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The general impact theory of electron broadening, developed previously by Griem, Baranger,
Kolb, and Oertel (G BKO), is extended in order to take into account the off-diagonal matrix
elements necessary to treat the case of partially overlapping lines.

The new time integrals arising in the theory have rigorously been evaluated. It follows a

generalized and consistent treatment of overlapping lines for any degree of degeneracy. The
"complete degeneracy case" (hydrogen) and the "isolated-line case" appear as limiting
situations in our theoretical description. In order to describe the four possible kinds of
second-order atomic transitions, we are. led to generalize the A and & functions of GBKO.
Properties of these new A (zq, z&) and J3 (zl, z&) functions are considered in detail.

1. INTRODUCTION

The generalized impact theory for electron
broadening of neutral helium lines, developed by
Griem, Baranger, Kolb, and Oertel' (GBKO), is
restricted to isolated lines. Nevertheless, elec-
tron-dens ity measurements at Te ~ 2 x 104 'K and
N ~ 10"cm ' render very desirable the considera-
tion of the most intense He I lines, arising from
the 2P-nQ (where 2 ~n ~ 5 and Q=P, D, E, G)
hydrogenic transitions. Previous treatment by
Griem' of the partially overlapping lines 2'S —O'Q

was based on a full degeneracy assumption which
is acceptable only in the presence of a high elec-
tron density (N ~ 10' cm '). The nonlinear static
Stark effect of the He I excited levels, resulting in
a weakening of the ionic broadening, makes neces-
sary a careful evaluation of the electron-impact
contribution to the line broadening. Thus there
appears the need to generalize the GBKO electron-
collision operator, in order to be able to consider
not only diagonal matrix elements (isolated lines)
but also off-diagonal ones, which are usually ne-
glected. Hydrogenic He I lines offer a very sen-
sitive test of this complete impact theory of elec-

tron broadening, because their static Stark patterns
can be determined with very high accuracy. ' '
The present paper is organized as follows:

In Sec. 2 the electron-impact-broadening theory
is adapted to the case of partial degeneracy. The
off-diagonal matrix elements are obtained in Sec. 3
with the aid of a rigorous treatment of the time in-
tegrals, the details of which are given in the Ap-
pendix. Symmetry considerations and numerical
results are discussed in Sec. 4. Also in Sec. 4
the particular cases of completely degenerate
levels (hydrogen) and of inelastic transitions for
partially degenerate levels are emphasized. An
expression for the quadrupole correction is given
in Sec. 5. The theory developed here is very well
suited to describe the Stark broadening of over-
lapping He I lines in the presence of an external
magnetic field (Sec. 6).

The applicability of the present generalization to
partially degenerate ionic lines'does not appear
self-evident because the use of the classical path
approximation for the perturber motion is ques-
tionable in that case. ' On the other hand, it could
be of interest to apply the analytical methods de-
veloped in this work to atomic impact broadening. '

2. ELECTRON BROADENING OF PARTIALLY DEGENERATED LINES

A. Initial Formulatiori

Our starting point will be the expression (2.10) of Ref. 1 for the electronic part of the line shape of the
emitted light polarized along direction e:

I,(e, e)=- Re Z (ni [e ~ r (n'g)(n'k (e ~ r (nl)
NB 0 ~

x(ni )(n'j [[i&u-N '(& -X,)+ P, ] ' fnf) t& &),

where e is the angular frequency separation from the unperturbed line 2P-nD. (In the following we shall
fix n'=2 for the lower level. ) The summation runs over the sublevels i and l of the upper level n and over
the sublevels j and k of the lower level n'. Also, X„and &„~are the Hamiltonians' ' describing the vari-
ous sublevels, in subspaces of principal quantum numbers n and n', respectively, as functions of the static
electric field F. The kets )ni) and (nl) (or jn'g) and [n'k)) are eigenvectors of

X„(oretc„~)

and are given
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by the following expressions:

n2

Ini) = Z a. In}t)),
~ ~ p

p=1 '
n2 n'2 n"

Inl) = Z a ins), In'j) Z a. In'q), In'k) = Z a In'r),
S= 1 Q'=1 r=1 ' (2)

where the static perturbation is wholly contained in the eigenvector components ai j', etc. The kets I nq),
etc. , on the right-hand side represent the eigenfunctions Inlm) of the unperturbed hydrogen atom.
is the impact-broadening operator to be discussed in the next section.

