Errata

Investigation of the ϱ Bootstrap and the Determinantal Approximation, D. ATKINSON AND KWOK MAW ONG [Phys. Rev. 168, 1692 (1968)]. In Eq. (2.4) the indices J and J' of the two Legendre functions should be interchanged.

Reanalysis of the Lowest-Mass Negative-Parity Baryon Resonances using the Symmetric Quark Model, D. R. DIVGI AND O. W. GREENBERG [Phys. Rev. 175, 2024 (1968)]. Four of the resonances were misplaced in Table II. We correct the placement of resonances in this table using the criterion that a resonance should be placed where it has the largest (S, SU(3)) amplitude. We add three new experimental resonances, $\Sigma(1670)^{\frac{1}{2}-}$, $\Sigma(1769)^{\frac{1}{2}-}$, and $\Xi(1815)^{\frac{3}{2}-}$, which were reported in R. D. Tripp's rapporteur's talk at the Fourteenth International Conference on High-Energy Physics, Vienna, 1968. There is no change in the calculated resonance masses, so that 17 resonances are now fitted with 6 parameters, 3 of which are coefficients of SU(3)-invariant mass operators which determine the location of the centers of mass of the nine SU(3) multiplets in the $(70, 1^-)$. We do not place the $\Xi(1930)$ in the table because its J^P has not been measured; however, it is compatible with several of our predicted Ξ masses. We thank H. Harari for a helpful discussion.

Table II. Calculation versus experiment for the (70, 1⁻). The left columns are masses calculated with a six-parameter mass formula. The right columns are experimental masses. The superscript M indicates resonances mixed by more than 20% in the square of the mixing amplitude.

4 <i>P</i>								^{2}P				
	$J = \frac{5}{2}$		32		$\frac{1}{2}$		$\frac{3}{2}$		$\frac{1}{2}$			
							Ω	2062		2062		
							Ξ	1950		1938		
							$\mathbf{\Sigma}$	1815		1809	1769	
Ξ	1895		1831^{M}		1801		Δ	1669	1691	1669	1635	
Σ	1765	1767	1722^{M}		1639 M							
Λ	1809	1827	1792		1779		Ξ	1816^{M}	1815	1743		
N	1689	1678	1690	1680	1691	1710	Σ	1630^{M}	1660	1682^{M}	1670	
							Λ	1690	1690	1689^{M}	1670	
							N	1527	1520	1528	1540	
							Λ	1527	1519	1428 ^M	1405	

Inelastic Effects in P_{11} -State πN Scattering, Kwok Maw Ong [Phys. Rev. 174, 1977 (1968)]. On p. 1979, the equation defining s_- (line 17 on the left) should read

$$s_{-}=2m^2-m^{*2}+2$$

and the statement defining $\alpha(s)$ (lines 27 and 28 on the left) should be

$$\alpha(s) \equiv \operatorname{Im} f_{1-\operatorname{Born}}(s)$$
.

This $\alpha(s)$ should not be confused with the phase of the associated elastic wave defined in Sec. 4.

Low-Energy Kaon-Nucleon Scattering, S. Baba Pundari and B. Dutta-Roy [Phys. Rev. **165**, 1663 (1968)]. There has been a confusion in the notations for the ΛNK and ΣNK coupling constants, especially in the comparison of our values with those obtained by others. The values of $g_{\Lambda pK}^{-2}/4\pi$ and $g_{\Sigma pK}^{-2}/4\pi$ obtained on solving Eqs. (5) and (6) are 16.1 and 3.14, respectively, whereas the couplings $g_{\Lambda NK}^{2}/4\pi$ and $g_{\Sigma NK}^{2}/4\pi$ given in Eq. (1) are defined by

$$g_{YpK^{-2}} = [f(YpK^{-})]^2 g_{YNK^2},$$

where $f(YpK^-)$ is the corresponding f coefficient in BBP coupling (M. Gell-Mann and Y. Ne'eman, The Eightfold Way), which is $-\sqrt{3}$ for $Y = \Lambda$ and $-\sqrt{2}$ for $Y = \Sigma$. So the values given in Eq. (1) are correspondingly smaller by factors of 3 and 2, respectively. When comparing these with other estimates, we have to