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A residue should be negative and small. Besides the
well-established choosing-no-fixed-pole mechanism for
the NV trajectory at ay=—%, NV must choose a fixed pole
for axy>—4.5. The A trajectory chooses a fixed pole at
aa=—1.5, but should choose no fixed pole for all aa
<—9.5, and the A trajectory at least should go down
to aa=—9.5. (The statement about the A is of less cer-
tainty than that about the NV.)

Unfortunately, so far there is no complete theory
which gives good interpolation between high energy and
low energy for any realistic reactions. Therefore, at
this stage, we naively take the present Regge representa-
tion and extrapolate it to low energies in a simple way.
In doing this we would like to make the following point
clear. In the particular reaction that we studied—
7~p — w'n—it happens that the combined {- and -
channel Regge poles can produce the resonance-type
structure. However, there are reactions in which such
phenomena do not happen. Thus, at this stage of phe-
nomenological study, we take the following attitude:
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Whenever the present form of Regge representation
predicts something in the low-energy region (like the
dip-bump structure given by the s term for fixed ¢),
it should be qualitatively correct. So even if we do not
expect s*(®4s) to represent the whole amplitude,
it is still interesting to notice that the s*) term at
fixed ¢ gives qualitative agreement. When the crossed-
channel Regge poles cannot produce any structures in
low s, we should be happy enough if they give the
average.

Our study here is an attempt to see how far it is
possible to go with the assumptions made. The lack of
full agreement with the data seems very interesting
because it is a measure (although a semiquantitative
measure) of what is missed in the model.
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We describe the soft coupling of zero-mass bosons to other particles, by considering the limit of a theory
with a massive boson. With the standard S-matrix assumptions of analyticity and crossing for four-body
helicity amplitudes, we demonstrate generally that in the limit of zero mass, a vector boson (17) couples
to a conserved charge and a 2t boson couples to the inertial mass. Bosons of other spin-parity combinations
(with the exception of zero spin) have no zero-mass soft coupling. With this technique, we not only give
a pedagogically interesting solution to gauge invariance and the kinematics of zero-mass particles, but
suggest new applications to small-mass integral-spin systems. We speculate on the application of this
technique to such problems as p universality, the Adler-Weisberger relation, and the universality of leptonic

couplings in a vector or axial-vector state.

I. INTRODUCTION

ECENTLY, several authors' have studied the
question of gauge invariance and zero-mass par-
ticles in S-matrix theory, and the related subject of
small-mass mesons has also attracted some attention.?
There exist two essentially distinct methods for the
examination of the S-matrix theory of massless particles.
One approach uses zero-mass particles from the begin-
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ning and entails the construction of certain amplitudes
with the aid of the polarization four-vector of the zero-
mass particle. The assumptions of Lorentz invariance,
analyticity, and crossing are then introduced for these
amplitudes. In this approach, the principle of gauge in-
variance—invariance under the addition of the light-
like momentum vector to the polarization four-vec-
tor—is explicitly utilized. However, since it has been
shown by Weinberg and Zwanziger that gauge invari-
ance is a consequence of Lorentz invariance for zero-
mass particles,® no new principle has in fact been intro-
duced. This method has further been used by Weinberg
to prove certain properties of the couplings of zero-mass
particles, such as conservation of chargeand the equiv-
alence principle.

’D. Zwanziger, Phys. Rev. 133, B1036 (1964); S. Weinberg,
ibid. 135, B1049 (1964).
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In the second approach, which is the approach of this
paper, one begins with the helicity amplitudes for mas-
sive particles and derives the zero-mass results by study-
ing the limit of the amplitudes as one of the external
masses is taken to zero. As we will show in this paper,
this limiting process leads to all the results derived from
gauge invariance. Furthermore, this approach may have
the advantage of being more readily extended to the
study of small-mass particles, or pairs of particles in a
state of integer spin and low mass, such as the J=17r
state or lepton pairs ev and pv. As far as the zero-mass
limit of helicity amplitudes is concerned, three points
have to be considered. We may demonstrate these points
for the photon in the following way.

For a zero-mass vector particle, the states with helic-
ity =1 are completely decoupled from the zero-helicity
state. That is, there is no Lorentz transformation
(parity included) which mixes the two types of states.
The photon occurs in the states with helicity = 1. How-
ever, there are as yet no proofs which would rule out
the existence of a zero-helicity zero-mass particle. If
such a particle existed in nature, it would behave like
a spin-zero particle and would not have to be connected
with the photon. Therefore, when the theory of photons
is derived as the limit of a theory of massive vector par-
ticles nothing needs to be proved about the final be-
havior of the zero-helicity amplitude (denoted by Mo).
Although M, plays an important role before the final
limit is taken, at the end we are interested in the be-
havior of the amplitudes M 4;.

