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The object of this paper is a study of the idea, recently emphasized, that crossed-channel Regge poles
only can well express a given amplitude not only asymptotically but also at any energy. The present study
is a phenomenological one and the reaction examined is ~X charge exchange. All leading Regge trajectories
which have been found by previous research to be necessary for accurate agreement with the data (namely,
4, E, p, p') are introduced. In order to cover the region for which we do not have detailed knowledge of
Regge-pole parameters, the assumption is made that trajectories are straight lines. Special care is taken in
discussing the residues which are the most relevant quantities. The e factors included in the residues are dis-
cussed in some detail. The various possible choices of a factors are effective both on the s-channel Argand
diagrams and also in providing the resonance dip and bump structures in dn/dt

~
~-0(s' p -+ s n) and eco~at

=o(~ p) —cr(vr+p). Throughout our calculations, exact formulas are always used. Finally, the result of
a similar study of the elastic m.P reactions is discussed.

I. INTRODUCTION
' 'NCREASING interest has recently been devoted to
- - the problem of writing scattering amplitudes con-
taining only Regge-pole contributions at all energies.
In other words, the background integral should be
mainly reexpressed by some choice of a few or an in-
finite number of Regge poles.

Basically, in this spirit, two ideas have been elabo-
rated: The older is that of interference between the
direct-channel resonances and the crossed-channel
Regge pole'; the newer, which has been emphasized in
diGerent ways by Schmid, ' by Khuri, ' and by Vene-
ziano, s is that of duality (using the name introduced by
Chew and Pignotti'). The duality approach see~s very
much simpler for bootstrap purposes. Unfortunately,
so far there is no complete theory which gives inter-
polation between the high-energy and low-energy re-
gions for any realistic reactions. Therefore, at this
stage, our study of the duality principle can only be a
phenomenological one. Ke argue that the Regge-pole
terms (both t and u Regge poles) obtained by fitting
the high- arid the intermediate-energy data, when ex-
trapolated down to the resonance regions, ought to
give a qualitative agreement. For example, if the com-
bined t- and I-channel Regge-pole contribution can
produce the resonance-type structures, they should pro-
duce the correct peaks and dips. If they cannot pro-
duce the resonance-type structures, they at least should
give an average value.
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It is in this spirit that we study the best-fitted re-
action z p ~ m'e. The following assumptions are made:

(a) Only t and u-chann-el Regge poles are introduced.

(b) Four poles, p, p', 6, and 1V, are used, namely, the
minimum number which is required by the phenom-

enology.
(c) All poles contribute in an additive way.

(d) When extrapolation is needed, straight lines are
used.

Under these assumptions, it is immediately recognized
that the important problem is the study of the residues.
In fact, the o. factors, which greatly determine the
structure of the residues at small t (in such a region the
pure t factors are also important), become of over-

whelming importance when the full range of t (u) is
studied.

Ke have made the following requirements in perform-

ing the s-channel partial-wave analysis: (i) to use ampli-
tudes in the regions of s, t, and u where they are found
to fit the experimental data as well as possible; and (ii)
to obtain properly circulating and shaped Argand circles.
The first requirement is important because the linearity
of the trajectories (although the only possibility in
order to make practical calculations) does not have a
deep theoretical support. Consequently, we prefer to
retain a phenomenological spirit and avoid discussions,
for example, at very high s, where there is a very wide

range of t, in which the experimental data are not
abundant. The easily found complicated patterns in the
Argand diagrams for high spin J are, for this reason,
not discussed in this study. The second requirement is
the logical consequence of the starting postulates,
namely, that the amplitude should be represented well

by crossed-channel Regge poles alone even in the res-
onance region. Thus, they should produce mell-shaped
Argand circles, which we usually associate with
resonances.

