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The general impact theory of electron broadening, developed previously by Griem, Baranger,

Kolb, and Oertel (GBKO),

is extended in order to take into account the off-diagonal matrix

elements necessary to treat the case of partially overlapping lines.

The new time integrals arising in the theory have rigorously been evaluated.

It follows a

generalized and consistent treatment of overlapping lines for any degree of degeneracy. The
“complete degeneracy case” (hydrogen) and the “isolated-line case” appear as limiting
situations in our theoretical description. In order to describe the four possible kinds of
second-order atomic transitions, we are led to generalize the A and B functions of GBKO.
Properties of these new A (24, 29) and B (24, 2;) functions are considered in detail.

1. INTRODUCTION

The generalized impact theory for electron
broadening of neutral helium lines, developed by
Griem, Baranger, Kolb, and Oertel! (GBKO), is
restricted to isolated lines. Nevertheless, elec-
tron-density measurements at T, >2x10* °K and
N_ = 10" cm™ render very desirable the considera-
tion of the most intense He I lines, arising from
the 2P-nQ (where 3 <n <5and Q=P,D, F, G)
hydrogenic transitions, Previous treatment by
Griem? of the partially overlapping lines 2!S — 4@
was based on a full degeneracy assumption which
is acceptable only in the presence of a high elec-
tron density (N, > 10'” cm™2). The nonlinear static
Stark effect of the He I excited levels, resulting in
a weakening of the ionic broadening, makes neces-
sary a careful evaluation of the electron-impact
contribution to the line broadening. Thus there
appears the need to generalize the GBKO electron-
collision operator, in order to be able to consider
not only diagonal matrix elements (isolated lines)
but also off-diagonal ones, which are usually ne-
glected. Hydrogenic He I lines offer a very sen-
sitive test of this complete impact theory of elec-

tron broadening, because their static Stark patterns
can be determined with very high accuracy.3"*
The present paper is organized as follows:

In Sec. 2 the electron-impact-broadening theory
is adapted to the case of partial degeneracy. The
off-diagonal matrix elements are obtained in Sec. 3
with the aid of a rigorous treatment of the time in-
tegrals, the details of which are given in the Ap-
pendix. Symmetry considerations and numerical
results are discussed in Sec, 4, Also in Sec. 4
the particular cases of completely degenerate
levels (hydrogen) and of inelastic transitions for
partially degenerate levels are emphasized. An
expression for the quadrupole correction is given
in Sec. 5. The theory developed here is very well
suited to describe the Stark broadening of over-
lapping He I lines in the presence of an external
magnetic field (Sec. 6).

The applicability of the present generalization to
partially degenerate ionic lines’does not appear
self-evident because the use of the classical path
approximation for the perturber motion is ques-
tionable in that case.® On the other hand, it could
be of interest to apply the analytical methods de-
veloped in this work to atomic impact broadening, ©

2. ELECTRON BROADENING OF PARTIALLY DEGENERATED LINES

A. Initial Formulation

Our starting point will be the expression (2.10) of Ref. 1 for the electronic part of the line shape of the

emitted light polarized along direction &:

22 mi|&-F n'iyn'k €T |nl)
i,7,k,1

. {w,&)=- Re

x(ni [(n'j |[iw —in=2(3€ =3 )+ ¢,

where w is the angular frequency separation from the unperturbed line 2P-nD,

J=tnty In'k), (1)

(In the following we shall

fix n’=2 for the lower level.) The summatlon runs over the sublevels 7 and [ of the upper level # and over

the sublevels j and % of the lower level n’,

ous sublevels, in subspaces of principal quantum numbers n and n’

Also, 3¢, and ¥, » are the Hamiltonians®~—* describing the vari-

, respectively, as functions of the static

electric field F The kets |ni) and |nl) (or |n'j) and |n'k)) are elgenvectors of 3¢, (or.’K’, /) and are given
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by the following expressions:

n'2 ’2

n? n2 n
|ni) = b a.plnp), |nl) = 2 als[ns), In'5) 2 a.qm’q), In'ky= 2 akym'r), 2)
p=1 ! s=1 g=1 J r=1

where the static perturbation is wholly contained in the eigenvector components ail’, etc. The kets |ng),
etc., on the right-hand side represent the eigenfunctions |xlm) of the unperturbed hydrogen atom. ¢,/
is the impact-broadening operator to be discussed in the next section.

