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Validity of the Balizs Method*

ADEL F. ANTIPPA AND ALLEN E. EVERETT

Department of Physics, Tufts University, Medford, Massachusetts OZ155

(Received 21 October 1968)

A systematic study of the Balazs method, as applied to the p-bootstrap problem in the 2x system, is made
in order to determine its validity. Inelastic effects as estimated from Regge theory are included. We Qnd
that the method becomes well-behaved as the number of poles used to approximate the left-hand cut is
increased, in contrast to results obtained previously by Bond, and that the sensitivity of the solutions to the
choice of matching point may be largely eliminated by a procedure proposed by Williamson and Everett.
The method predicts a p mass of somewhere between 680 and 760 MeV as compared to the experimental
value of 750&25 MeV, and a p half-width of about 150 MeV as compared with the experimental value of
about 50 MeV.

I. INTRODUCTION
' 'N a series of papers' ' (hereafter referred to as BI,
~ ~ BII, and BIII) Balazs developed an approximation
procedure for doing bootstrap calculations with partial-
wave dispersion relations at low energies. The main
features of the method are the following.

(i) The partial-wave amplitude is represented by
the E/D method. The numerator function is approxi-
mated by a series of pole terms whose positions are deter-
mined by the kernel of the integral equation for the
numerator function and whose residues are deter-
mined by requiring that the partial-wave amplitude
and. n 1of—its derivatives, as given by the S/D
equations, be in agreement, at some matching point vp,
chosen in between the right- and left-hand cuts, with
the expression for the partial-wave amplitude and n —1
of its derivatives as obtained by projection from a fixed-
energy dispersion relation for the amplitude. n is the
number of poles approximating the numerator function,
and v is the square of the c.m. momentum. This proced-
ure differs from the usual approximation of the numer-
ator function by a series of poles in that the pole posi-
tions and residues are not arbitrary parameters. On the
other hand, it has the usual advantage of decoupling
the X/D integral equations. Also, some account is
taken of the distant parts of the left-hand cut.

(ii) At high energy in the t channel, the absorptive
part of the amplitude is obtained by a Regge representa-
tion. This avoids the need for a cuto6 in the dispersion
integral and takes into account the high-energy contri-
butions to the amplitude.

(iii) A method for calculating the inelasticity con-
stant EP(v), the ratio of total to elastic partial-wave
cross sections, by using the Regge theory is given. This
allows the incorporation of high-energy contributions to
the amplitude in the 5 /D equations without making the
elastic approximation.

A number of papers, some discussing the validity of
the Balazs method and others using it, have appeared. ~7
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The threshold and asymptotic behavior of the partial-
wave amplitude is factored out of the S/D equations
by Balazs, in BIII, Eq. (1), in the following manner:

with
AP(v) = v'(v vx)' 'H—P(v)-

HP(v) =EP(v)/DP(v) .
' M. R. Williamson and A. E. Everett, Phys. Rev. 147, 1074

(1966).
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136, B1760 (1964); K. Igi, Phys. Rev. Letters 21, 184 (1968).
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Most of the papers discussing the method find a strong
sensitivity to the matching point vp. After a systematic
study of the Balazs method, Bond' concluded that the
method is totally unreliable, at least in one-channel
bootstraps, partly because of its sensitivity to the
matching point, but even more because of its extreme
sensitivity to e, the number of poles used to approxim-
ate the left-hand cut. Williamson and Everett' (here-
after referred to as WE) proposed a method for alleviat-
ing the sensitivity to v+, their calculation employed a
simplified version of the method in which inela, stic and
high-energy eGects were ignored. In this paper, a
study of the Balazs method, mostly as applied to the
problem of the p bootstrap, is made, and it is found that
the method gives reasonable results when used in con-
junction with the WE criterion for choosing vp. In
particular, we find that the method is not unduly
sensitive to the number of poles approximating the left-
hand cut. We will first sketch out the Balazs method,
then show that solutions which are continuous well-
behaved functions of the parameters exist, and finally
show that the WE criterion holds not only in the simple
two-pole approximation where it was 6rst applied by
WE but also for the two-, three-, and four-pole cases
in the more elaborate version of the method used in
this paper. As a result, it seems reasonable to hope that
the criterion will hold in general.
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n