In addition to the Argand circles of the partial-wave
amplitudes, we have observed a peculiar phenomenon.
The combination of the t- and u-channel Regge-pole
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terms can give an oscillitory behavior in the cross
sections as s varies for fixed t, u, or cos8,. The t- or
u-channel Regge poles alone cannot produce such an
effect. We find that a specific choice of the sign and the
zero-choosing mechanism of the residues of the p, p',
E, and 6 can produce a reasonable structure in
do/Ch~ g o(~=p~—n'n) and a(~ p) —0(m.+p). We also find
that such a set of choices also produces the most reason-
ably shaped Argand circles. The set of choices is the
following: The residue of the 6 should be negative and
small and the residue of the E should be positive and
large. Besides the well-established "choosing no fixed
pole" mechanism for the X trajectory at n~= ——,', cV

must choose a fixed pole for e~& —4.5. As indicated
in the m +p backward scattering, the 6 trajectory chooses
a fixed pole at cx~= —1.5, but should choose no fixed
pole for all o.&& —9.5, and the 6 trajectory should at
least go down to a~= —9.5. The statement about the
6 is of less certainty than that about the E. Certainly
the fit to the oscillations of the data can be made closer
than that presented in this paper by more searching of
the parameters. Nevertheless, it seems hard to fit the
data perfectly.

The mS charge-exchange reaction has been analyzed
in the same spirit before. ' Our main contributions are
as follows: using exact formulas in the calculations,
including the u-channel Regge poles as well as the
t-channel poles, and observing the oscillatory behavior
in the cross sections produced by the combined sects
of the t- and u-channel Regge poles.

In Sec. II D, the result of a similar study of elastic
mE scattering is discussed.

II. ACTUAL CALCULATIONS

Before beginning to explain the details of our calcu-
lations, we would like to remark that the full study of
the xE system under the mentioned hypotheses should
include a treatment of all channels. Namely, we have
two channels ~$ —+x.V and 3(X—+em. The crossing
relation connects the two. More precisely, when we
consider the reconstruction of direct-channel Regge re-
currences as given by crossed-channel s Regge poles, we
should consider two systems:

p' poles are from the fit of Ref. 6. Since there are no
charge-exchange data in the backward direction, we
take the predicted 6, X contribution to the charge-
exchange reaction from the present fit' to n.+p elastic
backward-scattering data. ~ All these fits are at fairly
high energy and small momentum transfers.

Because our purpose is to consider only Regge-pole
contributions to the amplitudes in the unexplored re-
gions of energy and momentum transfer, a few com-
ments about the extrapolation are necessary.

Large
~
t ~. This means, more precisely, every momen-

tum transfer. The customary Regge procedure explores
the small region of

~
t t, especially the dB5cuit point at

t=0. Consequently, the parametrizations are biased.
For example, some trajectory factors and t factors that
are zeros near the forward direction become infinite in
our study. Also, curved trajectories, which can be help-
ful in understanding details of the small

~
t t region, are

unacceptable for the full t range. In our calculation we
make the simplest extrapolation, i.e., straight-line tra-
jectories and constant residue with the appropriate so.
Hopefully, this problem of extrapolation to large t can
be eventually settled by future high-energy large-mo-
mentum-transfer experiments.

Low s. The extrapolation of the t, u Regge pole to
low energies has to be understood in a fundamental way.
This is really the heart of the problem. The conven-
tionally used expression s cannot be expected to give
us a correct answer at low energies, especially near
threshold. Since it does not have the correct s-channel
analyticity and does not carry explictly the s-channel
unitarity, we have tried the other two simplest alter-
natives. They are (s—m' —p') ~ and t s—(m+ p)']~. The
second one is intended to bring out some of the struc-
ture near threshold. The details of our findings are
given in the following subsections.

A. Formulas

Through crossing, the s-channel helicity amplitudes
are related to t- and u-channel contributions, '

(2.2)

A '(s, r, u)Pi(Z, )dZ.
—11,2

1

(LRegge pole)'+LRegge pole] )~, 2Pg(Z. )dZ„
—1

where the indices 1 and 2 refer to z&V ~ m~V and SE
~m. In such a way the self-consistency of the approach
would be complete. YVe study this general formula only
in the x.V —&xlV case, and more particularly in mE
charge exchange. The poles considered are p and p' in
the t channel, and S and 6 in the u channel. The p and

where f' '"' is the u-channel contribution to the s
channel and f'&'& is the t-channel contribution to the
s channel.

'Our parametrizations are from V. Barger and D. Cline,
Phys. Rev. Letters 21, 392 (1968); Phys. Letters 21, 312 (1968);
M. Toiler and L. Sertorio, Phys. Rev. Letters 19, 1146 (1967).' J.Orear, D. P. Owen, F. C. Peterson, A. L. Read, D. G. Ryan,
D. H. White, A. Ashmore, C. J. S. Damerell, W. R. Frisken, and
R. Rubinstein, Phys. Rev. Letters 21, 389 (1968).