With expressions (2), Eq. (1) takes the form

I fw,&)=-Re 2 2 alaa 'ras(np|€-?[n’q)(n’r|5-?lns)>
nn i g k0 \p,qrys b F T
- -1 ,
xei [(n'f | liw=in " Mo ~3¢ )+ g 17 L ind) 1n'ky. @3)

The sums over p, ¢, 7, s, and the algebraic quantity
i |n'jlw- ﬁ'l(acn ~ Jcn ) 1nly In'ky =i[w~H 'l(éi - gj)]ail ij
are evaluated directly in terms of the eigenquantities given in Refs. 3 and 4.
B. Impact-Broadening Operator

The electron-broadening problem is then reduced to the evaluation of the matrix elements of the impact-
broadening operator given by Eq. (2.17) of Ref. 1.

dp, “)

¢ =N, [ vfw)dw f°°°27rp{sn(o)sn o) - 1}

angular
average

n

where N is the electron density, * means the complex conjugate of the given quantity, f(v) denotes the
Maxwellian distribution function of the electron velocity, p is the impact parameter, and S(0) the collision
S matrix evaluated at time #=0. Using the linear relation 1*,,(u)=p,,+ v, u for the v component of the elec-
tron trajectory, Eq. (4) can be solved with exactly the same procedure as used by GBKO,! The well-
known second-order development of the S matrices allows us to write

. ) |
{(ml(nﬂsn(o)snl(o) 1inl)in'k) angular
average

__e'.’.f . ’ ’ % ! .
=% ajko ZE' ] (i ly 102"y nl" 17, Inl) [ ity J_ oy exp[z(wil,ul+wl,lu2)]E10(u1)E1V(u2)
5, T wilr ink) %y k) [Z au [*_du, expl-ilw,, ., +w,, u)|E @ )E, @)
i 1 v S ) k1 R 2 161 10 e

o,k v

- l:?(m'I'raInl)waexp(iwilul)Elc(ul)duJ {?(n'] I‘/V In'k)*.[_":o exp(~ iwjkuz)Ely(uz)duZ]} ., (5)

angular
average

where the first term represents the second-order perturbation of sublevels in the upper state n, the
second term is the same quantity attached to the lower state »’ , and the third term is a product of two

first-order terms contributing to the narrowing of the line. Also, in Eq. (5), it appeared to be useful to
introduce the usual angular frequencies

W= h'l(‘g’z.— sl), etc, (6)

The angular average {--- }angular is performed with the help of
average

5
2 K (0% + vPu,u,)
{Elo(ul)Elv(uZ)}angular ¢T3 . (0% +%u” F”(pé YR v ™

average
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and of 5 - V=0. So with the dimensionless quantities

2y =0V, 2g=wyp/v,  z23=w,0/v,

(8)
z1'=w].k,p/v, z2’=wkk,p/v, z4=w].kp/v, x=vu/p,

one obtains

ﬁ(m‘ 160’ ISn(O)Sn, *(0) ~-1lln 'k)lnl)l

5 angular
average

2.2 0 % i(2,%, ~ 2,%,)
__l(e : VT (1+x,x,)e 11~ %272
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1

X

5 2( Gy | 'kr>*< By | Ik>*r°° d d —i(zl'x,—zz’xz) (1+xx)
*% nJTyn nRAY 1 J_w *1 . *9€ 1+ 22P2(1+x,

ok’
) ) % * . © 124X, 1
- %}(mwo Inl)n’5 17 In'R) f;wdxlez%xljiwdxzﬁ?%ﬁ—%)+ oo, 9)

The essential part of our work is now the rigorous evaluation of Eq. (9).
3. OFF-DIAGONAL MATRIX ELEMENTS
The expression (9) has already been considered in the following two complementary situations:
(@) Isolated Lines