X&z(v) =p
'=) (v+m;)

(3)

and the denominator function can then be written as

In this paper we will consider only /= 1. However, for
the sake of generality we leave the factor (v—vzr)' ' in
Eq. (1). For l/1, this factor corrects the asymptotic
behavior at the cost of introducing an artificial singu-
larity at v= v~.

The integrals for the l)//D equations and partial-
wave amplitude in the vr-~ problem are given in BIII,
and we refer the reader to them rather than repeat
them here. %e will only present the final results for
general values of l in an n-pole approximation. The
numerator function E(z(v) is given by a series of pole
terms

of the t-channel low-energy resonances, and is given by

4
A(z(»(v)= —P Pzz,.(2l;+1)1';v;('(v;—v )' "

XPi,. 1+ i 1+ . 10

In Eq. (10) each set (v;,I';,I;,I;) describes the c.m.
momentum squared, the reduced half-width, the angular
momentum, and the isospin of a low-energy resonance
whose contribution to the amplitude is included. In
our work, we kept only one term in the above resonance
sum, corresponding to the p resonance with (va, l'&&, 1,1).
The half-width in the variable v; is connected to I'; by

(Av, ) = [v;/(v;+1)]'"v *(v;—vzr)'-'*I';.

Dr (v) = 1+P C&z'(v) f&z*
i 1

where, in an approximation discussed below,

(4)
Equation (10) is based on a narrow-width approxima-
tion for the resonances, in which we take

ImP, '(v) = ~1'z'b(v —va) .

C ((z)=vL(v —»)/—~j
X{I&'(v,0)+[R('(vz&) —1)I('(v, vz&) ), (5)

with
00

/ v
i 1/2

I)'(v,y) = dv'(
Ev'+1

X
, , (6)

(v' —v,) (v' —v) (v'+w~) (v' —va)' '

v~ is the point of separation between the low- and high-
energy regions in the t channel, and vp is the subtraction
point. For non-negative integer and half-integer values
of I, Eq. (6) can be integrated in closed form; otherwise
numerical integration is required.

An estimate of R( (v), the ratio of total to elastic
partial-wave cross sections, can be obtained following
the procedure of Balazs in BIII, Appendix A. For
integer / it is possible to obtain an analytic solution for
R(z(v). The complete expression is somewhat compli-
cated and for reasons of space will be omitted. However,
asymptotically we have

R&z(v) = 2nev ln(2v)/o„, z(&a), . (1')

where &&=slope of the Pomeranchuk trajectory, and
0&,&z(v) is the total &z-&z cross section in the I channel.
To obtain Eq. (5) we set

R&z(v) = 1 for v( vz&

R&z(vz&) =for v& vz).

The partial-wave scattering amplitude as given by
projection from a fixed-energy dispersion relation is
separated into two parts.

A &z(v) =A( (L& (v)+A(z(a (v) . (9)

A(z(~)(v) represents the contribution to the amplitude

A&z(zz)(v) represents the contributions to the ampli-
tude of the s-channel Regge trajectories and is given by

A,z(~)(v) =g X,(I)j Vj4

(2v ) lj &+tj(v vz—) —
(11)

lz l+ ez(v vz)

where each set (v;, v.;,E, ,p;) belongs to a trajectory of
isospin I whose contribution to the amplitude is to be
included. In Eq. (11),

(2l;+1)I'(l,+x2)1'(1+1)
E, (t) =—

2'-'z+'I'(I +1)1'(1+3)
(12)

P; is the residue function, and the trajectory is given by

Rel=f, +e;(v vz). — (13)

B( (v)= v 'A&z(v). (14)

In our present work we kept only one term in Eq. (11)
corresponding to the top-lying Regge trajectory in the
I channel; which for I=O is the Pomeranchuk tra-
jectory, and for I=1 is the p trajectory.