The second question to be considered is the final form
of the pole terms corresponding to the external particles
(hereafter simply referred to as pole terms) for the
helicity #1 amplitudes. Although this question is well
answered in the framework of perturbation theory, it
has caused some confusion in the S-matrix approach. If
one works with zero-mass particles to begin with, then
the pole terms from the three channels of a four-body
amplitude with one zero-mass particle all occur at the
same point. Without the use of perturbation theory, it
is not clear how these three poles should be represented.
On the other hand, if one starts with the massive case,
the /-channel nonsense amplitudes do not contain
a {-channel pole. However, there is a kinematic singu-
larity which in the limit of zero mass becomes a pole
denominator. The problem of gauge invariance involves
the normalization of the residue of this pole. Moreover,
one has to show that in the limit of zero mass, this
kinematic singularity has the characteristics of a dy-
namical pole. This means that the pole occurs only when
the quantum numbers of the ¢ channel agree with those
of the particle under consideration. For example, if one
uses the Regge language, one has to show that the pole
denominator multiplies only the Regge pole correspond-
ing to the particle in question and does not occur in the
other Regge contributions. (As a kinematic singularity,

4R. C. Brower and J. W. Dash, Phys. Rev. 175, 2014 (1968).
The Appendix gives the Reggeized treatment of this problem.

IN S-MATRIX THEORY

2471

before the mass is taken to zero, this factor does
multiply the entire amplitude.) The problem of kine-
matic singularities has already been studied by other
authors.!+®

The next property of zero-mass particles to be con-
sidered is the conditions on their couplings to other par-
ticles. These are the conditions we will be mostly con-
cerned with in this paper. Using the properties of helic-
ity amplitudes in the massive case and the extra assump-
tion of the smoothness in the external mass (discussed
in detail in Sec. IT), we will demonstrate how, to zeroth
order in its mass, a soft vector particle couples to a con-
served quantity. We will also show that a soft, zero-
mass 2* particle has to couple to the inertial mass, and
that massless particles of spin higher than 2, or a mass-
less axial-vector particle, have no soft coupling. We have
not been able to prove any results for the coupling of
zero-mass spinless particles, except the existence of only
one soft coupling (independent of helicities) to particles
with spin.

In the case of the coupling of a vector particle, we
prove conservation of charge for a strong three-particle
vertex. Conservation of charge for any amplitude can
then be proved by induction if we assume that for an
n-body reaction there exists an (z—1)-body reaction
which is obtained from it by replacing two of the par-
ticles with some other communicating particle.

The method we use here, namely, the limiting pro-
cedure from the massive to the massless case, besides
offering a clear proof of charge conservation, opens the
possibility of other applications. For example, once we
know that conservation of charge is not a peculiarity of
the soft coupling of particles with exactly zero mass,
but a result that is almost true for small-mass particles,
we may ask if the approximate universality of the p
meson is somehow connected with the smallness of its
mass. The scale of mass, of course, has to be somehow
established. As indicated in Sec. V, we are also consider-
ing the possible extension of these techniques to dipar-
ticle states to discuss such problems as the Adler-
Weisberger relation for the antisymmetric part of ampli-
tudes involving two pions or problems involving lepton
pairs or currents (results of conserved vector current and
partially conserved axial-vector current). In a forth-
coming paper, we will present our application of this
method to the nonsense coupling of two photons to the
Pomeranchuck trajectory in Compton scattering.

In Sec. II, we consider the problem of charge conser-
vation for a strong vertex with spinless particles. In Sec.
Note that in Regge theory, the background with a given s be-
havior is absorbed into the ¢ dependence of 8 and @. Moreover, each
Regge contribution is gauge-invariant by itself.

® G. Cohen-Tannoudji, A. Morel, and H. Navelet, Ann. Phys.
(N. Y.) 46, 239 (1968). Throughout this paper we use the phase

conventions of this article for the helicity amplitudes and the

crossing matrices. Parity conservation for these amplitudes is
written

4
Mipaana(s,0) = TI ni(=) MM _gong-nno(5,8)-

=1
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111, we discuss the coupling of zero-mass particles of
other spin-parity combinations. In Sec. IV, we generalize
the proof of the conservation of charge to a vertex con-
taining particles with arbitrary spin. Of course, in the
process of the proof we will also give the correct expres-
sion for the pole terms in the final amplitudes. Also in-
cluded in this section is a discussion of the kinematic
singularities and constraints for photoproduction ampli-
tudes in terms of the known results for the p meson.
These kinematical results have already been discussed
by other authors.