These are produced by allowed transitions of well-separated levels. In their vicinity the intensity of
forbidden components is weak. Nevertheless, the levels of the forbidden components contribute to the
broadening of the isolated lines through electronic collisions involving the different levels. This case is
obtained by putting z,=2, and z,’=z,’ in Eq. (9). It was studied at length by GBKO.*

(b) Strongly Overlapping Lines

Here, in view of their quasilinear Stark effect, forbidden components can have an intensity of the same
order of magnitude as those arising from allowed transitions. Electron broadening is then well described
by the approximation exp(+izx)=1 of Eq. (9). This procedure is the classical one used for hydrogen
broadening.” It was also applied by Griem? to the hydrogenic transitions 2'S-4'D and 2!S-4'F of neutral
helium. Experimental results® at T,=2x10%°K and N, <10" cm~3 strongly suggest that the profile of
2P-4Q transitions cannot be computed within the framework of this approximation. It appears necessary
to consider separately in the upper level z the contribution of each second-order transition i=1'-1, and
to investigate matrix elements with z, #z,.

Analytically, our problem will be to evaluate, without any simplifications, the three double integrals
appearing in Eq. (9). The third integral immediately gives

(T+x,2 1+ x,2
(] 00

® o Fig % Ry x)
f F}:J' 71—}2—de2=2[|,23|| 2, K (125 DK, (12, 1)+ 242,Ko (125 DK (124 1], (10)

where K, and K, are the modified Bessel functions of the second kind.
The second integral reduces to the first when z,’= -2, and 2,"=-2,. So we are left with

-1[° 1 (2%, ~ 2545 (1+2,%) _ ,
2 [_wdxX./;w dxze W=A(z“zz)+ ZB(ZI, Zz). (11)

As shown in the Appendix, the integrations over x; and x, can be expressed in terms of Bessel functions,
Alzy, 2,)= 12, | 2, 1K, (12, DE, (12, 1) + 2,2,K,(12, 1)K, (12, 1), (12)
hypergeometric functions, and integrals of Bessel functions,

Blzy,2,)=2,[,F,(1; 3, %:' 12,8 - imlz, |1F2(%; 2, %; 28]z, 'K1(!zzl)
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- [,F,(1; %: %,' 12,%) - ’é"lrlleng(%; 1, %§ %312)]321{0( l251)

X4 'y ! Iy ?
. 1 zfoodttJn(t) odt't! (t+1 )Jn(t )+(z . )/”dttan(t) codt tJn(t ) )
2 2 2 N2 — 2 27 <1 ’(—IP_('—:—F )
ne0 \ P+z, . E+t"P + (2, — 25) Nyl A t+t"P+(2,- 2,

where J,(t) are Bessel functions of the first kind.

Expressions (12) and (13) are very well suited for numerical evaluation. The quantities involving the
K functions vanish exponentially for large z, values, and the double integrals with fixed limits are easily
handled by a Legendre-Gauss quadrature. The particular case 2, =2, gives again the values of A(z) and
B(z) used for the isolated-line case (z=2z,=2,). More precisely, the real part

Az)=22[K2(1z1 )+ K2(1z )] 12"
is the one already found by GBKO.! The relations®
[ a1, @/t +t")= (nt/2 cosm)H_ ,(£) - N _, ()],
0 (14)
[Tat e,/ +1")= 1= dnt[Hy@) - No®)], [T at't I,/ "?+23)=K,(1z1),

where H, and H_, are the Struve functions, and N, and N_, the Neuman functions, give the imaginary part

B(z)=z< 1z 1K, (12 [, Fo(1; %, 5 322) - i1z 1,F,(3;2, 3 12%)]

- K12 D[-1+,F,(1; 3, 3;42) - 311z, Fy (31, 3; 222)]
* H_, () - N._ ® H,(t)-N,
—1—27[ dttle(t)'—l(T)_‘_—gg—L(—t—)-gf dt £2d (¢ )—Q%é)“:éio“(t‘)> ’ (13"
0 0

an expression much easier to handle numerically than Egs. (3.8) of GBKO, ! because it is free from any
singularity. Before leaving this section, it is necessary to emphasize the physical meaning of the gener-
alization z, #z, studied here. The isolated line case z=2z, =2, can be described in terms of an electron
elastic scattering amplitude [see Fig. 1(a)]. The latter is itself expressible in terms of the inelastic
cross sections 0;;’ as Baranger'® pointed out. The rigorous treatment given here introduces the three
additional contributions i -7’ - with 4 #7 and different values of the ratio z,/z, as shown on Fig. 1(b).
They correspond to inelastic electron scattering amplitudes.