With expressions (2), Eq. (1) takes the form

t,(,ve)= —[(e Z ( Z a. a. a a (np[a ~ r[n'V)(n'v[e ~ F] ne))
i,j,k, l p, q, r, s

x(ni I(n jI'[i &o —i5 (X —X,)+ (t),] Inl) In'k).

The sums over p, q, r, s, and the algebraic quantity

(ni i(n'j I v —5 '(X —X ) Inl) In'k) =i[(d Fi--'($. —$.)]5.ih.k

are evaluated directly in terms of the eigenquantities given in Refs. 3 and 4.

B. Impact-Broadening Operator

The electron-broadening problem is then reduced to the evaluation of the matrix elements of the impact-
broadening operator given by Eq. (2.17) of Ref. 1.

,=Sv J vf(v)dvJ SvpIS (0)S, (0) —(I dp,

average

(4)

where Nz is the electron density, ~ means the complex conjugate of the given quantity, f(n) denotes t}e
Maxwellian distribution function of the electron velocity, p is the impact parameter, and S(0) the collision
S matrix evaluated at time u = 0. Using the linear relation r&(u) = p + v„u for the v component of the elec-
tron tralectory, Eq. (4) can be solved with exactly the same procedure as used by GBKO. ' The well-
known second-order development of the S matrices allows us to write

(nil(n'jlS (0)S,(0) —1inl)ln'k)
~ ~

average

e'I=-~~b. Q (nile Inl')(nl'ir inl)f dul f du2exp[i((d. i,ul+&ol, iu2)]El (ul)E1 (u2)
0', l, v

+6. Q (n'j Ir In'k') (n'k'lr In'k) j dul j du exp[-i(().k,udl+&ok, ku )]E (ul)E1 (u )

cr, k', v

Z(ni lr Inl) f exp(i(d. pl)E1 (ul)dul Q(nj'Ir In'k)~f exp(- icojku2)E1 (u2)du2
I
„1,(5

average

where the first term represents the second-order perturbation of sublevels in the upper state n, the
second term is the same quantity attached to the lower state n', and the third term is a product of tw'o
first-order terms contributing to the narrowing of the line. Also, in Eq. (5), it appeared to be useful to
introduce the usual angular frequencies

(d.i= k-'($. —$1), etc. (6)

The angular average { ~ ~ )~gular is performed with the help of
average

average
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and of p ~ v = 0. So with the dimensionless quantities

zl = & I iPI&~ z2= ~lliPI&P z2 = &iiPlsP

l /
1 '0' ' 2 kk' ' 4

one obtains

~

~

(ni I(n'j IS (0)S, (0) —I ln%)lnl)

average

x= vu/p,

II. Q(niIr Inl')(nl'Ir Inl)
3 Qp5 Jk 0'

L
00 J 00

-i z, x, -z, 'x,
+ 6.l Q (n'j ir In%') (n%'lr In'0), ' dxl x2e ' ' ' '

(I+ x,2)312(1+x,2p12
g —oo —ao

(9)

The essential part of our work is now the rigorous evaluation of Eg. (9).