M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959);T. L. Trueman and G. C. Wick, ibid. 26, 322 (1964); I. J.
Muzinichi, J. Math. Phys. 5, 1481 (1964); M. Gell-Mann, M. L.
Goldberger, F. K. Low, E. Marx, and F. Zachariasen, Phys. Rev.
133, B145 (1964), Appendices A and B.
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The normalization of our amplitudes is such that the
unpolarized diEerential cross section is

rlo 1

,(If+,+"I'+
I f ,+'I-') ~

dt 4)rsP, '
(2.3)

Fy 1 +(gs) =v22)rs"' ffi'(gs)t)CL), +(Z,)

where
+f '(vs, t)c~.~"(Z)]«, (27)

C) )~+= ~&21'g ), C) g~
—= 2&2I'g+).

The F~+ are related to the conventional notation:

F),,ls = fi~ and F11s+=fi, .(2.8)

First, we give the I-channel Regge-pole parametriza-
tion:

(ps+ m)' —t)'
fi""'(Qs I)= I'E', (2.9)

4s
where

R~ $N2=P~[1+8~( Qs+2m)](s/so—zr) " &) (2.10)

Ea= jq2P)it 1+8)i(—Qs+2m)](s/so)i) ~ &. (2.11)

The $'s are signature factors multiplied by the n factors:

$N = {tan)-', )r(ni)r+-', )]+i)(apt+-', )(a~+ 2), (2.12)

4= {cotp2~(~a+a)]—~)(oa+2)(o +5) (2 13)

The I's are isospin factors. For the charge exchange,
we have

I~= —I~=-,'K2.

The parameters given by Ref. 6 are

0.~= —0.38+0.88N,

Pi)r= —32 BeV ')
b~= —1 58/miv BeV .'

so~=0.45 BeV',

ng =0.19+0.87N,

Pq=0. 1 BeV ',
4=1.54/m)i BeV ',

sop= 2.85 geV

Actually, in their fit, they cannot determine the signs
of Ps and Pq. Notice that the parametrization of the

The following amplitudes will be relevant for the
partial-wave analysis:

f+,+'(V' s, )t—= (cos28 ) 'f+,+'(&s t)
2)rs"—'$fi*(gs, t)+f2)(+s,t)]) (2.4)

.'(4-, )t-=(»n-:e.)-'f ,+ (V-', t)
27rs't'—

L fis(gs, t) f2)(/—s t)], (2.5)

where fi and f2 are the most conventionally used
"parity-conserving" helicity amplitudes. They are re-
lated by MacDowell symmetry,

f '(V s,t) = f '( &s—,t). — (2.6)

The partial-wave projection actually used in our calcu-
lation is

The division factor of a&+2 in Eq. (2.15) is to avoid
the zero at n&= —-', ."We always normalize the ampli-
tude to be equal to that of Eqs. (2.9) and (2.10) at
1=0. The replacement of $~ and $q in Eqs. (2.12) and
(2.13) by those of (2.14) and (2.15) changes the original
fit of Ref. 6 insignificantly. Notice that by choosing
this mechanism the imaginary part of the Regge poles in
Eqs. (2.10) and (2.11) has a simple zero at all nonsense
values of n, i.e., all negative half-integers, except ez
= —~', and the real part has a double zero at every
nonsense wrong-signature value of n, i.e., every two
units.

(ii) Choosing-axed-pole mechanism:

$iv = (1/)r) (ai)r+ s) {sint s)r(ai)r+ s)]+i cosL2)r(n~+ —',)])
X I'(-', —-', nN), (2.16)

&q ——(1/)r) {cosLsi)r(na+ss)] —i sinPsi)r(na+ —',)])
X r(-;——,'o,), (2.17)

Here the imaginary part has simple zeros at nonsense
right-signature values of of and the real part has simple
zeros at nonsense wrong-signature values of e. Notice
that the zero at o.N= —

~ is always there.
For the t-channel contributions, we use amplitudes

which are already known and written as t-channel
helicity amplitudes. We then obtain the t-channel con-
tribution f+,~'"i) f+, )"i by

f++'"=&»f++'+&»f++',

f+ '"= I):inf++'+E:-»f+—',

(2.18)

(2.19)

' C. E. Jones and V. L. Teplitz, Phys. Rev. 159, 1271 (1967);
S. Mendelstam and L. L. Wang, ~bid. 160, 1490 (1967').

