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Calculation of the Coupling Constants g&x&' and g xN' Using
Kaon-Nucleon Dispersion Relations*
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We apply forward kaon-nucleon dispersion relations to determine whether the known energy dependence
of the low-energy Ep elastic scattering amplitude uniquely and consistently prescribes the coupling con-
stants gz~-„~ and gzo& p In one application, we check the consistency of the multichannel eGective-range
continuation below the physical threshold by calculating the coupling constants over a range of energies.
In the second application, we use a theorem which places bounds on the energy dependence of certain types
of unknown dispersion integrals, to find bounds on the coupling constants.

I. INTRODUCTION
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where the & signs refer to E+p scattering, co is the lab
energy of the kaon, C is an undetermined constant, and
BY+ represents the hyperon pole terms with the
structure
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We use capital letters to stand for the mass of the
corresponding particle. An exactly analogous repre-
sentation exists for the forward elastic kaon-neutron
scattering amplitude.

Although these relations are divergent as they stand,
all other useful EE dispersion relations may be derived
from them by taking suitable combinations.

Every attempt to use these equations is plagued by
the existence of the integral over the unphysical region,
w'hich extends from the beginning of the xA cut, at
~= —~, to the physical threshold at co = —E.We know
that there are resonances which should contribute to
ImM, b, in this region, and the crudest models suggest
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' 'N 1957, Mathews and Salam' wrote the following
~ ~ dispersion relations for the forward elastic scattering
amplitudes of kaons on protons:

1 x ImLM, b. (co')j
Re)M+(~) 1= P Br+(~)+

that this part of the integral will give a very important
contribution. This is especially true for the problem
which occupies the remainder of this paper, namely, the
calculation of the AEX and REX coupling constants.
In this problem the closeness of the poles to the un-
physical region forces one to take into account the
unphysical integral.

There are two ways in which one might do this: (i)
write down explicit forms for ImM, b, as derived from
some model, and (ii) utilize only very general properties
of ImM, b,—.

The latter may not seem very useful, since we know
that the calculated value of the coupling constants,
using a dispersion relation at one energy, depends very
sensitively on the exact form that we use in the un-

physical region. However, it is also possible to correlate
via the dispersion relation the energy dependence of the
pole terms with that of the unphysical integral, and this
latter dependence may be fairly insensitive to the exact
form of Im3fabs

A technique for doing this is given in Sec. III, and
there we do impose useful limits on the coupling
constants.

The model calculations of ImM, b, have been gradu-
ally refined until at present there are two which seri-
ously compete for attention. They both involve para-
metrizations of the low-energy K p data in a form
suitable for continuation below the physical threshold,
and they may be referred to as (i) the constant scatter-
ing-length approximation (CSL) and (ii) the multi-
channel effective-range approximation3 (MKR). These
have been extensively described elsewhere and we shall
not reproduce the details here. For our purposes it is
sufhcient to note that a "world average" of the results
of these two models might be given as follows. I.et

gA gAK y ) gZ~ gZoK p 2gZ K n (1.3)

' An incomplete list of the applications of this model includes
M. Lusignoli, M. Restignoli, G. A. Snow, and G. Violini, Phys.
Letters 21, 229 (1966); N. Zovko, ibid. 23, 143 (1966); A. D.
Martin and F. Poole, ibid. 25B, 343 (1967); G. H. Davies, N. M.

~

~

~

~

~

~

~ ~

~

~

ueen, M. Lusignoli, M. Restignoli, and G. Uiolini, Nucl. I'hys.3, 616 (1967).
' J. K. Kim, Phys. Rev. Letters 19, 1074 (1967); 19, 1079

(1967).

2478



g AND g
2 USI NG XX DISPERSION RELATIONS

Then
MER: gp'= 13.5~2.5, gg'~& 1;

CSL: go=6.5~2.5, g~'&3.

The MER values are consistent with an SU(3)
mixing parameter a (=F/(F+D)) of approximately
0.35, whereas there is no value of 0, consistent with the
pair of values given by CSL.

However, the quoted errors are derived purely from
experimental errors, and give no indication of the un-
certainty due to the approximations inherent in the
models themselves. These could be extremely large,
because a small variation in the shape of ImM, b,
changes the couplings considerably. ' Therefore, before
accepting either model as giving a useful result, we
should at least check to see whether it is self-consistent.

Since both the CSL and the MER models give ex-
pressions for the real and the imaginary parts for
co(co&0.7 GeV, one may check that the values of g&'

and g~' calculated from the dispersion relation are
independent of the energy at which the equation is
evaluated.