As mentioned earlier, the residues f(z' in the numer-
ator function are determined by requiring that Eq. (1)
and n —1 of its derivatives hold at a point vp located in
between the right- and left-hand cuts, where in Eq. (1)
the left-hand side is understood to be given by Eqs.
(9)-(11) and the right-hand side is given by Eqs.
(2)—(6). For noninteger I, Eq. (1) and its derivatives
are complex in between the cuts due to the factor
v' since v is negative there. On the other hand, both
X&z(v) and D(z(v) are real in between the cuts. Thus it
is convenient to factor v' out of Eq (1) when .determin-
ing the residues. We define the function B&z(v) by
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Equation (1) can then be written as

BP(v)DP(v) = (v vr—r)' 'N—P(v') . (15)

Evaluating Eq. (15) at the matching point vr and
making use of Eqs. (3) and (4), we obtain

Z &rr'(~r)f(r'=&P(~r),

where

If we define the n-colurrins F and 8 by

db 1J3 r(V)

dvk-j.

and define the n)&n matrix S by

dk—lg '( ),

V~V JP

then Eq. (16) and I—1 of its derivatives can be sum-
ma, rized by the following matrix equation:

(20a)
with the solution

Ii=S '8. (20b)

The determination of the numerator-function pole
positions zv; will be discussed in Sec. IV.

It should perhaps be pointed out that the inclusion
of the direct (s) channel p-trajectory contribution in
Eq. (11) is in no sense an abandonment of the "boot-
strap" approach. The basic assumption of this approach
is that the exchange forces in the crossed channel
generate the pole in the partial-wave amplitude. That
is to say, when the partial-wave amplitude is written
in the X/D decomposition, the resonance occurs be-
cause the denominator function develops a zero without
the necessity for the introduction of a CDD (Castillejo-
Dalitz-Dyson) pole. When this is true, the resonance
parameters can, hopefully, be determined self-consist-
ently, without the introduction of arbitrary parameters,
whereas two arbitrary parameters accompany the intro-
duction of a CDD pole. It is the question of whether
or not there are arbitrary parameters which is basic in
determining whether or not one has a bootstrap. The
presence of the s-channel trajectory in Eq. (11) does
not, in principle, introduce arbitrary constants; the
p parameters are still susceptible of self-consistent
determination. The assumption of a P&' behavior for
the I=1 amplitude at large t does not automatically
force a pole in the l = 1 partial-wave amplitude at s= s~,
where n(sr)=1, and, in fact, this happens only for a
single well-defined value of s& determined by the self-
consistency conditions. The inclusion of the large-t
contribution to the fixed-s dispersion integral, as given
by Eq. (11), which will be present if there is an s-

channel resonance, means that one has a higher degree
of self-consistency in the solution, because the input
t-channel absorptive part at high t as well as low t is
approximately consistent with the s-channel output.
One parameter is introduced, namely, the slope of the
p trajectory in Eq. (11). In principle, one might hope
to determine this also by considering the output partial
waves for other values of l than /= 1. In this paper, we
do not attempt this elaborate calculation, and confine
ourselves to taking a reasonable empirical value for this
slope.