The proof of Sec. IV involves a knowledge of the
crossing properties of the helicities of a vertex function.
Note that in S-matrix theory this vertex function is a
number (the coupling constant) which depends on the
external helicities. We discuss this crossing property
which, besides its importance for our proof, is also use-
ful in comparing coupling constants in factorized Regge
residues which are related by the interchange of an in-
ternal pole with an external particle.

II. ZERO-MASS VECTOR PARTICLE

In this section we will prove universality for the cou-
pling of a soft vector particle to zeroth order in the mass
of that particle. Conservation of charge, with charge
defined as the coupling of a soft zero-mass photon, is
then a rigorous consequence of our analysis. Since we
always begin with a massive particle and take the limit
of zero mass at the last stage of our proof, the main set
of assumptions used here are the analyticity, crossing,
and Lorentz invariance conditions usually assumed for
massive particles. The only extra condition is an as-
sumption of smoothness as the mass of the internal par-
ticle is taken to zero. The details of this assumption will
be discussed in the process of the proof.

We consider a four-particle amplitude and define our
channels as

st Vs—tu,

2 Vi—su,
u: Va—1s.

We have denoted the particles in the initial states and
the channels by the same symbol. We denote the masses
of these particles by my, m,, m., and m,. In this section
we consider spinless s, /, and # particles, so that the
physical arguments of our proof are not confused with
spin complications. In Sec. IV, we give the outline of the
proof in the general case. We define the f-channel helic-
ity amplitudes M,* and M, by

M1t= M oo;01'= — Moo;0-1%,
M ot= M o0;00°,

and similarly we define the s- and #-channel amplitudes.?

Our proof consists of essentially two parts. For non-
zero my, the nonsense amplitude M, has no poles at
t=mg. However, it does contain the s and the » poles
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at s=m,? and u=m,?, through crossing from the s- and
u-channel sense amplitudes. The first step of the proof
simply consists of writing a representation for the
kinematic-singularity-free amplitude, M, in terms of
the s- and #-channel poles. The residues of the poles are
normalized, through the crossing matrix, by the charges
of the particles s and # defined in the s- and #-channel
sense amplitudes. Actually, immediately after this step
we can set my equal to zero and give a simple proof of
conservation of charge by comparing M,¢ with M. We
will present this simple argument and then proceed to
the second step of our original proof. This step involves
a careful study of the behavior of M, as my goes to
zero, and besides adding rigor to the discussion may lead
to insights into such problems as the universality of the
p meson. Our procedure consists of using Lorentz in-
variance in the form of threshold and pseudothreshold
relations® (TP relations) to normalize M near /= m2 in
terms of the ¢ charge defined in M ‘. By comparing this
with the representation of step I, we will prove that the
sum of the s, ¢, and % charges (denoted by e,, &, and &,)
is of order my. It is important to point out that the com-
parison of the charges is made in the nonsense kine-
matic-singularity-free amplitude A7;* which does not
contain a ¢-channel pole. Therefore, we never write an
amplitude as a sum of three poles in all three channels,
so that we do not commit any double counting.

Step I
We define the kinematic factors 7°and 7” as
T*=[t— (met-my) L 1— (mi—my)*],
772=[1— (m.+ mu)ﬁj”:l_ (ma_mu)z:l )

and a similar definition of 8 and §'. In writing crossing
matrices we will use’the conventions of Ref. S:

Mop,n'=3 (— 1)V drxnl(—Xy) M go,00.
l’

(2.1)

(2.2)

The angle Xy is given by
cosXy=Py(l,5)/8T, sinXy=2my(®)!/2/ST, (2.3)
where
Py(t,5)= (s+my>—m2) (1+my?—m,?)
= 2my*(my*+mu—mP—m,?)

and @ is the Kibble function, with (®)!/2 defined to be
positive in the s physical region. The kinematic-singu-
larity-free amplitudes are given by

My =[(@)'/TIMy, Mo=(1/T)Myt, (2.4)

and by a similar relation for the s-channel amplitudes.
Substituting these results in Eq. (2.2), we have

My'=—(1/8)[V2myM o+ Py (s,)M1:¥].  (2.5)

¢J. D. Jackson and G. E. Hite, Phys. Rev. 169, 1248 (1968);
J. E. Mandula, ibid. 174, 1948 (1968)." 1968);
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The charge of the particle s is defined by

lim (s—m2)Mo'=—i(4m,>—my?) ge,,

&§>Mmg

(2.6)

where g is the coupling of the s, ¢, and # particles at the
other vertex (g has the units of mass). The constant
factor, —i(4m,2—my?)'/2, is inserted to make our defini-
tion of charge the same as the conventional one. With
the aid of Eq. (2.5), we obtain the residue of M*:

lim2 (s—m,2) Myt =+V2ge,.