'o We have used the formula D'(a)P'= (1/~) sinxo. r(1—a).
"We have also tried the case with the zero at ay= —$. The

result is not satisfactory.

a factors in Eqs. (2.12) and (2.13) is only good for small
u where the o.'s& —~. Since we extrapolate to large
N, we have to use a more general form, for example,

the F functions or the sine and cosine functions. The
zero at o.~————,', which is a nonsense wrong-signature
point of nN, is quite well established. We call this the
"choosing-no-fixed-pole" mechanism. There are strong
indications that the zero at n~= —~3, which is a non-
sense wrong-signature point of o.q, is not there. ' We
call this the "choosing-fixed-pole" mechanism. ' We have
no experimental indication from the fit of Ref. 6 to
Ref. 7 which are the zero-choosing mechanisms for
~&& —2, nz& —2. We try both mechanisms.

(i) Choosing-no-fixed-pole mechanism'0:

fN ——(2/)r) {sin'L-,')r(ai)+-', )]+i sinL)r(n~+-,')])
X 1'(a —&i)r) (2 14)

$)i = (2/7r) {cos'[', 7r(na-+ ',)] -i si—nL)r(us+ 2)])
xr(-,' — )/(, +-',). (2.15)



178 SCATTERI N G AM PLI TU DES WI TH REGGE POLES 2465

-5"
-6 I i I t I t I s

2 3 4 5

P~(Bev/c)
(a}

I t I

6 7

9- t Channel alone

N alone
alone

t+0 ChannelCl
5
4a

aif ~ -LS age-4. 5

ag-a. s a&.-s.a ag-a. a a&.-v.s a&.-s.s

b 3 ag p-l.s

7-

5
4

CL

+
2 —,

b
I p

I

b -3-
-a—
-5—

t + U Contribution

t alone

I i I i I t I

2 3 4 5

P~(BeV/c)
8)

9r t + U Contribution
U Contribution 3.3-

5
4

CL
+

2

b -3- I

-4-

6 7

7 a lo ne
P &7.0 BeV~,

3 0
CL

~ 0 ~ ~ ~ ~ ~ + 29- tr~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

1 2.8-
b i
t 27-

2.6- j1 ~I

2.5-

2.4-

2.3 .
3.5 4.0 4 S 5.0 5 5 6.0 65 7.0

p7r (BeV/c) P~(BeV/c)
(c) (d)

Fn. 1. Calculated 0(m p) —cr(~+p) from the p, p', N, and 6 trajectories with f8~=32, pz= —0.2. The data points in Figs. 1 and 2
are taken from Barger and Olsson (Ref. 1).The references to the original papers are given in Ref. 18 and the following: T. Devlin et al.,
Phys. Rev. Letters 14, 1031 (1965); A. Diddens et al. , ibid. 10, 262 (1963); A. Stirling et al. , data quoted by B. Amblard et a/. , Phys.
Letters 10, 138 (2964); A. Citron et al. , Phys. Rev. 144 1101 {1966).(a) The N trajectory chooses fixed pole as given in Eq. (2.16) and
the /t trajectory chooses no fixed pole as given in Zq. (2.f5). The energy-dependent form for the //-channel is s —i/a+p) as mentioned
in Sec.II. (b) Same as (a) except that the energy-dependent form is s. (c) Both the Ã and t'ai, trajectories choose fixed poles, and the energy-
dependent form is s—(m+p)~ for the I channel. (d) Experimental data of ~(m p) —a (~+p) above p =3.5 GeV/c.

where

Ktt 2m(st+ 8') "——s/8( t+4m')'"—
Kts= (—t)' '(s+m' —t/')/( —t+4m')'/'3,

g= {Ls —(m+/a) s)Ls—(m —t/'))) '/s.