III. VALADITY OP BALLZS METHOD

It has been pointed out that the Salazs method is
sensitive to the position of the matching point vp.~'
A method for alleviating this shortcoming has been
suggested by WE, who give a criterion for choosing an
optimum matching point, or range of matching points,
by a natural extension of the Salazs method. Balazs
requires that both forms of the partial-wave scattering
amplitude (the one given by the X/D equations, and
the one given by partial-wave projection of a fixed-
energy dispersion relation for the scattering amplitude)
and n —1 of their derivatives be equal at some point vp

in between the right- and left-hand cuts where the
expression for both amplitudes is valid. There are no
other restrictions on vp except that it should not be too
near to any branch point. The WE criterion is to choose
the vF that makes the nth derivatives also equal at vp,
or equivalently (as would be evident from a Taylor-
series expansion of both forms of the partial-wave
amplitude) the vF that produces the best fit between
the two forms of the partial-wave amplitudes over
their mutual range of validity [vz,0], where vz is the
limit of the I,ehmann ellipse. ' Even if a vp that forces
the nth derivatives to be equal cannot be found, a
choice of vp can still be made on the basis of the best-fit
criterion. WE applied their criterion to a simplified
two-pole case of the p bootstrap without high-energy
sects included and obtained good results. ~ We find the
criterion to be also valid in the two-, three-, and four-
pole cases in the present calculation. Specifically, we
find that in the range where the matching of the partial-
wave amplitudes is insensitive to variations in vr (thus
not allowing a choice of one value of r s over another)
the bootstrapped values of vg and I'~' are also insensitive
to variations in vp. On the other hand, for ranges of vp
where (va, i'r') are sensitive to changes in vr, we find
that the matching of the partial-wave amplitudes is
also sensitive to vg. In other words, whenever there is a
need to make a choice between values of vy, a choice
can be made.

In addition to the problem of sensitivity to vt:,
Bond' failed to find any solutions for the p-bootstrap
problem for the three-pole case, and concluded that the

I J. LehmMIn, Nuovo Cimento 10, 579 (1958).
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n-pole approximation, i.e., n —1 pairs of values (vn, l'~')

which, when used as input, give rise to an output p
with very nearly the same mass and width. These group
themselves into what we call series of solutions. That
is to say, it turns out that one of the solutions in both
the three- and four-pole cases leads to self-consistent
values vg and I'~' which are similar to the values
obtained in the two-pole case. Ke refer to this set of
solutions, which are slowly varying with n, as series I.
There is another pair of solutions, consisting of the
second solution for n =3 and one of the remaining n =4
solutions, which are quite similar and which we refer
to as series II, while it is natural to conjecture that the
third solution for n=4 is the first member of a third
series. The self-consistent values of vg and I'~' for the
three series of solutions are given, as functions of vp, in
Figs. 1 and 2 and in Table I. In seeking self-consistency,
the output value of vz is defined by

ReDq'(vn) =0.
I'ic. 1.The two series of solutions for the three-pole approxima-

ation with {m;}= (7.3, 13, 60), e =0.05, R1 =3, vD=20, uII= —2,
I=1, and l=1.

solution obtained in the two-pole case is coincidental
and therefore meaningless. We have already shown how
the WE criterion solves the problem of the sensitivity
to vp. As for the sensitivity to n, we disagree with
Bond's conclusion, and have been able to find solutions
for all values of n tried, i.e., for n= 2, 3, 4.

For the values of n considered we have found, in
fact, that there are n —1 solutions for the case of an

The output width is obtained from

Er'(vz)

8 ReD, '(v)/av
~
„=„„

(22)

where, for simplicity, we make a linear approximation
for the denominator function

ReDq'(v) = (v—vg)/(vo —v~) . (23)

For completeness, we show in Fig. 3 plots of the output
total cross section for the I=1, /=1 partial wave ob-
tained from Eqs. (1)—(6) for the two-pole solutions
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TABLE I. The o—1 series of solutions of {vz,F&') versus vz for an e-pole approximation. m=2, 3, 4. The parameters are I= 1, /= 1,
vv=0.05, E& =3.0, vn=20, vz= —2.0, (a,{at;)l=(2,{8,35)), (3,{7.3,13,60)), and (4,{6.8,9.5,19,105)).

vg =—6.0 vp= —5.0 vy = —3.5
vR

vy = —2.0 Series
No.

