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Data and calculations are presented which indicate that the isothermal compressibility of
alkali metals is determined mainly by the repulsive part of the ion-ion potential. The speed
of sound in rubidium was measured over the temperature range 56-260'C, and the isothermal
compressibility, &g, was calculated. An effective hard-sphere diameter, (7, was deter-
mined by using the experimental value of &Z in the compressibility relation obtained from
the hard-sphere solution of the Percus- Yevick equation. Agreement with the values of 0 ob-
tained by Ashcroft and Lekner from neutron diffraction data is good. The hard-sphere struc-
ture factor based on values of 0 obtained from compressibility data was used to calculate the
temperature dependence of the resistivity of liquid rubidium. Finally, using the hard-sphere
model, the concentration dependence of the compressibility of Na-K alloys was calculated.

INTRODUCTION

According to pseudopotential calculations' the
total energy of a metal can be written as the sum
of a term representing pairwise interactions be-
tween electronically screened ions and other terms,
such as the energy of the electron gas, which de-
pend only on the average density of the ions. The
magnitudes of the repulsive and attractive parts
of the ion-ion potential are comparable with those
of rare-gas liquids.

Ashcroft and Lekner' (hereafter referred to as
AL) have suggested that the principal factor deter-
mining the arrangement of the ions in a liquid
metal is the ion-ion repulsion. They approximated
this interaction by a hard-sphere potential. The
known solution of the Percus- Yevick equation' for
the hard-sphere yotential was fitted to the first
peak of the liquid structure-factor curve a(k). The
fit was made as a function of the effective packing
density of the fluid described by the parameter g,
the fraction of the total fluid volume occupied by
the spheres:

q=(v/6) o~,

where o is the hard-sphere diameter and g =~/p'
is the number density, N being the number of ions
in volume V. AL determined the value of g for
various liquid metals. The value of q used by AL
for a particular metal at a given temperature is
that value for which the calculated hard-sphere
structure factor agrees best with the experimental
a(k) determined from x-ray and neutron diffraction
data. Using the hard-sphere structure factor
corresponding to this value of g, AL were able to
account for the resistivities of liquid metals on
the basis of a theoretical expression derived by
Zlmano

The recent molecular dynamics calculations of
Verlet' provide further evidence supporting the
use of a hard-sphere model to reproduce the struc-
ture factors of simple liquids. These calculations,
made for a system of particles interacting through
a Lennard- Jones potential, show that the form of
the various correlation functions at high density
(typical of liquids near the melting point) is due
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mainly to the geometrical effects produced by the
existence of a strong repulsion in the potential.
These effects are adequately displayed by the so-
lution of the Percus- Yevick equation for a hard-
sphere potential.

The Percus- Yevick equation also yields, for the
hard-sphere fluid, the following relation between
g and the isothermal compressibility ~&,.

nk 7'~ = (1 —q)'/(1 + 2g)' .

For sodium near the melting point the hard-sphere

z~ calculated from Eq. (2) is in good agreement
wI.th the experimental value. For the polyvalent
metals, however, the exyerimental compressibil-
ities differ considerably from the corresponding
hard-sphere values. AL conclude that the com-
pressibility of alkali metals is determined mainly
by the ion-ion repulsion, and hence the hard-sphere
relation between q and ~~ is valid for these metals.
They use this relation to determine the temperature
variation of p in sodium from the experimentally
known temperature variation of eT. The corre-
sponding hard-sphere structure factors were then
used in the theoretical expression of Ziman to
successfuQy reproduce the temperature dependence
of the resistivity of liquid sodium.

COMPRESSIBILITY AND THE EFFECTIVE
HARD-SPHERE DIAMETER

The present measurements of the compressibility
of liquid rubidium were undertaken to further test
the applicability of Eq. (2) to the alkali metals,
and, in particular, to see whether Eq. (2) can be
used to determine the temperature variation of g
from compressibility data. Rubidium was chosen
for this work since neutron diffraction data for
this metal is available over the temperature range
40-360'C. AL determined the temperature depen-
dence of g in liquid rubidium directly from diffrac-
tion data, and calculated successfully its electrical
resistivity as a function of temperature.

In the present investigation, in order to obtain
the isothermal compressibility, the speed of sound,
c, was measured in molten rubidium over the tem-
perature range 56-260'C. This measurement was
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made using a 45. 00-MHz ultrasonic signal and a
phase comparison technique similar to that de-
scribed by Bockris and Richards. The rubidium,
99. 9'%%uo pure, was obtained from MSA Research
Corporation in glass ampoules sealed under an
argon atmosphere. The metal was transferred
directly from the ampoule to the ultrasonic inter-
ferometer and then kept under an argon atmosphere
throughout the experiment. The measured sound
velocity was observed to decrease linearly with
temperature, the data being best fitted by the
straight line

T
( c)

Hard-sphere pack- Hard-sphere diame-
ing parameter Q ter 0' (10 cm)

40
160
240
360

From &Z' data

0.464-0.472
0.418-0.424
0.391-0.396
0.353-0.363

AL From &g data- AL

0.459
0.412
0.395
0.365

4.38-4.43
4.28-4.32
4.22-4.26
4.13-4.18

4.33
4.24
4.22
4.17

TABLE II. Temperature dependence of the hard-
sphere packing parameter and the hard-sphere diameter
of liquid rubidium

c = 1.2755 x 10~ —39.87T, (3)

where T is the temperature in 'C and c is in cm/
sec. The maximum error in c is estimated to be
less than +0. 2%.