A = C, (n,+1)&,(E/Ep) pL(1+H) exp(Cpt) —H)
+C;t(n;+1)$, (E/Ee) p' exp(C, t), (2.22)

&= Dpnp(np+ 1)Ep(&/&s)" ' exp(Dpt)+Dp (np +1)
X)p (E/Es) p' 'exp(D;t), (2.23)

The t-channel parametrization' of the I&= 1 amplitude
used is

(2.20)

where the f's are signature factors multiplied by n
factors. They will be defined later. Notice that the p'
is a conspiring, fixed-pole-choosing trajectory and p is
nonconsipring and sense-choosing. %e have also used
the parametrization of Ref. 12 with p' conspiring and
fixed-pole-choosing, and with p nonconspiring and non-
sense-choosing. Ke present only the figures that cor-
respond to the first kind, because the extrapolation is
easier. As in the I channel, we extrapolate to large (n ~

"G. Fox and L. Sertorio, Phys. Rev. 176, 2739 (1968).
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FIG. 2. Calculated do/dt(n=p~ ~ n) from the p„p', E, and 6
trajectories. Alj the I-channel energy-dependent form is
s—(m+p)'. (a) do/dt g~. The data are from I. Mannelli et al. ,
Phys. Rev. Letters 1, 408 (1965); A. V. Sterling et al. , ibid. 14,
763 (1965); L. Guerriero, Proc. Roy. Soc. (London) A289, 471
(1966); C. Chiu, University of California Radiation Laboratory
Report No. UCRL-16209, 1966 (unpublished); P. Borgeaud et al. ,
Phys. Letters 10, 134 (1964);P. Falk-Vairant et al. , whose data are
quoted in G. Hohler et al., ibid. 21, 223 (1966); M. A. Azimov
et al. , Zh. Eksperim. i Teor. Fiz. Pis ma v Redaktsiyu 3, 336 (1966)
t English transl. : Soviet Phys. —JETP Letters 3, 216 (1966)j.
The specification is exactly the same as in Fig. 1(a). (b) kr/dt at
Z, =—0.995. The specification for the E and 6 is the same as in
Fig. 1(a). The p and p' choose fixed poles as given in Eq. (2.24).
(c) da/dt from Z.=+1 to —0.9735 for p =3.5 BeV/c, with the
specification the same as in (b).

in two ways, with p' always fixed-pole-choosing at
o.p =0.

Choosing fixed pole:

$=(1/s)t i cos(-,'sa)+sin(-,'~a)]1'P(i —a)]. (2.24)

Choosing no fixed pole:

$= (1/s)(1/a)L i sinsn+(1 cos7rn)7—1'(1 n). (2.—25)

Substituting the t- and I-channel contribution into
Eqs. (2.1) and (2.2), one can easily calculate the cross
sections; and through Eqs. (2.4), (2.5), and (2.7), one
can obtain the projected s-channel partial-wave ampli-
tudes.

B. Structures in the Cross Sections

We present in Figs. 1 and 2 the calculated cross sec-
tions at cos8,=+1 and —0.995 down to a pion labora-
tory momentum of 1 BeV/c. ia In Fig. 2(c) we show the

"The p in all figures is the pion laboratory momentum. The
form of energy dependence of the t-channel contribution is always
E as given in Eqs. (2.22) and (2.23).

cross section do/dt in the full range of Z,=+1 to
—0.9735 from t- and u-channel Regge-pole contribu-
tions. In Table I we give the relevant values of p„ t,
e, 0,~, and o.g at Z, =+1 for discussing the structures in
the cross sections. To see more clearly the structure in
o(s p) —o(s+p) above p =3.5 GeV/c, we show en-
larged data points in Fig. 1(d).

We summarize several interesting points here. Since
we did not do a complete fit, we only emphasize our
qualitative results.

(a) For fixed t, the amplitude from any t-channel
Regge-pole term is smooth in s, but for fixed I or fixed
cos&„ t= —2q, 2(1—cose, )=2mm —2y, 2—u —s. The t var-
ies as s varies. Therefore, the amplitude from a t-channel
Regge pole oscillates according to the zeros by the
signature factor and the a(t) factor. Thus, the cross
sections given by t-channel Regge poles oscillate as s
increases and u or cos8, is kept fixed—with one excep-
tion, i.e., the case of an amplitude containing on/y one
crossed-channel pole, which chooses the fixed-pole
mechanism for all nonsense value of n. In that case the
differential cross section is smooth for fixed I or cos8, as
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s varies. "A similar statement is true for the I-channel
Regge-pole terms. For fixed I, the amplitude given by
I-channel poles is smooth, and for fixed t or cos8„ it is
oscillatory.