Tests of this type have been hindered by the lack of

and
a(a)) = (co+~)s(co+K)'—&

0&P&i,

(1 4)

satisfies the new equation

reasonably precise experimental values for the real
parts. Typical errors are at least 25%. However, a
recent phase-shift analysis4 of E+p scattering for the
E+ lab momentum less than 1500 MeV/c has supplied
us with some real parts which we might expect to be
reasonably accurate.

Together with these real parts we may use those
derived from low-energy K p data (co(0.7 GeV) and
expressible in terms of the parameters of the MER
model. Finally, we may compute the MER extrapolated
real parts and use these also. In this way we may make
many different estimates of the coupling constants and
check their consistency. This is done in Sec. II.

Before doing this, we should like to note that a more
restricted consistency test has already been carried out
in Ref. 5. Briefly, the argument is as follows.

If M(cu) satisfies (1.1), then the function M(co)/n(a&),
where

M+(a)) Xr gr2 1 1 "Im/M+(cv') j ImLM (co')jR; = P — +— +
o(co) Y-k, z o(—(or) 2X M+Mr x N n((d ) (co —&0) Q(—Qt )(cd +(d)

1 ~ ReLM (co')j sin(xP)+ImLM (o&')j cos(sP)
+ da&'. (1.5)

g (a&' (u)»(K — )d'ds(—co'+o))

II. CALCULATION OF gg'

In this section, we carry out the detailed calculation
of the AEN coupling constant, using the MER para-
metrization of the low-energy E P data and the un-
physical region. The basic equation is derived from (1.1)
by performing a subtraction at era= —y, with y&0, and
settings&=x (x)0):
ReM+(x) —ReM—

(y) = —(x+y) P"-'z (~r+x) (~r—y)
IntM-(co')

ko', (2.l)
x s (co'—x) (co'+y) (dd'+x) (co'—y)

x+y " ImM+(co')
+

where
or= (Xr/2E)gr' (2.2)

This is valid for all cv, and P in the range 0(P&1.
(There is a concealed subtraction in this equation, due
to a divergence in the unphysical integral. )

In Ref. 5, Eq. (1.5) was tested for one value of co and
P in the range (0,1), and it was found that the MER
model gave values of the coupling constants which were
relatively stable against P, while those of the CSL model
were not. Ke shall therefore restrict ourselves to check-
ing further the self-consistency of the MER model.

In the physical region ImM+ will be calculated from
the total cross sections for E+p scattering, according to
the formulas

k
ImM+(»d) = a+(»»), —

kr
(2.3)

where k is the E+ lab momentum.
To isolate the A pole, we should need to consider the

isospin-zero combination of the Kp and KI amplitudes,
but we do not do this for the following reasons.

Using the MER model, one finds that g~' is less than
unity; also the ratio of the coefficients of g&' and gz' is
constant to within a few percent, for all the energies
which we use. Since we are primarily interested in the
constancy of the couplings, we may consider a composite
coupling gz' given by

Xz (a)g+x) (cog—y)
g~'= ga + (2 4)

Xg(coz+x) (Mz —y)
4 A. T. Lea, B. R. Martin, and G. C. Oades, Phys. Rev. 165,

j.770 {1968).I should like to thank Dr. B. R. Martin for making
available to me the unpublished parameters of this phase-shift
analysis.' C. H. Chan and F. T. Meiere, Phys. Rev. Letters 20, 568
(1968).



2480 TERENCE W. ROGERS 178

20—

l6—

12—
—2
gn

0 1 1 I

0,25 0,35 0.45 0.55

y (Gev)

0.65

Fzo. 1. Smooth curve through the values of gA', which are calcu-
lated from the dispersion relation (2.1) at different values of the
energy y. The double error bars distinguish the source of the errors
as discussed under (a) and (b) of Sec. II. The larger error bar
shows the combined error from (u) and (b), the smaller error bar
that from {b) alone.

If g~' and gq2 are independent of energy, then g~' will be
also, to within about 1%.

This might be unnecessary if the En data were not
far less accurately known than the Ep data, but this
loss of accuracy compensates any gain in knowledge of
gz' which one might achieve by eliminating gz'.

To check the consistency of the MER parametriza-
tion, we set x=0.494 GeV, and calculate g~' for various
values of y in the range 0.264~&y&~0.714 GeV. This
includes both the unphysical and the low-energy X p
regions, since the physical threshold occurs at 0.494
GeV.

Secondly, we check that the MER model is consistent
with the latest phase-shift analysis of the low-energy
E+p data. 4 Thus, we set y=0.464 GeV and calculate
g~' for 0.494&~ x &~ 1.64 GeV.