The value of x& is calculated from the relation'

= (c'p'TM/C + I)/c' d, (4)

TABLE I. Temperature dependence of the compres-
sibility of liquid rubidium. The ranges of compressibili-
ty values correspond to extreme values obtained from
density data reported in Refs. 8-12.

T
(o C)

40
160
240
360

Number density n

(10 jons/cm )

1.031-1.062
0.993-1.024
0.967-0.998
0.929-0.959

Isothermal compres-
ibility K~

(10 cm /dyn)

46.2-49,4
53,8-57.0
59.6-63.3
67.0-74,4

where d is the density, P the thermal expansivity,
C~ the molar heat capacity at constant pressure,
and M the atomic weight. The number density, n
[see Eq. (1)], and the thermal expansivity, P, are
calculated from density data. The density of liquid
rubidium has been measured by a number of in-
vestigators. '-" Calculations were made using the
density data of each investigator, but only extreme
values of the results are given in the tables. The

C~ data were taken from Ref. 9.
The values of n and K& are summarized in Table

I. These are used in Eqs. (1) and (2) to calculate q
and the hard-sphere diameter v. These calculations
are presented in Table II and compared with the re-
sults obtained by AL from neutron diffraction data.
As can be seen from Table II, the values of q cal-
culated from Eq. (2) are in good agreement with
the values obtained by AL. The temperature de-
rivatives, however, are somewhat different, the
dq/d T calculated from the different sets of com-
pressibility data being from 12 to 24%%uo higher than
the dq/dT calculated from the data of AL. It is
difficult to determine whether this difference in the
values of dq/dT is significant or within the limits
of experimental error. The spread in the values
of K~ points to the need for more accurate density
data. Furthermore, it is not easy to assess the
accuracy of the neutron diffraction data. Finally,

there has been little discussion of the precision
with which g may be obtained by fitting the hard-
sphere solution for a(k) to the first peak of the
experimental diff raction data.

TEMPERATURE DEPENDENCE OF RESISTIVITY

It is of interest to calculate the temperature de-
pendence of the resistivity of liquid rubidium using
the hard-sphere a(k) based on values of q obtained
from compressibility data. According to the Zi-
man theory of electronic transport properties for
liquid metals, the resistivity p may be calculated
from

p = (4v'I/e'kF) Z f x'a (x)V'(x)dx,
0

where V(x) is the electron-ion pseudopotential in
units of -', EJ; and x is the wave-number variable
expressed in units of 2k~. Z is the valence, and
a(x) is the structure factor of the liquid metal.
The pseudopotential used in Eq. (5) was the par-
ticularly simple potential recently described by
Ashcroft, "and used successfully in calculations
of resistivity of binary alloys. In w space this
potential has the form V(r) = —Ze'/r for r )Rcore,
and V(r) = 0 for r (Rcore, where Rcore is an ef-
fective ion-core radius. This potential was
screened locally in the way suggested by Heine
and Abarenkov. '~

The various effects which lead to a volume de-
pendence of the pseudopotential are described by
Ziman. ~ In the present investigation the simpli-
fying assumption is made that Rco remains
constant as the density of the meta decreases
with temperature. Thus it is assumed that the
bare potential of the ion is independent of volume,
and the change in the pseudopotential is due to a
shift in the value of kp and to the volume depen-
dence of the dielectric function. For rubidium
the value score =1.12 A was taken from the work
of Ashcroft and Langreth. "

Resistivity calculations were made using two
sets of values of a~. These zy values were ob-
tained from density data presented in Refs. 10 and
ll along with the speed of sound data of Eq. (3).
These sets of xT values were chosen since they
lead to the lowest and highest values respectively
of the derivative dq/dT. Also, for comparison,
p was calculated using the hard-sphere structure



factor determined by AL. The results are plotted
in Fig. 1. The agreement between experimental
and calculated values is quite good. However,
the values of p based on density data of Ref. 11
deviate noticeably from a linear temperature de-
pendence. The experimental temperature depen-
dence of p plotted in Fig. 1 is taken from AL. It
is in good agreement with the recent data of Ref.
9 and with the data of several other investigators,
referred to in Ref. 9. (The experimental values
of Endo, "however, lead to a temperature deriva-
tive, dp/dT, which is some 20% lower than that
in Fig. 1. )

It has been suggested4 that, rather than compare
absolute values, it is more meaningful to compare
the measured and calculated values of the dimen-
sionless coefficient (T~/p~) (dp/dT)f, where T~
and p~ are the melting point temperature and re-
sistivity, respectively. In this manner, possibly,
one can reduce some of the errors that might arise
in using the wrong pseudopotential in calculating
the absolute value of p. Values of this coefficient
are given in Table III. Again the agreement be-
tween experimental and calculated values is good.