4. PROPERTIES OF A(z ,z JAND B(z ,z ) Equation (16a) is readily obtained from expression
12 12 (12), but Eq. (16b) is not evident by simple in-
A. Symmetry Properties and Numerical Results spection of Eq. (13). Nevertheless it has been
numerically verified to five significant figures
Changing the signs in expressions (12) and (13) (this limitation is due only to the limited accuracy
shows us immediately that of the numerical calculation). To get deeper in-
Alzy, 2,)= A= z,, = 2,), (15a)
B(z,,2,)=~B(-z;, —2,). (15b) (a)

These parity properties are straightforward =t
l ¢

generalizations of the same properties already
existing for isolated lines.?! o2
The width function A\z,, 2,) contributes to the
dissipative operator part of the profile, !° and the
shift function B(z,, z,), influences the fluctuating
part. Equations (15a) and (15b) simply say that
the width (inversely proportional to a lifetime) is
a positive quantity and the shift is a real-valued

one. : :
Further relations, which are not so apparent, h__ ; ‘; ‘L j% l‘
are Z1.Zz>0 -MZZ>Z1 21.2240 21. Zz>0 Z1> Z2 !
A(ZI’ZZ)ZA(ZZ’ZI)’ (163)
FIG. 1. The four second-order transitions that con-
B(z,,2,)=B(z,,2,). (16b) tribute to electron broadening in the dipole approximation.
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sight into the physical significance of Eqs. (16a)
and (16b), we have to return to expression (11)
and consider

I(z,,2,)=A(z,,2,)+iB(z,, 2,) (17)

as a complex function of the complex variable z,,
parametrized with

29/21= 0yl =,

a quantity now independent of the plasma param-
eters p and v, This z, dependence is located in

the exponential expliz, (x, —ax,)] of Eq. (11). First,

let us choose a such that (x, —ax,) >0; a procedure
identical to the one used in Appendix B of Ref. 1
will convince us that I(z,, az,) is an analytical func-
tion of z,, in the upper half plane of the complex
variable z,. So the well-known Kramers-Kronig
relation' will appear as

teyaz)=i2 [~ teais’ (18)

2, =z

where z, is a point located on the real axis, and P
denotes the Cauchy principal part. Separating in
Eq. (18) the real and imaginary parts yields

Alz,,az,)= P/ w (19a)

2=z, ’

Blz, az)=L / (z az’)dz

/ A(z az')dz (19b)

It is now clearly apparent that the symmetry of
A(z,, z,) automatically implies the symmetry of
B(z,,2,). The same arguments apply identically
when (x; —ax,) <0 (I is now analytic in the lower
half plane), and the symmetries of Eq. (16) keep
their validity for all (z,,2,) values. Physically
speaking Eqs. (16a) and (16b), together with the
first term of Eq. (9), say that the transitions
i-1'~1 give the same contribution as the transitions
1 ~1’=1i to the line broadening. This fact can be
understood on the basis of scattering theory, 12
which indicates that in the presence of weak cou-
pling the electron scattering amplitudes are sym-
metric under a permutation of initial and final
states. It is quite interesting to point out that the
analog of Eq. (9) for fourth order will not show
this property, even if the A and B functions remain
symmetric. This clearly indicates that the corre-
sponding electron scattering amplitude describes
the so-called strong collisions in line-broadening
theory.