3. OFF-DIAGONAL MATRIX ELEMENTS

The expression (9) has already been considered in the following two complementary situations:

(a) Isolated Lines

These are produced by allowed transitions of well-separated levels. In their vicinity the intensity of
forbidden components is weak. Nevertheless, the levels of the forbidden components contribute to the
broadening of the isolated lines through electronic collisions involving the different levels. This case is
obtained by putting z, = z, and z, '= z, ' in Eg. (9). It was studied at length by GBKO. '

(b) Strongly Overlapping Lines

Here, in view of their quasilinear Stark effect, forbidden components can have an intensity of the same
order of magnitude as those arising from allowed transitions. Electx on broadening is then well described
by the approximation exp(aizx) = 1 of Etl. (9). This procedure is the classical one used for hydrogen
broadening. ' It was also applied by Griem' to the hydrogenic transitions 2'S-O'D and 2'8-4'F of neutral
helium. Experimental results' at Tq = 2 x j.0~ 'K and N~ &10"cm-' strongly suggest that the profile of
2P-4Q transitions cannot be computed within the framework of this approximation. It appears necessary
to consider separately in the upper level n the contribution of each second-order transition i E' l, and
to investigate matrix elements with z, wz, .

Analytically, our problem will be to evaluate, without any simplifications, the three double integrals
appearing in Eg. (9). The third integral immediately gives

(I „2)SPg I 2@~/g
' dx2=2[lz~ll z41&,(lz, l)K, (lz, I)+z,z,&,(lz, l)K, (Iz, I)],

where E, and Z, are the modified Bessel functions of the second kind.
The second integral reduces to the first when z, '= —s, and z, '= —s~. So we are left with

i(z,x, —z,x,} (1+x,x,)
2 dx, dx e ' ' ' ' (1,) n(I, )3~ ~A(z„z,)+zB(z„z,).

~ 00 ~00 1+x1 + X2

As shown in the Appendix, the integrations over x, and x, can be expressed in terms of Bessel functions,

&(z„z,)= I z, II z, I Z, ( I z, I )K, ( Iz, I) +z,z,E,( I z, I )&,( I z, I), (12)

hypergeometric functions, and integrals of Bessel functions,

a(z„z,)=z,[ Z,(I; —,', —,'; —,'z, )- —,'~Iz, I,Z, (-,';2, —.'; —,'z, )]Iz, IZ, (Iz, I)



1 ( p~dttJ (f) t~dt't'(t+t')Z (f')
2 f2+z 2

I
([)+f1)2+(z z )2

J0 Jp

~dt't'J (t')
(t+f')'+ (z, —z, }'

0 t +~2 0

where J„(t)are Bessel functions of the first kind.
Expressions (12) and (13) are very well suited for numerical evaluation. The quantities involving the

K functions vanish exponentially for large z, values, and the double integrals with fixed limits are easily
handled by a Legendre-Gauss quadrature. The particular case z, = z, gives again the values of A(z) and
B(z) used for the isolated-line case (z=z, =z,). More precisely, the real part

~(z) = z [H,'(I z I )+H, '(Iz I)]

is the one already found by GBKO. ' The relations'

f"dt'tV, (t')/(t+t')= ()]f/2cosv)[H, (t) —N, (t)],

(12')

f"dt't'Z, (f'}/(t+t') = 1 — vt[H, (t) -N, (t)], f dt't'J (t')/(&" +z') = Z, (lz I),

where H0 and II, are the Struve functions, and N~ and N, . the Neuman functions, give the imaginary part

Wz) = z( (z (((,((z l)[,(', ((;!,l;!z')-!w(z I,(",( l; 2, l;!g')]

—K ( Iz I)[- 1+,E,(1;—', —'; —'z') —m lz I,E,(—;1, —'; —,'z )]

df t2~ (f)H, (t) N, (t) -v
df p ( )H~(f)-N, ([))

0

an expression much easier to handle numerically than Eqs. (3.8) of GBKO, ' because it is free from any
singularity. Before leaving this section, it is necessary to emphasize the physical meaning of the gener-
alization s, Wz, studied here. The isolated line case s = z, =s, can be described in terms of an electron
elastic scattering amplitude [see Fig. 1(a}]. The latter is itself expressible in terms of the inelastic
cross sections og& as Baranger" pointed out. The rigorous treatment given here introduces the three
additional contributions i -l'-f with i Wl and different values of the ratio z, /z, as shown on Fig. 1(b).
They correspond to inelastic electron scattering amplitudes.