We call these two calculations solutions I and II,
respectively, and we plot the results in Figs. j. and 2.

Before any meaningful analysis of the results may be
made, we must look carefully at the errors, which may
be classified into three types.

(a) Error in o+. For energies below 20 GeV, &r+ is
known to within 3% accuracy. ' Although some experi-
ments claim much better accuracy, e.g., Ref. 7, we
believe that the apparent discontinuities where one
experimental set adjoins another oblige us to be more
cautious.

The total cross section 0 is less accurately known in
the low-energy regions. In the range 0.5 ~&co &~0.85 GeV,
there are no precise measurements and we feel obliged

' We have used the latest and most accurate total cross sections
available and most of these are listed in one of the following: C. H.
Chan and W. I .Yen, Phys. Rev. 165, 1565 (1968);Y. Sumi, Progr.
Theoret. Phys. {Kyoto} Suppl. , 43 (1967).A notableexception is
Ref. 7.

~ D. V. Bugg et al. , Phys. Rev. 168, 1466 (1968).

to attribute to o the large error of 15%.From 0.85 to
1.0 GeV we give an error of 5%, and above 1.0 GeV we
give an error of 3%.

The extrapolation of ~+ beyond 20 GeV was carried
out by use of the Regge poles and parameters given in
Ref. 8. The error here is fairly arbitrary and we chose
3%. Because of the cancellation between the terms
involving cr+ and fT, the net contribution is small but
not insignifi, cant.

(b) Error in the real parts. For the real parts calcu-
lated from the phase-shift analysis an estimate of the
error was obtained as follows. There are three sets of
phase shifts which account for the data, and at any
energy these yield three different estimates of the real
part. The maximum discrepancy was taken as the error,
and the mean value used as the real part. The error is
typically of the order of 5%, and its contribution to the
final error in g&' is usually small.

In calculating the X p real parts from the MER
model, we have made use of the parameter uncertainties
quoted in Kim's analysis' to obtain an estimated error.
As one would expect, this gives a small error near the
physical threshold, but allows considerable uncertainty
at the xA threshold.

(c) Error in the integral ower the unphysical region.
We have no way of calculating this, but it is useful to
see how a given error reQects in the error on g~'. We have
calculated the uncertainty in g&' due to an uncertainty
of 20% in the integral.

In Figs. 1 and 2, we show a smooth curve representing
g~' as a function of the energies x or y. Also shown are
some typical errors, derived only from sources (a) and
(b) above, and labeled in the figures accordingly.

From Fig. 1 it would appear that gq' is not constant,
even within the errors allowed to us by the model. The
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Fro. 2. Smooth curve through the values of gq', which are calcu-
lated from the dispersion relation (2.1) at different values of the
energy x. The double error bars distinguish the source of the errors
as discussed under (a} and (b) of Sec. II. The larger error bar
shows the combined error from (a) and (b), the smaller error bar
that from (b) alone.

R. J.X. Phillips and W. Rarita, Phys. Rev. 139, 81336 (1965).
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parameters of the model therefore require some modifi-
cation, and this could be achieved in one of two
ways.

(i) It is conceivable that the energy dependence of
the amplitude can be altered in such a way that the
value near the physical threshold is approximately
unchanged, while the value near the mA threshold
changes considerably. Thus, the predictions of the mass
and width of the FP(1405) would remain unchanged,
and, since this resonance dominates the unphysical
integral, the values of g~' near the physical threshold
would not change either. In this way it might be possible
to have g~' constant at the value of approximately
14.

(ii) It may be that the change in the unphysical
absorptive part is suf5cient to produce a signi6cant
change in the unphysical. integral, and it is therefore
interesting to have some idea as to how important this
might be.

With this in mind we have computed the change in
gz' (&g') for a 20% change in the unphysical integral.
The results are shown in Table I.They suggest that the
value of g&' is very sensitive to changes in the unphysical
integral, especially when evaluated near the physical
threshold.

Thus, it is very much a complicated computational
problem as to whether one may remove the apparent
energy dependence of g&' without significantly altering
its value at the physical threshold.

The results of Fig. 2 are more reassuring. They
indicate that the predicted values of the unphysical
absorptive part are consistent with the E+p real parts.
One might worry that there is a certain degree of
circularity, which arises because of the developing habit
of using dispersion relations to eliminate the well-
known Yang ambiguity inherent in phase-shift deter-
minations.