8—>myg

2.7)

Similarly, from the crossing relation from the # channel
we find’ _
lim | (u—m2) M= —V2ge,.

u->my

(2.8)
For s near m,? and values of ¢ such that % is also near
m,?, We can write

Vige, V2ge,

Mit= + B, (2.9)

s—mg?  u—m,?

For the simple version of the proof, we set my equal to
zero at this point and use the same crossing matrix
again. In this limit, for general s and /, the crossing ma-
trix becomes diagonal and we have

(t—m;Q)M1‘= —(s—m,,z)ﬂl’. (210)

We can write a representation similar to that of Eq.
(2.9) for the s-channel amplitude M,*:

V2ge,

+Bye. (2.11)

u—m,?

By putting Egs. (2.9)-(2.11) together, we find that if
g is not zero, and as long as the backgrounds are not as
singular as a pole, we must have

et &t =0 (2.12)

and

Bi(s,f) >0, as (— m. (2.13)

This proves the conservation of charge for a strong
vertex,® but in order to examine the behavior of our
amplitudes more carefully we will now proceed to the
second step of our original proof (this latter technique
is the one we generalize to the discussion of the con-
servation of charge for vertices with arbitrary spin).

" Here we have assumed there are no particles in the Vs, Vi,
and V4 channels degenerate in mass with particles s, 4, and . (For
the photon, ¢=—1 rules out all couplings to self-charge-conjugate
particles like the #°.) With this assumption and the assumption of
zero spin for s, ¢, and 4, we have the same coupling g at all three
strong vertices {tu|s), (t5|4), and (Su|i).

8 The exact condition on the charges is e,+¢éi+¢é.,+ (s —m,2) By
+(¢—m?)B,*=0 for all s and ¢. For the proof of charge conserva-
tion any singularity in B,* can be tolerated except a simple pole at
s=m,® and t=m¢. However, the condition on the zero helicity
amplitude is myMof — 0 as my — 0 to obtain Eq. (2.10) as the
limit of Eq. (2.5).
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Step IT

For the purposes of this discussion it is best to derive
the TP relations from s,t crossing. From the inverse of
Eq. (2.2) we can write

M= (+1/T)[Py(s,)) M o'— 2V2my®@M, ], (2.14)
Mye=(—1/ T)[V2myM '+ Py(s)M,1].  (2.15)

At threshold and pseudothreshold [{= (m,tmy)2=¥],
72 becomes infinite and we must have

Mt (s,1%) = [—V2Zmy/ Py () JM o' (s,1%) . (2.16)

The identity
[Pv(s,)]?= $*T2—4my2® (2.17)

ensures that both crossing relations lead to Eq. (2.16).
The charge of { is defined in the same way as the s and %
charges:

lim (t—m¢2)Mo‘= - i(4m;2—-mv2)”2gé, .

t->m2

(2.18)

Using the definition of the kinematic-singularity-free
amplitudes, Eq. (2.4), we have,

Mo my(dml—my?)gé,

;- Bo(s,t). (2.19)

t—ﬂnﬁ

In order to normalize the value of M,#(s,m,2) in terms of
¢, and then compare the result with the representation
of step I, we substitute Eq. (2.19) in the TP relations of
Eq. (2.16). We will be concerned with the region of ¢
between (~ and ¢+. This interval is of order my. Our
smoothness conditions consist of assuming that as my
goes to zero, & is bounded and that the quantities
Bo(s,tt)— Bo(s,t™) and M:(s,t?)—M,(s,t”) are of order
e(my), where e(my) denotes any quantity that goes to
zero as my is taken to zero.® Note that although these
assumptions may seem plausible, a rigorous proof of
them in S-matrix theory would entail a close examina-
tion of the unitarity condition. We have not addressed
ourselves to such a problem in this paper.