4. PROPKRTIESOF Afz, z ) ANDB(z, z )
1 2 2

A. Symmetry Properties and Numerical Resu1ts

Changing the signs in expressions (12) and (13)
shows us immediately that

~(z„z,) =~(- z„-z, ),
H(z„z,)=-H(-z„-z,).

(15a)

(15b)

&(z„z,)=&(z„z,),

H(z„z, ) = H(z„z, ). (16b)

These parity properties are straightforward
generalizations of the same properties already
existing for isolated lines. '

The width function A~z„z, }contributes to the
dissipative operator part of the profile '0 and the
shift function B(z„z2), influences the fluctuating
part. Equations (15a) and (15b) simply say that
the width (inversely proportional to a lifetime) is
a positive quantity and the shift is a real-valued
one.

Further relations, which are not so apparent,
are

Equation (16a) is readily obtained from expression
(12), but Eq. (16b) is not evident by simple in-
spection of Eq. (13). Nevertheless it has been
numerically verified to five significant figures
(this limitation is due only to the limited accuracy
of the numerical calculation}. To get deeper in-

{0)

Z =Z
1 2

{b)

{,

{'
Z. Z &0 Z &Z

1 2 2 1
Z.Z (0 Z. Z &0 Z1 Z2

FIG. 1. The four second-order transitions that con-
tribute to electron broadening in the dipole approximation,
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sight into the physical significance of Eqs. (16a)
and (16b), we have to return to expression (11)
and consider

ISA( „,*,)

f(z„z,) =~(z„z,)+ iB(z„z,) (1V)

as a complex function of the complex variable a„
parametrized with

/z = (0 /(0. =g,

a quantity now independent of the plasma param-
eters p and v. This z, dependence is located in
the exponential exp[szg(xg —cx2)] of Eq. (11). Flrstq
let us choose a such that (x, -ax, ) ~0; a procedure
identical to the one used in Appendix 8 of Ref. 1
will convince us that f(z„az,) is an analytical func-
tion of z„ in the upper half plane of the complex
variable s, . So the well-known Kramers-Kronig
relation" will appear as

f( ),.P I f(z', az')dz'
I

where z, is a point located on the real axis, and I'
denotes the Cauchy principal part. Separating in
Eq. (18) the real and imaginary parts yields

~( )
P B(z', az ')dz'

j& l
1

1,Q
I

-05
I

0,5

2=1

0,$ 0.5

Hydrops
Q,'f

/
4. 0.02

0.5 1.0
.. L
20Z~

FIG. 2. Graphs of A(z~, z&) and B(s&, z&) as a function
of s2 corresponding to different && values. The latter
can be seen on the curves.

B( )
P A(z', az')dz'

z -z'
1

A(z', az')dz'
glg g3 ~

1
(19b)

z, for several values of s,. The numerical inte-
grations are described in detail elsewhere " The
values of A(z) [Eq. (12')j and B(z) [Eq. (13')]were
used to recalculate the values tabulated by Griem. "
Our B values are 0.5% larger than Griem's numer-
ical results.

It is now clearly apparent that the symmetry of
A(z„z, ) automatically implies the symmetry of
B(z„z,). The same arguments apply identically
when (x, —ax,)(0 (I is now analytic in the lower
half plane), and the symmetries of Eq. (16) keep
their validity for all (z„z,) values. Physically
speaking Eqs. (16a) and (16b), together with the
first term of Eq. (9), say that the transitions
i -l'-/ give the same contribution as the transitions
E-E'-i to the line broadening. This fact can be
understood on the basis of scattering theory, "
which indicates that in the presence of weak cou-
pling the electron scattering amplitudes are sym-
metric under a pexmutation of initial and final
states. It is quite interesting to point out that the
analog of Eq. (9) for fourth order will not show
this property, even if the A and B functions remain
symmetric. This clearly indicates that the corre-
sponding electron scattering amplitude describes
the so-called strong collisions in line-broadening
theory.

