r„r,)] U, (r„r,}U,(r„r,)dr,drdrgr, ,

which is finite in the thermodynamic limit. Neglecting terms of order 1/N, one finds from (22)

E/NkT=E(0»/NkT pc, + p'( -2,c' —c,)- p'f .

(22)

(24)

One should finally express the constants c„c„andf in (24) in terms of »(, , up to the second order in X.
One needs an expression for U, valid beyond (11), i.e. , to the next order in»). /a, which is available; one
would also need the leading term of U„which has not been computed. R should be noted, however, that
one obtains for c„c,and f expressions involving the classical correlation functions gf up to g„and such
detailed information about the classical gas is not readily available anyhow.

As a conclusion, it might be noted that this property of the hard-sphere gas, namely, that the quantum
corrections to the pressure involve a series in powers of I rather than S', bears some similarity to the
behavior of the classical velocity autocorrelation function, which is a power series in the time f rather
than in P.
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