2
3
4
2
3

2
3
4

6.40»
5.85
5.60

~ ~ ~

9.95
7.70

~ ~ ~

10.83

0.518»
0.432
1.371

~ ~ ~

0.385
0.395

~ ~ ~

0.300

6.41.
5.60»
5.41

9.15

0.517.
0.500.
0.605

0.394

6.32
5.63»
4.93.

7.00

0.515
0.500»
0 555»

0.417

5.81 0.510 I
I
I
II
II
II
III
III
III

» These are the values of vz and 711 for optimum values of vz, judged by the WE criterion as discussed in the text, for the corresponding value of 28.

with three diferent values of vp. The output values of
vg and F~' obtained from these curves are very close to
those obtained from Eqs. (21)—(23).

One would, of course, like to have some criterion for
choosing between the diGerent series. In this case, the
solutions which correspond most closely to the physical
p are those of series I, the series which includes solutions
for all values of n; it is not clear, however, that this
need be true in general. In this case, however, we can
again make the choice on the basis of the WE criterion.
From Fig. 4 it is seen that in the three-pole case the
matching of the third derivatives of the two forms of
the partial-wave amplitude for series I is superior to
that of series II for all va, lues of vp for which a solution
exists. Similarly, in the four-pole case, one Ands the

matching of the fourth derivatives for series I is again
much better than for series II and far superior to that
for series III. These results are closely related to the
fact that the solutions for series II and III exist for only
a rather limited range of v~. Hence the WK criterion
does give one a basis for choosing the solutions that
correspond most closely with the physical situation.

Experiments give a value of 6.2&0.4 for vs (in units
with k=c=m„+=1) and we see from Table I, series I,
that for v=2 the theoretical value of vg is somewhat
nearer to the experimental value than for n=4, On the
other hand, the agreement of all three values (n= 2, 3, 4)
with experiment to within about 10% in mass is
certainly satisfactory, considering the approximations
in the method.

e t I I I I I I I I I I I I l

~l a
I

r

-Q3-

"O.I-

I'
I-r &AS-

IO

Fxo. 3. Plot of the total partial-wave cross section for I=1 and
/= 1, n=2, zvg=8, es ——35, e, =0.05, E1 =3, v~=20, and vo= —2.
The output values of (vR,F1') obtained above are very near to the
input values as given by Table III. The cross section is given by
Eq. {34)with A&~(v) given by Eqs. (1)-(6).

-6 -4
IlATCHINO POINT VF

FrG. 4. Third derivatives of the two forms of the partial-wave
scattering amplitude at the matching point. The other parameters
are the same as in Fig. 1.
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Fio. 5. The position of the poles approximating the left-hand
cut for n=2 as a function of v. (a) v@=9; (b) vg=6. 2, which is
the average experimental value; and (c) vg =4.

There are two reasons that may account for Bond's'
having failed to obtain the solutions for the case n=3.
The Grst one is that as n increases the output value of
sz becomes extremely sensitive to the input value of
vg, especially in solutions of series I. This necessitates
a very fine search in v& in order not to miss the solution.
At first sight this may seem to be a shortcoming of the
method, but since the value of vg varies smoothly with
n, one can first obtain solutions for the case n=2,
which are very easy to find, and then move by values
of An=1 to any value of n desired. At each step the
range in which v~ need be varied is thus considerably
restricted. On the other hand, sensitivity to the input
value of v~ is an advantage because it makes the pre-
dictions of the method clear cut and sharp.

A second reason why no solution for the case n=3
was found in Ref. 6 may be a modification introduced
there into the Balazs method. Instead of requiring the
two forms of the partial-wave amplitude and n —1 of
their derivatives to be equal at a matching point vF,
the two forms of the partial-wave amplitude are re-
quired to be equal at n points zF, , i=1, -,n. This
simplifies the algebra considerably, because it does
away with the necessity for taking derivatives. But,
on the other hand, it makes any attempt to study the
sensitivity of the solution to variations in {vF,.) a very
complicated problem because now there are n values
of vF,. to be varied rather than one. It seems to us that
the variations of {vp,.) tried in Ref. 6 correspond to a
small variation in vF, when the method of matching

derivatives at one point is used, about the point vF = —2.
From our results, Figs. 1 and 2, we find that for n=3
there is no solution for vF& —3, while for n=4 a
solution exists for vF = —2, accounting for the fact that
Bond found a solution for n= 4, but not for n= 3.