Equations (15) and (16}will appear to be useful
due to the simplifications they allow in complete
profile calculation. Particularly, we can restrict
ourselves to examining A. and & as functions of zy,
while ~, is considered as a parameter. The varia-
tions of A [Eq. (12)] and B [Eq. (13)j are shown. in
Figs. 2(a) and 2(b), respectively, as functions of

@. shifts and Widths

(1) Completely Degenerate Levels

Completely degenerate levels are shown in
Figs. 2(a) and 2(b) by the curves with z = 0.02. It
is important to note that the central parts with
—0.25 &z, &0.25 can be related to hydrogen broad-
ening under conditions found very often in plasma
spectroscopy, namely N~ =2 ~10" cm-' and
+ =2 &&10 K. The numerical values A(z~, 0.02}—1
and B(z, 0.02}=0.001 confirm the full validity of
the exp(aizx) =1 approximation applied when treat-
ing that latter problem. Nevertheless, for the sake
of theoretical completeness, it is important to
realize that 8 is not identically zero. This fact
indicates clearly that the generalized impact theory
is able to give a small contribution to the shift in
the limit of nearly completely degenerate levels.

This imaginary part is produced by the quasi-
static Stark effect and vanishes with it, as Van
Hegemorter" has suggested previously. It is com-
pletely different from the imaginary part found re-
cently by Smith" for the collision operator, in the
"relaxation" theory of line broadening.

(2) Partially Degenerate Levels

Other curves in Figs. 2(a} and 2(b} show the 4
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and & values pertaining to the excited levels of
He L More precisely, the ratio —0.3 &z, /», & 1.8
gives the electron broadening of 4Q(Q=P, D, F}
sublevels sub)ected to an electric field of 100
kV/cm. The value z2= zD ™1under these condi-
tions, is obtained with p= AD and t) = (2k'/me)'l2.
The more striking fact shown by Fig. 2(b) is the
relation

a(z„z,)=0, (z, O), (2o)

satisfied for all z, values. The value of f(o, z, ) is
readily obtained from E{I. (11)

(20) and (21) for z, ~ z, &0. In that case, we find
the most inelastic transitions which broaden the
spectral line without shifting it: This is the situa-
tion described by the Lorentz theory. " Numer-
ically speaking, this result is very important for
complete calculations of entire profiles. For the
8 functions, which are the most cumbersome to
evaluate, this simplification mill reduce the com-
putation time considerably. It is also very in-
structive to contemplate the complementary rela-
tions

W(z, a») &~(z, z)

and B(z,az) «B(z, z),

&& (,—;—„2 i' + 1,„2

imam

= I»2 IIfi(I»a I »XI X2 21

with &(0,», )= 0.
Apparent tn Fig, I(b) is the main content of E{ls.

with 0 ~a ~1. When la I&1, the above inequalities
remain unchanged if one considers z'= az and
a'=a-'. Physically speaking, E{I. (22a) says that
the width contribution of a second-order transition
i -l'-l is minimum for a diagonal matrix element
(isolated line), the shift contribution being then
maximum as shown by (22b).

S. QUADRUPOLE CORRECTION

It is possible to improve the second-order evaluation of E{I. (5) by taking into account the effect of the
monopole-quadrupole interaction

V = —,'a, IF(u) I-'f[F(u) ~ r]'/ir(u) I' - —,
' r ~ r],

where ao denotes the Bohr radius.
Performing the angular average with the aid of the relations

where u we, we are led to add the following to E{l. (9):