(b) The fit for do/du of s.+p elastic backward scat-
tering is quite well determined' for ~u

~

(2 BeV2. There-
fore we see from Table I that at Z, =+1 for the pion
laboratory momentum p (1.5 BeV/c the I-dependent
I-channel contribution is fixed. However, we still have
the freedom in extrapolating the high-energy fit to low

energies. We can change the I-channel contribution for
small p, by changing (s/so) '* in Eqs. (2.10) and (2.11)
to L(s—m2 —p2)/so] & or to ($s—(m+ p)']/so)
Compare Figs. 1(a) and 1(b). The I-channel contribu-
tion for p )1.5 BeV/c depends more on the large

~
I

~

extrapolation of Eq. (2.9).A similar discussion holds for
the t-channel contribution at Z, = —0.995 as given in

Fig. 2(b).
(c) Let us now discuss Fig. 1(a) of o(7r p) —0(s+P)

in detail to see how the particular choices of the signs
of the residues and the zero-choosing mechanism for X
and 6 are able to give results which better resemble the
data. " For 1(p (392.5 GeV/c, i.e., 0.995(

~ p~ (3.8
GeV', the n-channel contribution is totally from ~V.

In order to produce the dip at p =1.45 and the bump
at p =2.0, o.~ has to choose fixed pole at 0.~———2.5
and P~ must be positive. (Remember that the sign of the

p pole is determined already. ) For p )2.5 GeV/c, i.e.,
~
I

~
)3.8 GeV2, the 5 trajectory totally takes over. The

period of the oscillation is about 1 BeV/c of p . This re-

quires that the 6 contribution vanishes at all 0&& —2.5
nonsense values for the given slope, i.e., choosing the
no-fixed-pole mechanism, and the 6 trajectory should
at least go down to nq& —9.5. The positions of the
bumps and dips require Pq to be negative. We shall see
that these choices are also consistent with the result of
the Argand circles. We ought to make it clear that the
statement about the 5 is not so clear cut as for the .V.

(d) The same discussion Las in (c)] can be given
about do/dt

~ & o(7r p ~ 7r'e=), but it is more complicated.
It turned out that do/dt

~
~ 0 also consistently chooses the

same result as in (c).The result is shown in Fig. 2(a).
The prediction for da/di(w p~ ~'n) at Z, = —0.9735
is given in Fig. 2(b).

(e) If the dip-bump structures, which so far are under-
stood as due to the s-channel resonances in the cross

"For example, the contribution of a single trajectory with slope
1 to the differential cross section is

d~ z(m, &)—(Z= —1)= ' exp —8q' 1+1„ s

dt 4q~
1l

for choosing fixed pole, and

z(~,&) S—(Z= —1)= ' exp —8q' 1+l„— {1—cos47rq')
dt 4q~ 4ft'

for choosing no fixed pole. The first one is smooth and the second
is oscillatory.

"The sharp minimum at p =0.9 GeV/c cannot be successfully
produced. Also notice from Figs. 1(b) and 2(a) that both the
magnitude and the frequency of the oscillation indicate that a&
ought to have a steeper slope for large

~
e~.

TABLE I. Some values of p and u at Z, = +1 and o!y or ctq
near negative half-integers.

p (BeV/c) u (BeV')

0.5
1.15
1.5
1.75
2.10
2.35
2.75
3.35
3.95

—0.736—1.27—1.93—2.40—3.05—3.52—4.27—5.40—6.52

—0.445—1.50—2.08—2.49—3.07—3.49—4.14—5.13—6.12

0.126—0.919—1.49—1.89—2.47—2.87—3.53—4.50—5.48

sections, are truly associated with the signature factors
and n factors of t and I channels, it would mean that
for infinitely rising s-channel trajectories, the t- and
I-channel Regge trajectories must be also infinitely ex-
tended. This is quite consistent with the bootstrap
idea. In Fig. 2(c) we show the full range d&r/dt from
Z=+1 to —0.9735.Notice the association of the dips to
the o. values of different trajectories.

D. ~+ Elastic Scattering

Similar studies have been attempted to ~+p elastic
scattering including the P, E', p, rV, and 6 trajectories.