However, if some of the terms in the dispersion rela-
tion have very large errors, the constraint will be very
weak, and will only decide between two types of phase
shift, and not strongly limit their energy dependence.
This was true of the analysis whose results we use. The
assumed coupling constants, unphysical absorptive
part, and s-wave X+p scattering length were all given a
large error, and the real part calculated from the dis-
persion integral entered the analysis with a very low
statistical weight. The phase shifts are more or less
completely determined by the other experimental
information, and it is by no means certain that they
will be compatible with the MER absorptive part and
an energy-independent coupling constant.

To conclude this section, we may say that there is
still some doubt about the reliability of the MER model
for the purpose of calculating g~'. Within present errors
it is consistent with the known experimental real parts,
but is not completely self-consistent, to the extent that
the extrapolated real parts appear to diverge from those
calculated via the dispersion relation.

TABLE I. Change Ag' in gz' caused by changing the value
of the unphysical region contribution by 20/&.

y (GeV)

0.264
0.514
0.714

2
8
3.5

' o(n)
y(x) = d,

g1—nX
(3.1)

where o (a) &~0 for —1&~a&~1, and we restrict X to the
range —1&X(1.Suppose that we evaluate the integral
at a set of 3f points, so that we have

(3 2)

We may then show that the f; must satisfy certain
relations among themselves, which are summarized as
follows. If out of the set fP;) we choose a subset con-
taining m members (m&~ M), then the elements of that
subset satisfy either condition (a) or (b) below. We
order the parameters ); so that —1&~~&~2&
&X„gi.

9 G. Tiktopoulos and S. Treiman, Phys. Rev. 167) 1437 (&968).
I should like to thank Professor Tiktopoulos for bringing t»s
paper to my notice and suggesting its relevance to this problem.

III. DETERMINATION OF UPPER AND
LOWER BOUNDS ON gg2

In this section we attempt to put bounds on g~' which
are independent of any particular model for the un-

physical region. The only information used is the posi-
tivity of the unphysical absorptive part of the K p
elastic amplitude, and the experimentally determined
real and imaginary parts.

The positivity condition is by no means guaranteed
to be satisfied, and in Ref. 1 it was shown that an
approximate calculation suggests that ImM, b, changes
sign in the unphysical region if the relative EA parity is
even, and does not do so if that parity is odd. With the
accepted odd EA parity, no model or physical condition
requires that ImN, b, should change sign, and we believe
that our assumption is very probably justified.

Since the method requires fairly accurate real parts
at several di6'erent energies, we have had to use the
results of the phase-shift analysis already quoted. How-
ever, the results of this section strongly reinforce our
remarks in Sec. II, namely, that the resulting phase-
shifts limit the possible values of the coupling constants
to a much smaller range than was assumed at the start
of the phase-shift analysis.

The technique that we use is based upon some rela-
tions given in a paper by Tiktopoulos and Treiman. '
We extract from that paper the following results.

Consider the integral
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(a) m= 2X, X integral. Define

D~~L40)]
4'i) lc)4i, , l P Qc, 1, &i, , 4" '

2N

(3.3)
Then the conditions are given by

D»L(l —X)P(X)]&~ 0 &~D»L(1+1)P(X)]. (3.4)

(b) m= 21V+ 1, X integral. Define

D»+iLPP )]
Pi, Rifi, , XPfi, 1, Xi, , XP '

( 1)N 4'2) ~2/2)
~ ~ ~

2%+1

two-point conditions. When used in conjunction with

experimental quantities which have appreciable errors,
the higher inequalities give meaningless results.

To use the two-point conditions we proceed as follows.
Subtracting (1.1) at ~=co,(0, we obtain

Re%+(co)—ReM (—(a,)

XYgY

2X (cur+co) ((or+cd s)

1 " ImM+ (cd') ImiV (b)')
+— — des'. (3.10)

m (co —b)) (~ —cos) (~ +b)) (cd +cds)

From the right-hand side of (3.10) we extract the un-

physical integral and rewrite it as

The required conditions are given by

D2~yi[(1+ X)lp (X)]&~ 0 )

D,~+,(L(1—X)g (X)]—'}& 0.

(3.5) ImM, b, (c0')
Ao =

(co'+cd) (co'+cd s)

x X(cv')
des'= I (b))—(3.11. )

GD +M
(3.6)

If ImM. b,-)0 and ~~( —E, then

Furthermore, setting m=1, 2, , M and choosing
all possible subsets for a given m, we deduce a hierarchy
of relations, all of which must be satisfied. As an
illustration, and for future reference, we work out the
results for vs=1, 2, 3.

One-Point Conditions

Every element of the set Q;}satisfies

Ini1lf b, (b))
x(co) = & 0.