(ufIS (0)Iuf)
n angular 4 5jr p 1

x 2: (fIr„ I&')Q'ir„ If)f[~~(1+~, z )+~(z, +z +4,z )](I+», ) 2(l+z ) '5 2 5

EP

yl+g ) '(1+x ) '} + Z (fI& If')(I'Ir If)

x([~[1+x z +&(x +z -4»lz2)](I+»i ) '(I+z2 ) '- .(I+&I ) (I+&2 } }

+ Z {{I««{{'){)'{«„««+«««„{{){+{{««{«2 )-«{«{+«2 )]{{+«{) '{{+«)
P. y

0'p l

As before, it is possible to evaluate the real parts of E{I. (25} in a straightforward way in terms of Eo and
X, functions. But the imaginary parts are no longer treatab1e with the methods developed in the Appendix.
This is not a serious drawback: in most spectroscopic investigations of neutral lines in plasmas we have
k&e ~10 eV, so that
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p«X
de Broglie 0'—10@,

and the (4tc jp) factor limits the s and s' values of practical interest to be close to Zero. Then the dispersion
relation (19b) immediately shows that the tluadrupole contribution to & is negligible. Physically this means
that interactions stronger than dipole ones will give only a weak contribution to the width. Thus, neglecting
the imaginary part and also the vanishing real parts, [Etl. (25)] will be well approximated by

(nil8 (0)Inl) =-— — —' 2 5 (i lr il')(1'Ir Il)
n angular 5 1)Ipv p~

&, 44 p,

Rvel'Rge

x[&(al a2)+- ~al~~a2~If1(~a2~)&1(~a'1~)]- z &il~ il') (1'Ir il)[A(a, a )+~ (8 ][8 )K (]g [)K ((8 ()]1' 2 1 2 1 2 1 1 )I g O
7

+2 Z &)i~ ~ ))')()')~ ~ +~ ~ )))I~)s)l)~2)&)(l*)l)&)()*2)))I .
p, g p, 0' g p, 1 2 1 1 1 2

P,
p

0'p

6. AN ILLUSTRATIVE EXAMPLE

2" P-4~Q F-100kV/crn, H= 0

"30

It is quite worthwhile to emphasize that the effect
of an external (constant) magnetic field H may be
described, 1n R nRturRl wRy, within the frRme of
the above generalization when the electron Debye
radius AD remains smaller than its Larmor radius

1, e. ~

P-5

-510- '- -I0

P-D
~ .10

P-F P-P

)

80

4.544 x10-'f)t' 'I' (cm-')
e

H {Gauss) (27)
2~ P -4"Q F=100kV/cm, H=0.2k6 „o'.=0.707

i'll(y)

"20
P-S P-D P-F P-P

a condition offering a wide range, X «5.10'4 cm-3
and B &10' 6, for practical applications. The
magnetic field introduces deep modifications in the
Stark patterns'~ 4 of overlapping He I lines. A
typical example of this new situation can be seen
in Fig. 3. Figure 3(a) shows the Stark pattern of
the transitions 2'P-4'Q(@=P, D, E) produced by
a static electric field of 100 kV/cm, which corre-
sponds to N = 1.4 &10"cm-'. Here the compo-
nents are few in number, and it is possible, with
a limited loss of accuracy, to treat their electron-
impact broadening in the complete degeneracy ap-
proximation. The modifications produced by a
200-6 magnetic field orientated at 45' with respect
to the electric field is shown on Fig. 3(b). Compo-
nents with magnetic quantum number m 40 are
replaced by doublet. Kith increasing field
strength their number increases, and they spread
out on the abscissa. In the presence of a strong
magnetic field [Fig. 3(c), H=40 kG] we see many
components of comparable magnitude standing
over an appreciable "distance. " Figures 3(a) and
3(b) show clearly that it is necessary to take into
account off-diagonal matrix elements of the elec-
tron-collision operator.

:[0

-40 0 40 80

2'P-4'Q F~100kV/c)n, H=40ke. o)=0707

&i&(y)

-20

P-5 P-D P-F P-P

-10

40
[, .Il~l

80 )It){ere-) j

(2's-4'q) = zoo%.