Equations (15) and (16) will appear to be useful
due to the simplifications they allow in complete
profile calculation. Particularly, we can restrict
ourselves to examining A and B as functions of z,,
while z, is considered as a parameter. The varia-
tions of A [Eq. (12)] and B [Eq. (13)] are shown in
Figs. 2(a) and 2(b), respectively, as functions of

Alz,2,)

(@)

0 - 0 05 1 s 2

8 (141‘1)

@)

05 - 05 T~

. — —

A0 05 0 0.5 1.0 15 20

FIG. 2. Graphs of A(zy, z9) and B(2y, 2y) as a function
of z, corresponding to different z, values. The latter
can be seen on the curves.

z, for several values of z,. The numerical inte~
grations are described in detail elsewhere.!® The
values of A(z) [Eq. (12”)] and B(z) [Eq. (13)] were
used to recalculate the values tabulated by Griem, !¢
Our B values are 0,5% larger than Griem’s numer-
ical results.

B. Shifts and Widths

(1) Completely Degenevate Levels

Completely degenerate levels are shown in
Figs. 2(a) and 2(b) by the curves with z=0.02. It
is important to note that the central parts with
~0.25 <z, <0.25 can be related to hydrogen broad-
ening under conditions found very often in plasma
spectroscopy, namely N, =2 X107 cm-% and
T=2x104°K. The numerical values Alz,,0.,02) ~1
and B(z,,0.02) =0.001 confirm the full validity of
the exp(+izx)~1 approximation applied when treat-
ing that latter problem. Nevertheless, for the sake
of theoretical completeness, it is 1mportant to
realize that B is not identically zero. This fact
indicates clearly that the generalized impact theory
is able to give a small contribution to the shift in
the limit of nearly completely degenerate levels.

This imaginary part is produced by the quasi-
static Stark effect and vanishes with it, as Van
Regemorter!® has suggested previously. It is com-
pletely different from the imaginary part found re-
cently by Smith'® for the collision operator, in the
“relaxation” theory of line broadening.

(2) Partially Degenevate Levels
Other curves in Figs. 2(a) and 2(b) show the A
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and B values pertaining to the excited levels of

He I. More precisely, the ratio -0.3<2,/2,<1.8
gives the electron broadening of 4Q(@=P,D, F)
sublevels subjected to an electric field of 100
kV/cm, The value 23= 25, ~1 under these condi-
tions, is obtained with p=2p and v=(2kT /m ,)*2.
The more striking fact shown by Fig. 2(b) is the
relation

B(z,,2,)~0, (z, <0), (20)

satisfied for all 2z, values. The value of 1(0,2,) is
readily obtained from Eq. (11)

12,%,

1(0932)=I(22, O):%/ gﬁ,f_zw

o L +%,

Xty * (st 1 Ko U2a), @1

with B(0, z,)=0.
Apparent in Fig, 1(b) is the main content of Egs.

(20) and (21) for 2, * 2, <0, In that case, we find
the most inelastic transitions which broaden the
spectral line without shifting it: This is the situa-
tion described by the Lorentz theory.!” Numer-
ically speaking, this result is very important for
complete calculations of entire profiles, For the
B functions, which are the most cumbersome to
evaluate, this simplification will reduce the com-
putation time considerably. It is also very in-
structive to contemplate the complementary rela-
tions

A(z,az) 2A(z,z) (22a)
and B(z,az) <B(z, z), (22b)

with 0 <@ <1, When la|>1, the above inequalities
remain unchanged if one considers z’= az and
a’=a"!, Physically speaking, Eq. (22a) says that
the width contribution of a second-order transition
i=1'=1is minimum for a diagonal matrix element
(isolated line), the shift contribution being then
maximum as shown by (22b).

5. QUADRUPOLE CORRECTION

It is possible to improve the second-order evaluation of Eq. (5) by taking into account the effect of the