Substituting Eq. (2.19) in Eq. (2.16), and using
the fact that P(s,i£)=22mym(s—m.2)+0(my?), we
obtain

(s—m2)M 1! (s,%)
= —V2egF(1/V2m) Bo(s,1¥)+O0(my). (2.20)
By adding and subtracting the relations at ¢+ and /~ and

® We have introduced the assumption of smoothenss on quan-
tities with s and « poles; however, it can be shown that the pole
terms above satisfy our condition for fixed s>m,%. Hence, the
condition really applies to the infinite set of cuts in the continuum.
One can see explicitly the conditions on the cuts, by separating the
s_and « poles from Bg and then substituting this decomposition of
Mo(s,t*) and the decomposition of M(s,t*) [Eq. (2.19)] into the
TP relations [Eq. (2.16)]. In the interest of clarity, we use an ap-
proach that severely limits the algebra. By any approach, the
lesson is the same; with proper conditions on the cuts, Lorentz in-
variance and crossing require charge conservation in the limit of
zero mass.
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with the aid of the assumptions mentioned above, we
find that for ~<t<tt

B(s,t)= e(my) (2.21)
and

(s—ma2)M1t(s,t) = —V2é,g+ e(mv) . (2.22)

Note that Mt(s,t) and Bo(s,t) have poles at s=m,?
and u=m,2, hence it is convenient to consider a func-
tion f(s,f) defined by

f(s,t)=(s— ma?) (u—m,2) My (s,t) . (2.23)

In terms of this function Eq. (2.22) at ¢{=m,? with the
help of the identity (#—m,?)=—(s—m,>)—({(—m?)
—my?, now becomes

f(s,m®)=V2e,g(s—ms*)+e(my). (2.24)

This expression is a partial expansion in (s—m,2) and
my that can be continued to any value of s, including
s=m,? and u=m,2 A fuller expansion would explicitly
introduce the s dependence in e(my), e(mv)=ei(mvy)
+ e1(my,s)(s—m,?), and the my dependence in é,.

From the representation of step I, Eq. (2.9), we ob-
tain another expansion

fls,m®)=—V2ge.(s—m.>)—V2ge.(s—m,?)
— (s—ms®)2B1t(s,m2)+O0(my). (2.25)

Comparing Egs. (2.24) and (2.25) we conclude that if
g is nonzero, the quantity (e,4-€¢&.) is of order e(my)
so that the small mass vector particle couples approxi-
mately to a conserved quantity.

Note that by comparing the coefficients of (s— mz,2)?
in the two representations we have shown that By
(t=m?) goes to zero as my goes to zero. Therefore in
this limit, Bi!(s,{)=Bi'(s,t)/(t—m.*) has no pole at
{=m. The full helicity amplitude M; can then be
written as

VB (VIge, Viga

M
t—mg \S—-m, U— My

1

2)+(\/<I>)1§1'(s,t). (2.26)

Using charge conservation, we find the residue of the ¢
pole is iV2m,ge, Hence the existence of the pole now de-
pends on whether the quantum numbers of the / channel
allow the existence of the ¢ pole in the sense amplitude
before my is taken to zero. In this sense the Born term
of M, now has the characteristics of a dynamical pole.

III. MASSLESS PARTICLE OF GENERAL
SPIN AND PARITY

In this section we will prove that the coupling of a
soft massless 2+ particle, denoted by G, to a spin-zero
particle is proportional to the rest mass of that particle.
We will also discuss the case of other spin-parity com-
binations. We define our channels and the kinematic
factors in the same way as in Sec. I. We still confine our-
selves to spinless s, /, and # particles. The proof we will
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discuss here will be analogous to the one at the end of
step I Sec. II. The amplitudes under consideration are
M, where X refers to the helicity of the 2+ particle and
parity gives M_,=(—1)*M,. The kinematic-singu-
larity-free amplitudes are given by

Myt=[(2) 2™/ 7! (3.1)

and by similar definitions for the s and # channels. The

couplings of the 2% particle are again defined in the sense

amplitudes of the respective channels by
lim2 (t—mA)Mot=mf.g.

t>myg

(3.2)

As in Sec. II, the bar denotes the coupling to the anti-
particle. After defining f, and f, in a similar way, we
can use the crossing matrix to obtain the residue of the
s and u poles of M,t. We find

lim (s—m2)Mot=—1(6)"2f,g/m.,

8->ms?

lim (u—m.2)Ma'=—5(6)12fug/m..

Uu->muy

(3.3)

We can thus write the following representation for M,

when s and » are near m,? and m,2, respectively (¢ is near
2).

my )

_ fsg fug
Myt=%(6)12— —3(6)12— + Bt (3.4)
Mms S—mg? Mo U— M2
Repeating the same procedure for M»?, we find
_ fg 1 Jug
M= —4(6) = —— (611" ——+ Br. (3.5)
un l—mﬁ My U— My

If we now put mg=0, the crossing relation reduces to
(s—m,?)2Mot= (t—m?)2M . (3.6)
Substituting Eqgs. (3.4) and (3.5) in Eq. (3.6), we find
for the pole terms
L(fo/ms)— (fu/mu)](s_ m,*)*
+(fo/ma)(s—m2) (t—mP)=+ (fo/m)(s—m2) (t—m2)
+L(f/m)— (Fu/m)Jt—m2)2. (3.7)

This equation is satisfied if

fs/ms= ft//mt= fu//ﬁ'lu . (38)

Note that we have found the same sign for the coupling
of the 2+ to spinless particles and antiparticles. If the
zero-mass particle has spin higher than 2, and natural
J parity, the kinematic singularities are given by (s, ¢,
spinless)
L@yt _
’WL)\‘ =M 2.