FIG. 3. Stark patterns, with emitted intensities
polarized perpendicularly to F and H (see the text for
the orientations of the fields) of the transitions 2 P-4 Q
{tI)= 8, P, D, F) for an electric field strength F of 100 kV/
cm. The normalization of the intensities is given by
the condition.
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ApeENniX

The integrals appearing in the impact-broadening operator are evaluated in this Appendix. According
to Eq. (11, one has

f(z„z,) =~(~„s,)+ ia(z„z,) = 2- dX1

Xi, ~(XiXi, ~2X2)d8 (1+x,x2/
$1+x ')'~(1+x ')'~ (A.l)

First we look for a transformation of the integrand, which will replace the variable limit x, by a fixed
one. It is in fact possible" to represent the algebraic part of (A.1) as a sum of Laplace transforms of
Bessel functions. In consequence, our first aim will be to put Eq. (A.l) in the form

f"dx, f"dx, + f"dx, f dx, .
0 0 0 X1

It proves convenient to start from

axe 8

J 'J (1+x')' '(1+x )'i ' ' (1+x ')' (1+x')'& (A.2)

First, we write
—&~2'

Xl 8 X, 8
(1+x,2)» (1 d-x 2p&

A. Evaluation of I
1

2'8 1X1 X1 d $sdsn 2X2
X1 8 X2 8

(1+x 'Pl' (1+x ')'I' (A.s)

Decomposing the exponential" (A.S) becomes

dx, cosa,x~ dx, cosa,x, 2. dx, s).ns, x, dx, cosa,x,
(1+x ')'I' (1+x,')'& (1+x ')'& (1+x ')'~

0 1

dx, cosx, x, dx, sins, x, &. ( dx, sinx, x, i' dx, cosx, x,
(isx')'x (1+x')'x '

hi px sx(iso')'x
1

= 2 l~, lls, i&,(l~, l)&,(lz, I)+ 2i~, [g, (1; —,', —,'; —,'s, ') ——,'mls, i,F,( 2, 2, 2, —,'z,-)]iz, iK, (l~, l)

dxi cosz~x~
(1+x ')'I'

0 1

dx, sins, x, 2, dx, sins, x, t dx, cosa,x,
(1+x,')» (1+x ')'&

J
(1+x ')»

1

(A.4)

where we used (cf. Ref. 9, p. 429)

y+ x 2~+~/2 1 2 (A.5)

I"(P)r( )
" I'( )

I"(&) I'(P+n)I'(y+~) nT '
n=O

1. Evaluation of I»-- fo d [ xczo,xs, /(I+ ')x'@]j dx, sins, x,/(I+x, ')'I'. Now, it is convenient to
utilize" 1

(1+x, ) / = f did, (f)e
0

with x, &0, and to permute fo dt and fx dx, . So we obtain
1

(A.6)

fo dxsins, ,x(/1+x, ' )'I=
fo dttJ, (t)f dx, e ' sins, x, .

X1
(A.V)

This operation is permissible because



178 BROADENING OF He LINES IN MAGNE TIC FIE LDS 269

f lt&, (t)ldtf e ' dx, =
f0 dtlJ, (t)le

X1 X1

has a meaning whenever x, &0. The x, integration of (A. V) allows us to write (cf. Ref. 9, p. 196)

f dx, sinz, x,/(1+x, ) = f0 dttZ, (t)(tsinz, x,+z, cosz,x&)e ' /(t +z, )
xl

(A.8)

with x, & 0. Its two members being continuous functions of x„ it is easy to convince oneself that (A.8)
keeps its validity in the x, = 0 limit. Thus whenever x, -0,

I»-- J dx, [cosz,x,/(1+x, ) ]f dttZ, (t)e ' (tsinz, x, +z, cosz,x,)/(t +z, )
0 0

(A.Q)

2. Evaluation of I» = f, dx, [sinz, x,/(1+ x,'}'12]f dx, cosz, x,/(1+ x,')'I'. Identical manipulations lead to

I»= f dx, [sinz, x,/(1+x, ) ] J' dttJ, (t)(tcosz, x, —z, sinz, x, )e ' /(t +z, ).2 3/2 ~ x1t 2 2