"Notice that many circles have radius greater than 1. Due to
our normalization of the partial-wave amplitude in Kq. (2.7), this
does not necessarily mean that unitarity is violated.

C. Argand Circles

Here we present only our calculation of f~', which
is the amplitude that contains the rp= —resonances,
e.g. , the 5&. We want to emphasize only the qualitative
properties of the Argand circle. There is little point in
showing all the f~+' The de.tailed structure of the
Argand circle, especially for the high-/ ones, depends
too much on the detailed behavior of the Regge-pole
terms, which have not been well determined. "

(a) The signs of the Regge residues determine the
turning directions of the circles. The sign of the p residue
is determined by 0 (np) 0(7r+P). .In F—igs. 3(a) and 3(b)
we show the result of the t-channel contribution alone.
The signs determined produce the properly rising,
counterclockwise turning of the circle.

(b) The speed of the turning of the circles depends
upon the zero-choosing mechanism. The no-fixed-pole-
choosing mechanism (i.e., more zeros in the amplitude)
gives greater speed than the fixed-pole-choosing mecha-
nism. Compare Fig. 3(a) with Fig. 3(b).

(c) The choice of P~= —32 gives a downward turning
circle from the I-channel alone. See Figs. 3(d), 3(f), and
3(g). Pq=+0. 1 or —0.1 determines the details of the
circle. Unlike in Sec. II B, here there is no clear-cut way
to choose between the two. Compare Figs. (3a) and
3(g). Both have the top at P =1.7 BeV/c, Qs=2.049
BeV. However, all the results here are consistent with
the conclusion that the signs and the zero-choosing
mechanism are those given in Sec. II B.
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Fn. 3. Argand graphs for the s-channel partial-wave amplitudes f&+' projected from the t- and u-channe]. Regge-pole terms, i.e.,
p, p', N, and D. The I-channel energy-dependent form is s—(m+p)' for all figures except (c) and (d), which have in form of s. (a)
t-channel contribution alone. Both p and p' choose a fixed pole as given in Eq. (2.24). (b) t-channel alone. Both p and p' choose no fixed
pole as given in Eq. (2.25). {c)I-channel alone; PN =32, P& = —0.1.Both N and 6 choose a fixed pole as given in Eqs. (2.16) and (2.17).
(d) Same as (c), except p&= —32, p&=+O.f. (e) Combined result of {a) and (b). (f) Combined result of (a) and (d). (g) u-channel
alone. The N chooses a fixed pole as given in Eq. (2.15); the 6 chooses no fixed pole as given in Eq. (2.15).p= —32, p& =0.1 ~ (h) Same
as (g), except p~=32, p~ ——0.1. (i) Combined result of (a) and (h). (j) The result corresponding to the specification of Fig. 2(b).
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FI'G. 3 (Coetieged. )

We take the parametrization of P, P', and p from Ref.
17, which gives a it to the Ir+P e1astic scattering down
to p = 2.5 BeV/c and

~
t

~
&2 GeV', but the extrapo1a-

tion is very hard. Many factors become very large at
large t. The Argand graphs of the partial-wave ampli-
tudes can hardly make a circle. Aside from extrapolation
dB5culties, we think that this 6nding is consistent with
the observation made by Harari' that P should not be
related to direct-channel resonances. Since P is very
flat, it may never cross any nonsense points. In our
calculation, those nonsense zeros are crucial to make
the Argand circles. So we expect that P cannot pro-
duce circles; thus it should not be related to the direct-
channel resonances.

III. SUMMARY

We have investigated the combined eA'ects of the I;
channel and u-channel Regge poles at low energy. We

"C. B. Chiu, S. Y. Chu, and L. L. Dang, Phys. Rev. 161,
1563 (1967).' H. Harari, Phys. Rev. Letters 20, 1395 (1968).