COMPRESSIBILITY OF BINARY ALLOYS

TABLE III. Experimental and calculated values of
the dimensionless coefficient (T~ /p~) (dpi''dT)~ for
liquid rubldluD1.

Calculated using
a(k) determined

Experimental Calculated from ~y data
(data from using (based on density

Ref. 2) ~(&) of AL values of Ref. 10)

been solved. " They were able to show that, in
addition to accounting for the resistivity of the
pure metals, the hard-sphere approach is able
to account for the deviation of the resistivity in
the binary alloys from the value that would be
expected on the basis of a linear extrapolation
between the pure metal values. For one of the
alkali-metal binary alloys, namely Na-K, com-
pressibility data obtained from velocity of sound
measurements is available. "

For binary systems Eq. (2) must be modified
in the following manner:

The above discussion has been restricted to
pure metals. Recently Ashcroft and Langreth"
have extended the hard-sphere approach to cal-
culation of the structure factors of binary sys-
tems, for which the Percus-Yevick equation has

nor~ =(I- q)'/[(I+2q)'- ~j,
where & is given by the expression

Sx(1-x)q(1 —n)'
x+ (1 —x)o."

(6)

2+'fI 1+a + 3ge x+ (1 —x)a' (7)
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FIG. 1. Temperature dependence of the resistivity of
liquid rubidium. The solid line represents experimental
data reported in Ref. 2. Points + correspond to calcu-
lations made using the structure factor of AL. Points
4, and denote values calculated using structure factors
determined from bvo sets of compressibility data (based
on density values of Refs. 10 and 11, respectively).

In Eq. (7) x is the atomic concentration of species
2, (1—x) is the concentration of species 1, and
n is the ratio of the hard-sphere radius of species
1 to that of species 2. Ashcroft and Langreth
show that, for the Na-K system, a is approxi-
mately constant for the whole range of concentra-
tion. Furthermore, resistivity calculations show
that for the packing parameter it is sufficient to
make a linear interpolation,

q =xgK+ (1 —x)gN,

between the value appropriate to pure Na and that
of pure K. At 100 G the best fit to resistivity data
is given by o. = 0.75. Using the values n = 0. 75
and e = 0.72, and values of qK and qNa obtained
from compressibility data for the pure metals,
the variation of vy with composition was ealeu-
lated from Eq. (6). The calculated and experi-
mental deviation of zy at 100'G from a linear
extrapolation is shown in Fig. 2. The values
calculated from the hard- sphere model exhibit
the same shape as the experimental curve, par-
ticularly when the ratio of the hard-sphere radii
is taken to be 0.72. It should be noted that the
deviation, 6a'T, is only a few percent of the total
compressibility (values of zT range from 18.6
x10-" cm'/dyn for Na to 39.6xl0'" cm'/dyn for
K). The error bars shown on the experimental
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FIG. 2. Experimental (solid line) and calculated
(dashed lines) deviations 0&g of the isothermal com-
pressibility of sodium-potassium alloys (at 100 C) from
a linear extrapolation between the values of &Z for so-
dium and potassium.

points in Fig. 2 are based on the following esti-
mates of the accuracy of thermodynamic data
[see Eq. (4)] for the Na-K system: P+ 1%, p
+0. 1%, c+0.1%, and Cp+1%. Speed of sound and
density measurements are currently in progress
in other alkali-metal alloys in order to further
test the applicability of Eq. (6) to these systems.

The present work provides further experimental
evidence supporting the observations of AI that
the isothermal compressibility of alkali metals is
determined mainly by the repulsive part of '.he
ion-ion potential, and that the net contribution from
the long-range ion-ion oscillatory interaction and
from the electron gas is small. One important
consequence of this is the fact that measurements
of vy can be used to obtain reliable estimates of
the structure factors (up to and including the first
peak) of alkali metals and their alloys. The above
conclusion is also in agreement with recent theory.
The calculations by Ashcroft and Langreth of the
ion-ion potential in liquid metals show that the
long-range oscillatory interaction is small in the
alkali metals. Furthermore, it can be shown
that, once exchange and correlation effects are
included, the electron gas is very compressible
at densities typical of the conduction electrons
in alkali metals. Therefore the contribution to
zy from the electron gas will be small in alkali
metals but may be appreciable in polyvalent
metals.
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