0 0

When (A.9) and (A. 10) are put together, the last line of the second expression of (A.4) reads

2i(I„—I„)=2if dt[tJ, (t)/(t +z, )]

(A.10)

x[z,f dx, e ' cos(z, —z, )x,/(1+x, ) +t f dx, e ' sin(z, —z, )x,/(1+x, ) ], (A.11)
—x,t 2 3/2 -x,t . 2 3/2

0 0

where use has again been made of the permutation of f, dt and f, dx, . A more symmetrical expression
for (A.11) is obtained with the help of Eq. (A.6) which gives

2i(I„—I„)= 2iz, f dt[tJ, (t)/(t'+z, ')] J' dt't'(t+t')J, (t )/[(t+ t')'+ (z, —z, )']
0 0

+2i(z2-z, )J dt[t2J (t)/(t +z ')] J' dt'tV, (t')//[(t+t') +(z, —z )']
0 0

(A.12)

B. Evaluation of I,

In this paragraph, the tricks shown above are re-utilized. By separating the real and imaginary parts,
we obtain the following relations:

I2=2 dx1 x1 81~1x1
(1+x ')'I'

dx x2 slng2x2 - 2 dxl xl cosglxl
(1+x,')'I' 0 (1+x,')'I'

dx, x, szm2x2

0 (1+x ')'I'
2

dx, x, cosa,x, dx, x, sins, x, . dx, x, sine, x, dx, x, cosa, x2

0
(1+x')'I' ~ (1+x )3j' -" (1+x )31'

'
(1+x )31

1 jx1
2 0 1 x1

2

=2zz&(lz, I)& (Iz, I) —2i[ E (1; —,', —,'; —,'z, ) —,'viz, I,E(—,'; 1,——,'; —,'z, )]zE(lz, I)

dx, x, cosa, x1 dx2 x, sinz2x2 . dx, x, sr', x, dx, x, cosz2x2
(1/x ) r (lyx~}38 (1+x Pi

I
(1+x22) &

1 0 Jx,

With the aid of (Ref. 9, p. 429)

(A.13)

f dx, x, cosz, x,/(1+x, ') '=,E,(1; —,', —,'; —,'z, ') ——,'viz, Ig, (2,'1, k; &z,').
0

So we again obtain the difference of two integrals with the variable x, limit. Now, we use (see Ref. 18,
p. 213) the relation

x, /(1+x, ')'"= f dte "' tJ, (t) (x, )0)
0

to write

(A.14)



I„=-f0 dx, [x, cosz, x,/(1+x, ')'"]J' dx, x, sinz, x,/(1+ x,'}»'
X$

= f dxg[xg coszgxg/(1+ xg ) ]f dt tdo(t}(t sinzmxg+ z2 coszmx~)8 /(t +z22) (A.15)

I22: f0 dxg[xg sinzqxq/(1+ xq ) I ] J dxax2 cosz2X2/(1+X2 ) I
Xg

= f dx, [x, sinz, x,/(1+ x,')'I'] f dt tZ, (t)(t cosz,x, —z, sinz, x, )e ' /(t2+ z,') .
0 0

(A.16)

Boih expl'esslons Rx'e valid fol' x~ 0. Using R 1'elation Rnalogolls to (A.14), with x2 1'eplaced by x~~ gives

3t (&„-Z„)= 3tz, f dt[tZ, (t)/(t'+z, ')] f dt't'(t+t '9,(t')/[(t+ t')'+ (z, —z, )']

+3t(z, -z, )f dt[t'Z, (t)/(t&+z, )]f dt't'Z(t')/[(t+t')'+(z, -z,)']. (A.17}

Finally, with (A.4), (A.12), (A.13), and (A.17), one obtains Eqs. (12) and (13) of the main text.
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