(co+b)s)

We reduce I(co) to the form required, by the trans-
formations

(1+ii')0'&&o

1j(1—X;)P;&&0.
(3 7)

so that

(3.12)

Tx o-Poi nt Conditions

Every pair of elements f;, Pq from g;}, such that
—1(A,(XI,(1,satisfies

x(n)I (b)) = X doc.
g 'An —1

(3.13)

(1+X;)p,&~ (1+Kb)pc,

(1—~;)y;& (1—l .)P, .

Three-Point Condi ti ons
(co)+cd)I, &~ (cd,+b))Ig)

(b),+K)I,& (cd, ,+If)I, ,
(3.14)

Applying the two-point conditions to a pair of values
(3.g) of I(co), we obtain

Every possible triplet p, , fb, pc from (f,},such that
—1(X,(XI,(X~(1, satisfies

for ~2)~~)E and ~s( —&.
If (3.10) is written in the form

X~—Xq Xy,
—X; X;—'A~

+ +
(1+4)4'y (1+4)A (1+1b)4 b we have

C(~)g~'= G(~)+I(~),

gg'[C((ac) (coi+cv) —C(b») (cug+cu)]
& (~)+~)G(~c)—(~~+~)G(~2) (3.13)(Xc—Xb) (1—X;)f;+(X„—X)) (1—Xc)Pi

+(1~ p, i)(1 X„)p„&0 (3 9) and

The one-point conditions are trivially satisfied, and K+'LC4»)(coi+1t) C(b»)(cd~+It)7
in the rest of this paper we shall make use of only the &~(b))+K)G(co i)—(cv,+K)G(cd,) . (3.16)
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It is easy to show that the coe%cient of g~' in these
inequalities is positive, so that (3.15) sets an upper
bound on g&' and (3.16) sets a lower bound. These
bounds are expressible in terms of experimental real
parts and integrals over experimentally determined
quantities.

For these relations to be useful, it is imperative that
the pole terms give sizable contributions to the dis-
persion relation, and that G(co) can be measured to
significantly better accuracy than its change over some
energy range.

Our bounds are derived by setting co ~= —0.614 GeV,
~& = 1.62 GeV, and varying co& in the range 0.55 &~co& &~ 1.5
GeV. The results for the lower bound (g; ') are shown
in Fig. 3, where we have interpolated the calculated
points with a smooth curve. Representative errors are
shown at three energies, and we have distinguished the
error arising from the real parts from that due to the
integrals. The results for the upper limit (g,„') follow a
similar curve, but vary from a value of 35 to 150.These
latter numbers are not useful and we do not comment
on them further.

The conclusions concerning g;„'are, on the contrary,
very interesting. The most reliable estimate that we can
form of g; is 14&4, this being the lower limit of
g~'+1.05g~'. The errors derive almost equally from
those on the total cross sections and on the real parts.
Ke have tried to be cautious and to allow larger errors
than might seem necessary, and the major source of
uncertainty lies in the validity of the particular phase-
shift parameters that we use. Perhaps further e6'ort in
phase-shift analyses will result in more reliable real-part
estimates.

The important point, however, is that the problem is
an experimental one and can, one hopes, be tackled in
the near future.

In principle, the method is equally applicable to the
amplitudes of definite isospin, and limits could be found
on g&' and gz' separately. However, this will require
knowing Ep and En real parts over a common range of
energies to a high degree of accuracy. %'e suspect that
this will not be achieved for some time.

IV. CONCLUSIONS

Ke have tried to decide whether the MER para-
metrization of the low-energy E p scattering amplitude

2
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FIG. 3. Smooth curve through the values of the lower limit of
gq', calculated from (3.16) for various values of au1. The double
error bars distinguish the source of the errors as discussed under
(u) and (b) of Sec. II. The larger error bar shows the combined
error from (u) and (b), the smaller error bar that from (b) alone.

gives a completely self-consistent calculation of the A

and Z coupling constants gq~-„' and gqo~-„'. In Sec. II
we show that as yet it does not, but that it may well be
possible to make minor modifications to achieve this,
without significantly altering the presently calculated
values of those constants.

Secondly, we have shown that it is possible to put
bounds on the coupling constants, and that these may
be calculated from a knowledge of experimental quanti-
ties only. At the present stage of experimental knowl-
edge, this gives a useful result only for the lower bound
of a combination of the A. and Z coupling constants. The
result is consistent with the MER model, and indicates
that in the future it should be possible to use the method
to distinguish the SU(3)-satisfying values and the
SU(3)-violating values.
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