monopole-quadrupole interaction

Q=% 176e) | =3{[F(u) « ¥]2/ 1T ()12 -~ ¥+ T}, (23)
where a, denotes the Bohr radius.
Performing the angular average with the aid of the relations
vt 207"
logpyb=osy o d=Lo,, B2, b L, {0 7-22
4 4 2
{puzpaz} =‘1)—5» {vuzvoa}=19§’ {P v } p v {P YRy v }“ ’ (24)
where 4 #0, we are led to add the following to Eq. (9):
{<mlan(0)ml>}ang‘ular %( [/ dx / dx el(21x1"22x2) }
average
. 2. ’ 2 1 2 2 2 2 2 2= % P -g—
x%uZ}ll(zl'r“ 121 lru Il){[5(1+x1 % )+ 9(x1 +2g +4xlxz)](1+x1 ) (1+x2 )
Kadl
3 _ 3 2
i1ex, DT EAax, )T 2+ D Gir, 21nanr 21
1 2 u, l/ o
9 2 -5 2. -2 2. -3 2. -3
{12 2y e d e e, - ax x0T E 31 D)7 A x,) T
s 5
+ 2 (zla' r 11 by 7o+ 7or Il)[l5(1+x 22)-%(x12+x22)](1+x12)' 2(1+x22)-— 2}
w0, (25)

As before, it is possible to evaluate the real parts of Eq. (25) in a straightforward way in terms of K, and
K, functions. But the imaginary parts are no longer treatable with the methods developed in the Appendix.
This is not a serious drawback: in most spectroscopic investigations of neutral lines in plasmas we have

kT, <10 eV, so that
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and the (a,/p)? factor limits the z and 2z’ values of practical interest to be close to zero, Then the dispersion
relation (19b) immediately shows that the quadrupole contribution to B is negligible, Physically this means
that interactions stronger than dipole ones will give only a weak contribution to the width, Thus, neglecting
the imaginary part and also the vanishing real parts, [Eq. (25)] will be well approximated by

{, <@ . 1/ e2 \/ay\? 2 2
1(mtsn (O)Inl)}angular—~§<—ﬁ—p—v> (—ﬁf) {ZNZ)V(HV“ 124 ITM 17)
average ’

x[A(zl,zz)+§; Izlllzlel(lzzl)Kl(lzlI)]— ¢§; o(i“,72u,> (l'lrozll>[A(z1,z2)+§% Izlllzlel(lzlI)Kl(lzzl)]

+2 . %} l’(z‘Iruroll'><1'|1ru1fa+1'orM 1D[E lzlllzlel(lzll)Kl(lzzl )]} . (26)

[2'P-4'Q  F-100kVem, H=0 |

6. AN ILLUSTRATIVE EXAMPLE 1)
4

0

It is quite worthwhile to emphasize that the effect
of an external (constant) magnetic field H may be r20 @
described, in a natural way, within the frame of
the above generalization when the electron Debye
radius Ap remains smaller than its Larmor radius

g, 6., ‘

10

. 1 L A‘(,‘(cm‘ﬂ
-510. -40 0 40 80
2P-4'Q  F=100kV) H=0.2kG , «=0.707
H (Gauss) 21, (27) | fem . <o |
D auss 1(y)
20
P-S P-D P-F P-P
a condition offering a wide range, N, >5.10'* cm-3 (]
and H <10° G, for practical applications. The
I

-3 1/2 -3
_7:&_4.544XI0 Ne (cm=3)
==

magnetic field introduces deep modifications in the .
Stark patterns®; ¢ of overlapping He I lines. A M ” i
typical example of th(is) new situation can be seen 510! | -40 0 40 80 Ag(cm-)
in Fig. 3. Figure 3(a) shows the Stark pattern of 51 - - —
the transitions 2!P - 4'Q(Q= P, D, F) produced by (2P~ Fe00fem , H=L0k «=0707
a static electric field of 100 kV /cm, which corre- Ily)
sponds to Np=1.,4X10"7 cm~3, Here the compo- 20
nents are few in number, and it is possible, with P-S P-D P-F p-p
a limited loss of accuracy, to treat their electron-
impact broadening in the complete degeneracy ap- 10
proximation. The modifications produced by a E
| -
0
FIG. 3. Stark patterns, with emitted intensities
polarized perpendicularly to F and H (see the text for

200-G magnetic field orientated at 45° with respect ' r l(! dzl.’o
the orientations of the fields) of the transitions 21P-41Q

©

. |I‘1m
40 80 Aﬁ(cm* )

to the electric field is shown on Fig, 3(b). Compo- -
nents with magnetic quantum number 7 #0 are
replaced by doublets., With increasing field
strength their number increases, and they spread
out on the abscissa., In the presence of a strong

magnetic field [Fig. 3(c), H=40 kG] we see many (=S, P, D, F) for an electric field strength F of 100 kV/
components of comparable magnitude standing cm. The normalization of the intensities is given by
over an appreciable “distance.” Figures 3(a) and the condition.