studied the Argand circles of the s-channel partial-
wave projections and the o(tr p) —o(tr+p) and do/dt
&((Ir p —+ tr'II) in the fOrWard and baCkWard direCtiOnS.
%'e Gnd that the Argand circles can be produced by p,
p', E, 6; and p, p', plus E, 6, respectively. The circles
are produced by the signature factor. However, the top
and the shape of the various circles depend on the
detailed zero-choosing mechanism of the Regge residues
and the relative signs of the residues of these poles. In
addition, we 6nd that for 6xed t or u or Z„ the combined
t-channel and u-channel Regge poles do produce bumps
and dips in the cross sections as the energy varies.
Again this structure comes from the signature factor,
the zeros of the Regge-pole terms, and the signs of the
residues. The magnitudes of the bumps and the dips
depend upon the way in which the Regge poles are
extrapolated down to low energies. We also 6nd that
in order to produce qualitatively correct oscillatory
structure in the cross sections do/dk~ I o(tr p t tron)
and a(tr p) —o (tr+p), only one set of signs of the residues
and the zero-choosing mechanism of X and 6 is accept-
able. The X residue should be positive and large and the
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6 residue should be negative and small. Besides the
well-established choosing-no-fixed-pole mechanism for
the X trajectory at o.~= —2, cV must choose a fixed pole
for n» —4.5. The 5 trajectory chooses a fixed pole at
O.q= —1.5, but should choose no fixed pole for all a~
& —9.5, and the 6 trajectory at least should go down

to ay= —9.5. (The statement about the 5 is of less cer-

tainty than that about the X.)
Unfortunately, so far there is no complete theory

which gives good interpolation between high energy and

low energy for any realistic reactions. Therefore, at
this stage, we naively take the present Regge representa-
tion and extrapolate it to low energies in a simple way.
In doing this we would like to make the following point
clear. In the particular reaction that we studied-
s. p-+s'n —it happens that the combined t and u--

channel Regge poles can produce the resonance-type
structure. However, there are reactions in which such

phenomena do not happen. Thus, at this stage of phe-
nomenological study, we take the following attitude:

Whenever the present form of Regge representation
predicts something in the low-energy region (like the
dip-bump structure given by the s i "& term for fixed t),
it should be qualitatively correct. So even if we do not
expect s ")+s '"' to represent the whole amplitude,
it is still interesting to notice that the s '"' term at
fixed t gives qualitative agreement. When the crossed-
channel Regge poles cannot produce any structures in
low s, we should be happy enough if they give the
average.

Our study here is an attempt to see how far it is
possible to go with the assumptions made. The lack of
full agreement with the data seems very interesting
because it is a, mes. sure (although a semiquantitative
measure) of what is missed in the model.
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Zero-Mass Bosons in S-Matrix Theory*
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Q, e describe the soft coupling of zero-mass bosons to other particles, by considering the limit of a theory
with a massive boson. With the standard 5-matrix assumptions of analyticity and crossing for four-body
helicity amplitudes, we demonstrate generally that in the limit of zero mass, a vector boson (1 ) couples
to a, conserved charge and a 2+ boson couples to the inertial mass. Bosons of other spin-parity combinations
(with the exception of zero spin) have no zero-mass soft coupling. With this technique, we not only give
a pedagogically interesting solution to gauge invariance and the kinematics of zero-mass particles, but
suggest new applications to small-mass integral-spin systems. We speculate on the application of this
technique to such problems as p universality, the Adler-Weisberger relation, and the universality of leptonic
couplings in a vector or axial-vector state.

I. INTRODUCTION

KCKNTI.Y, several authors' have studied the
question of gauge invariance and zero-mass par-

ticles in S-matrix theory, and the related subject of
small-mass mesons has also attracted some attention. '
There exist two essentially distinct methods for the
examination of the S-matrix theory of massless particles.
One approach uses zero-mass particles from the begin-
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ning and entails the construction of certain amplitudes
with the aid of the polarization four-vector of the zero-
mass particle. The assumptions of I.orentz invariance,
analyticity, and crossing are then introduced for these
amplitudes. In this approach, the principle of gauge in-
variance —invariance under the addition of the light-
like momentum vector to the polarization four-vec-
tor—is explicitly utilized. However, since it has been
shown by Weinberg and Zwanziger that gauge invari-
ance is a consequence of Lorentz invariance for zero-
mass particles, ' no new principle has in fact been intro-
duced. This method has further been used by Weinberg
to prove certain properties of the couplings of zero-mass
particles, such as conservation of charge and the equiv-
alence principle.

' D. Zwanziger, Phys. Rev. 133, B1036 (1964); S. Weinberg,
ibid. 135, B1049 (1964).