- (3.9)

In the equation analogous to Eq. (3.7), there will
be terms proportional to f,(s—m,?)~'(t—m?) and
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fi(t—m®)7=1(s—m,?) which can not be matched. There-
fore, the soft couplings of zero-mass particles with spin
higher than 2 must vanish.

If the zero-mass particle has unnatural parity, then
its coupling to spinless particles is zero because of con-
servation of angular momentum and parity. We studied
these couplings to particles with spin with the tech-
niques introduced in Sec. IV. One can prove, for ex-
ample, that all the soft couplings of an axial-vector zero-
mass particle must vanish. We can extend this result to
all unnatural-parity particles except the 0.

IV. CHARGE CONSERVATION FOR
ARBITRARY SPIN

Here we generalize the discussion of charge conserva-
tion to particles of arbitrary spin and parity at the
strong vertex. Only an outline of the proof is given, since
it closely parallels the discussion of Sec. II for spinless
particles. However, enough of the formalism is given to
indicate the essential differences. In addition to the
proof, this formalism provides a complete solution to
the problem of kinematic singularities and gauge in-
variance for the four-particle photoproduction ampli-
tudes in terms of the known results for massive par-
ticles.>® With this formalism it is easy to translate the
standard kinematic singularities, conspiracy relations,
and TP relations for helicity amplitudes with a massive
p into results for the helicity amplitudes of photoproduc-
tion.! Also we note a useful crossing relation between
coupling constants for helicity amplitudes. This relates
the sense couplings at a vertex to the sense couplings
resulting from the interchange of the internal pole with
one external particle.

To the particles s, ¢ and « of Sec. II, we now assign
the spins J,, J;, and J, and the parities 7, 7, and 7,.
The ¢-channel helicity amplitudes are related to the
kinematical-singularity-free amplitudes F'xux.;my* by

M)\u)\n:)\g)\vt(57t)
= (1—z) WH2(142) LK) Py i (550)
+E-(O)Fxparay (5,07, (4.1)

where, for nonzero my, the kinematic singularities are
K;(:n(t)
U D= Ot m) D= ma—m)0e
- (tl/?)l

4.2
(7‘)Jt+1—m—i(1q=1)(n1"’).lu+J,—m ( )

In the case of all unequal masses /= ||+ |u],

pE=3{1Fmemu(—) e+ v],
gE=3[1F manu(—)en e To=r],
with

€su= (Mu—ms)/|my—m;|, and g=n5,(=)"c>. (4.3)

The rule for modifying the kinematics in the limit
my — 0 is very simple. The half-angle factors (1=+z,),
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the factors of ¢'/2 and [{— (my==m,)?] are not affected
at all by the limit. Also, the conspiracy relations at /=0,
and the TP relations at the massive particle vertex at
t= (mutm,)?, carry over without any changes, since
they only relate amplitudes with the same value of ),
and \y. As we will see in the process of the proof, all the
factors of 1/7 go over into kinematical factors of
1/(t—m,?), except one factor of 1/ 7, in K7(¢), which be-
comes a dynamical pole if such a pole is permitted by
the conservation laws. The resultant TP relations at
t=m,* will be indicated at the end of this section.

As in Sec. II, we must first define the charges in all
the sense amplitudes. We do this through the partial-
wave amplitudes of appropriate parity n=n,(—)7?
(v=4% for fermions) by the limit:

. o
lim (t~mr)a)\u>\,;>\twh"
t>m2

=— 2im,g>\ux,‘e)\,w'(—i) ke, (44)

The phase (—1)** is chosen so that the pole’s contribu-
tion is in accord with the real analyticity of F*, From
the partial-wave expression

K=y irav(5,0) =2 . [araninany " (D)en =(z,)
J

+ 25V )\gAVJ_q(l)e)\#Ji(zt)] )

we see that the phase of (—32)**! must be the phase of
(TT")7e=mK(f) at t=m,?. With the above definition of
charge, we can write the sense helicity amplitudes as
a pole plus a smooth background in the neighborhood
of (=m2:

(4.5)

dmym? Dar.erny’
Myoarav'(s,0)= (—)ke iz
l—Mg
(1—2,)“""/2(1+zt)”‘+"”2 _
(7)7et1m Bku)\a;hkv(syt) . (4.6

Similar expressions hold in the s and # channel. Note
that as ¢ — 1, z,— [2m>(s—m:®)+0(mv2) ]/ TT", so
that both the pole term and the background have ex-
plicitly exhibited the proper kinematical singularity of
1/(7)7+" at t=1* The more distant singularities in ¢
have not been made explicit, since they do not affect our
discussion. It will be useful to express the function
d (z) by the equation,

AT (2) =2 un.* (et u,.(J), (4.7)

so that expansions can be made when ¢— . The u

matrices are the unitary, symmetric transformations

from helicity to transversity given by
Une(J) =N 12y I (1) 2) 2, (4.8)

As in step IT of the spinless case, we find the value of
the nonsense amplitude M, ,,.s,—1¢ in terms of the
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charges for the sense amplitude by the use of TP rela-
tions. With the help of Eq. (4.7), we rewrite the crossing
relation of Ref. 5 in the form

(4.9)

) _ Xirew v R
Mypaaravt= Z UnrryryC XU KVTVE oy
TGTV

where all the factors that are not singular at {=14 are in
Forirp(5,85 Nuls)

Fan:_(_)J'e_iT)\" Z

Au/A' ANV’

X d)\u' )\u""(xu)d)\.’)\."'(_ Xa)MXu')\.’;M’)\V” .

(= uny e *urryev™

(4.10)

By expressing the singular terms etiX:7¢ and ¢TXV7V in
the neighborhood of i~*, and s=m,? as
—dmi(s—m,?)

44”;/
e~ - e*"’“'z(——) , (4.11)
78 T

we can easily derive the TP relations,!?

TIH My aranyt| et

m2(s—m,?)

Jt
=uM—J4u)\V:l:l<_ 8’ ) (WV)F_J,:EL (4.12)

By taking ratios of the above relations for various values
of \; and Ay, and substituting for the sense amplitudes
their expression in terms of the pole plus background
[Eq. (4.6)], several important results are obtained. We
show (a) that the background for the helicity-zero am-
plitudes goes to zero as we take my to zero and also (b)
that there is only one soft photon coupling é; in the limit
my — 0.

(@) Branairols,iozmy ) « e(my): This is proved by tak-
ing the ratio of TV M ;1 ,0f to the nonsense amplitude
TIH M\ 271t at (=% Using the relation #oy1/%141
==14V2, we eliminate the pole term, as in the spinless
example, to obtain

B n o) FBagngno(t7) & TIH M i 71| o+
— TV My i dom e -

(4.13)

The assumption of smoothness for the nonsense ampli-
tude gives our result.

(b) expyt=0dmyperte(my): By using the ratio of
TIHM N aging0! t0 TTHIM v p0 at {=¢F and result (a),
one shows that all zero-helicity photon couplings are
the same. For \y=1, one takes the ratio of 7V¢+!
XMypinez1 to TYHMy 00 0 for threshold and pseudo-
threshold. Between these equations By ,;x,41(s,t) can be
eliminated to zeroth order in my to obtain e 41 e(my).

Finally, we can normalize the nonsense amplitude

qux.,h.—ﬁ:Mx.,x,;J,,-l‘/(l—zt)”‘_“‘/2(1+Zt)')‘+“”2
at {=(* by taking its ratio to a sense amplitude M 1,0

10 This derivation is essentially the one given in Ref. 5.
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and using the above results. To zeroth order in my, we
obtain
(s— ms2)ﬂ7 Mrei J ot = — [T (ms®)/ 2m, ]

XV2d,7,7r/ Dgranited(—i)H,  (4.14)
which for the spinless case reduces exactly to the result
of Sec. 11, Eq. (2.20).

To complete the proof we use a representation for the

nonsense amplitude similar to the one of step I, Eq.
(2.9), for the spinless case:

r.(f)

S—m,?

o)
U— My 2
B re—1(s,t).  (4.15)

The residues 7,(¢) and 7,(¢) are determined through
crossing. Since 7,(!) and 74(¢) are analytic for i~m2,
they can be expanded, and only the first term 7,(m,?)
and r,(m.*) enter into the proof. To demonstrate the
procedure, we will find 7,(m.2).

By looking at the residues of the s pole at t=m,?, the
crossing matrix becomes especially simple. Furthermore,
z¢ and z, go to zero at this point. Hence we have

rmA=er I F i 54(0)
PP PO VDN 24

M)‘u)\n; Jt,—lt(slt) =

+

Xdan(—m/2)drg 574 (/2)
Xdnyr—1'[—Xp(ms,m2) 12m,(—1)kstl

(4.16)

X &z *Orry g ry e T (—7/2).