3(b) show clearly that it is necessary to take into

account off-diagonal matrix elements of the elec- Z (21P-41Q) =100%.

tron-collision operator. Q=S,P,D,F
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APPENDIX

The integrals appearing in the impact-broadening operator are evaluated in this Appendix. According
to Eq. (11), one has

X o o i gt ood xld 1(21x1-22xz)(1+xx) (a.1)
L1 B} = AN, Ry ) +1D\Zy, Z5) = . Xy _ X ‘(1+x12)3ﬂ(1+x22)§‘fzz—- .

First we look for a transformation of the integrand, which will replace the variable limit x, by a fixed
one, It is in fact possible!® to represent the algebraic part of (A.1) as a sum of Laplace transforms of
Bessel functions. In consequence, our first aim will be to put Eq. (A.1) in the form

fomdx1 fowdxzzt fomdx1 ijodxz.

It proves convenient to start from
z(z X - zzxz z(zlxl szz)x p
2
Iz, 2,)= dxl (1+x1 TR f dx1/ &, (2P E T 2P Tz 1+x2 =l +1,. (A.2)

A. Evaluation of / .

First, We write

L dx a5 dx, e zzzx2 “ dx, e iz,%, % dx, ¢~ 1%2%2
)T+ ~c12 3 (1 +x2§F7"’ (1+x12)3p‘ (1 + 2R

(A.3)

Decomposing the exponential’® (A.3) becomes
*dx, cosz,x * dx,cosz,x. * dx, sinz x * dx, cosz,x.
P _L .
’rzf e 507 LW”’/O 7?’:77%7*/0 N T
0 1
Vood 2 * dx, sinz,x, dx, sinz, x dx COSZ,X.
, X, COSZ, X X, Si . in z
22-/; (T+x,2FF /;l 1+%,2 _2’/ 1+x, / 1+x,2p
=212 llz, 1K (12, DK, (12, 1)+ 2i2,[ [ F,(1; 3, 3; §2,°) - 4ml2, |, F, (552, §; 4 2,2)]12, 1K, (12, 1)
*dx, cosz, x *dx, sinz,x ® dx, sinz,x * dx. cosz X, (A.4)
o WrFR | TWeedbe ~% | xR | Weeye :

where we used (cf. Ref. 9, p. 429)

/ d(f-)-sxlnszﬁ F (17 2y 2, 422) "7”21 F (2, s 51 452)] (A'5)
2

T ()(y) § T(a+n) u”
T'(a) 0r(3+ L (y+n) n't

with Fy(a;B;v;u)=

1. Evaluation of I,,= fO dx,[cosz,x,/(1+x2P %] f dx, sinz,x,/(1+ x,2P/2, Now, itis convenient to
utilize!®

2) 3/2

1+x, f attd \(t)e (A.6)

with x,>0, and to permute [;°dt and f;’l dx,. So we obtain

fomulx2 sinz,x,/(1+x,2 /2 = fow dt tJl(t)f;:dxz e~ %t sinz,x,. (A.7)

This operation is permissible because
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) 0 ~x.1 o - x.t
fx; ItJl(t)Idtfxle de2=f0 dtlJ,(t)le” ™

has a meaning whenever x, >0. The x, integration of (A. 7) allows us to write (cf. Ref. 9, p. 196)

2)3/2

fxwdx2 sinz,x,/(1+x, = f0°° dttd, (¢)(¢ sinz,x + 2, COSZ,%, Je xlt/(t‘2 + z22) (A.8)
1

with x,>0. Its two members being continuous functions of x,, it is easy to convince oneself that (A.8)
keeps its validity in the x, =0 limit. Thus whenever x, =0,

I, = fowdxl[coszlxl/(l +x12)3/2] fowdttJl(t)e =%t (tsinz,x, + 2, coszle)/(t2+222) (A.9)

2. Evaluation of I,,= [y dx,[sinz,x,/(1+x,2P%] [ dx, cosz,x,/(1+x,2)32, Identical manipulations lead to

I,= fwdxl[sinzlxl/(l + x12)3/2] foodt td, ()t coszyx, — 2, sinz,x,)e xlt/(z.‘2 + zzz). (A.10)
0 (4]
When (A.9) and (A.10) are put together, the last line of the second expression of (A.4) reads
20ly, — I,,)= 20 [ © dt[td, 1)/ (¢ + 2, ]
(o]

><[z2f0°°dxl Pt cos(z, -zl)xl/(1+x12)3/2+ t fowalx1 Py sin(z, - z,)x, /(1 +x12)3/2], (A.11)

where use has again been made of the permutation of |, §° dt and f§° dx,. A more symmetrical expression
for (A.11) is obtained with the help of Eq. (A.6) which gives

2i(ly, ~ I,,)= 26z, [ atltT, (6)/ (2 + 2,2)] [ Tttt "), (¢ )/ [ +1'P + (2, = 2,)°]

+ 20z, - 2,) [ at[t2T,(0)/ @2 +2,2)] [ at’ e, ")/ [t 422+ (2, - 2,)7]. (A.12)
0 0

B. Ewvaluation of I,

In this paragraph, the tricks shown above are re-utilized. By separating the real and imaginary parts,
we obtain the following relations:

00 o0 0 0
L=9 dx, x, sinz,x dx, X, Sinz,x. —9 dx, X, COSZ,X dx, x, sinz,x.
2 0 (1+xf?7l§ 0 21+xz§)§7?a 0 T+ x2PR 0 (T+x, 2B
+ 2% “dx, x, COSZ, % * dx, x, sinz,x -9 *dx, x, sinz,x ® dx, %, COSZ,%
0 Zl+x12ﬁ7% % 1T+ x,28 0 31+x12§j2 x, Zl+x2257%
=22,2,K,(12, DK (12, 1) = 26[, F,(1; 55 12,%) - 2z, ’1Fz(%§ 1, %; 12,2)2,K,(12,1)

o ) ) . 0
+ 2% dx, x, oSz, %, dx, %, sinz,x, 9% dx, x,sinz x dx, X, COSZ,X. (A.13)
o M e it s e B e O L :
With the aid of (Ref. 9, p. 429)
fwalx1 x,€082,%,/(1+ x2P2 = \F,(1; 3, 3; $2.2) - amlz, | F,(3;1, 3; £2,2).
(o]

So we again obtain the difference of two integrals with the variable x, limit. Now, we use (see Ref. 18,
p. 213) the relation

%/ 5282 = [Pate” %M (1) (6, >0) (A.14)

to write
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L, = fow dx,[x, cosz,x,/(1+x,2 )3/2]fx:° dx, %, sinz, %, /(1 + %,2 372

= f°° dx,[x, cosz,x,/(L+%,22] [ “dt t7,(¢)(t sinz,x, + 2, cosz,x,)e xzt/(t"‘ +2,2),
0 o]

(A.15)

I,= fow dx,[x, sinz,x, /(1 + x,2)3/2] fxiodx2 X, 082, %, /(1 + x,2 /2

= fw dx,[x, sinz,x,/(1+ 2,202] [ dt 1, (t)(t coszyx, = 2, sinzyx,)e ~ xlt/(t"’ +2,2).
[ [

(A.16)

Both expressions are valid for x, 0. Using a relation analogous to (A.14), with x, replaced by x,, gives

2 (Ipy = Ly) = 2iz, [~ d@t[tT,(6)/ (2 +2,2)] [ dt’ 8"+ W)/ [+ 22+ (2, - 2, )]
V] V]

+ 202, - 2,) [ T at[t,(8)/ (2 + 2,.2)] [ Tt 1 (1) /1@ 42+ (25~ 2, P).

(A.17)

Finally, with (A.4), (A.12), (A.13), and (A.17), one obtains Eqs. (12) and (13) of the main text.
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