Now using TP relations in the s channel, we obtain
exyay =0y et e(my). This relation and the special
properties of the d function at 0 and ir allow all the
sums to be done and lead to the following equation:

ro(mi)= LT(me?)/2mN2d, 7 (m/ 2)
X (= D)7 Mgy fea(— i)Fe(— )T, (4.17)

With the observation that (— )%t/ (—17)*:is real and that

D= (=)Tv Mgy (4.18)

we have the desired result up to an undetermined sign.

The last ingerdient to this outline [Eq. (4.18)] can
easily be understood by considering the coupling con-
stant gy, a,' as the on-mass-shell vertex function
<)‘ulpu,y)‘t,178,l)‘tlpt/); (Ptlzpu"i‘Pc,; )‘t/=>‘u,_)‘a/)' The
coupling constant gy, ¢ is defined in the rest frame of
particle {, or equivalently the center-of-mass frame of
u and §, if  is a resonance. With p,’ taken along the
positive z axis, A, is the z component of spin for particle
t. To cross this function, we first boost all particles along
the positive z axis until we get to the rest frame of par-
ticle § (laboratory frame). The z component of spin is
not affected by the boost, so in the new frame (denoted
by double prime) A\.”’=\./, \/’=\/, and the z compo-
nent of spin for s is —\,’. Now we cross the particles
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§and { to s and ¢. In order to conserve the z component
of spin both before and after crossing, the z component
must flip for either the s and ¢ particles or the u particle.
The resultant coupling is ga,»," (up to a real phase) with
Au==N and \,=+\/=+(\,—\,). Note that these
two couplings have the same magnitude if parity is
conserved.

In addition to the TP relations used in the above
proof, there are the derivative relations obtained by ex-
panding the right-hand side of Eq. (4.12) to higher
orders in ({—%). For the photon, these additional rela-
tions survive at {=m,? and are responsible for eliminat-
ing the kinematical factors of 1/({—m?)?/t from the
unpolarized cross section so only the “dynamical pole”
at t=m,? survives. In terms of the amplitudes (1—m?)”¢
X Mo av'(s,t) that contain only dynamical poles the
new TP relations are given by

3 U *E—mED T Mypan oy < (—m2) e,
Ne

(4.19)

This completes the description of the kinematical con-
straints discussed earlier in this section for the photo-
production amplitudes.

V. OTHER APPLICATIONS

Before we discuss the possibility of other applications
of this method, we should again emphasize that the as-
sumed behavior of amplitudes in the external mass,
which is so essential to our proof, needs a careful ex-
amination in itself. As the mass of an external particle
goes to zero, an infinite number of branch points ap-
proach the point s=m,? {=m,®. As mentioned before,
a knowledge of the behavior of the amplitude in this
limit probably entails a detailed examination of the uni-
tarity condition. A very interesting question that arises
in this connection is the relation of the strength of the
coupling to this behavior. We have to find out whether
our smoothness assumptions hold only for special cases
of small couplings such as electrodynamics, or whether
they are also true when the small mass particle partici-
pates in strong interactions. If this latter alternative is
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true, we can proceed and examine some of the applica-
tions of this method to strongly interacting particles.

The first application concerns the problem of p uni-
versality. Usually p universality is proved with the aid
of the concept of p dominance in, for example, the elec-
tromagnetic form factor. It is possible that our method
may be used to deduce some approximate universality
without the use of p dominance. Note that one can easily
generalize the mechanics of our proof of charge conser-
vation to the case of couplings involving isospin or other
symmetries. This problem of p universality and the re-
lated problem of its application to Compton scattering
is now being investigated. We should not expect p uni-
versality to be very accurate, because of the long ex-
trapolation in the mass of the p.

Another interesting set of problems may be the ap-
plication of this method to the scattering of pions off
other particles or the coupling of currents in weak in-
teractions. In the proof of this paper, we used a four-
body amplitude in which the small mass particle was one
of the external lines. The question arises whether we
can substitute, for example, the external vector particle
with a p wave, =r channel. If this can be done, we can
then prove results such as the Adler-Weisberger relation
for the antisymmetric part of m= amplitudes. More
promising perhaps is the application to weak interac-
tions, since the coupling is small and local. However, we
feel that in order to make rigorous statements about
these problems, a careful study of the five-line connected
part and the related questions of TP relations for sub-
energies is needed. Such a study may also lead to other
results associated with current algebra, partially con-
served axial-vector current (PCAC), and the smallness
of certain masses.
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