We may remark in passing that it does not seem to
us to be disturbing that a solution in the three-pole
case cannot be found for all values of vF. Because of the
approximate nature of the method, there is, in fact, no
reason for demanding exact equality of the two forms
of the amplitude and their derivatives at any point.
What can be required is that the two forms of the
amplitude should be quite similar to one another in
their common range of validity. One convenient way of
achieving this may be by demanding exact equality at
one point, but this requirement is no more than a
convenient device for obtaining solutions in which the
two forms of the amplitude are reasonable fits to one
another. Since, by imposing an exact matching condi-
tion at vF ~ —3 we are able to obtain solutions in
which the two forms of the amplitude are in reasonable
agreement throughout their common region of validity,
including the range v& —3, we do not believe that the
failure to find solutions in which they are exactly
matched at some vF& —3 represents a failure of the
method.

SOG I I I I I I I I I I I l

Wg

20-
R
I

8
O
4 e-

pg 5- Wl
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Fro. 6. The position of the poles approximating the left-hand
cut for m =4 and vg =5.5 as a function of v.

IV. SENSTIVITY TO PAXUQVIETERS

There are many parameters in the Balazs method,
but all of them can be at least partially determined.
The number of poles, n, approximating the left-hand
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cut should a priori be taken as large as is convenient.
Ke have already considered the optimization of the
matching point vp and consider it further below,
together with the other parameters in the I=1, /=1
problem, i.e., the p bootstrap. A central set of pararn-
eters about which variations are considered is n=2,
wI=8, wI=35, vg&=20, RI (vo)=3, vo= —2, I,=0.05,
and vp= —3.5, all in units of h= c=vs += 1.

A. Kernel Approximation

The main step in the Balazs method that decouples
the integral equations for X~'(v) and DI (v) is approxi-
mating the kernel in the equation for the numerator
function by an interpolation formula such as

1 G;"($)
(24)

1+xv I=I 1+x;v

in the interval 0&&x &~(1+vs) ', where it can be shown
that

G;"(x,)= 5;;.

A convenient choice for G,"(x) is

I I I

50"

20"

+ lO-

X

5
v
6

2-

IO"

0,5-

Q,l I I I I I I I I I I I I I I I I I I
2 5 I 20 IO NO 200 IOO

Fro. 7. Rg~{v)ot t~(v) as a function of v for several values of l.
Ri~{v) is the ratio of total to elastic partial-wave cross section.
Pomeranchuk slope used is 8&=0.05.

This is equivalent to approximating (1+xv) ' by a
polynomial T„ I(x) of degree n 1; the x—;, i= l, ,n,
are then the n roots of the polynomial of degree n
given by

T g(x)(1+xv) —1=0. (2&)

This approximation leads to the following form of the
numerator function:

with

Il
XI'(v)= Q

v zo;

Ks= Xg.—1

(28)

(29)

TABLE II. Variation of (VR,rl') with (z l,m2) in the two-pole
approximation. The parameters are m=2, e, =0.05, Rl' ——3.0,
VD=20, vp= —2.0, vg= —3.5, I=1, and /=1.

xI = 5.0 m I ——6.25
K2 VR rl VR r

ze 1
——8.0 2f 1 ——15.0

VR r
20 3.74 0.671 4.71 0.659 5.65 0.641 7.62 0.550
35 4.02 0.546 5.27 0.541 6.32 0.514 8.63 0.452
50 4.12 0.473 5.83 0.480 6.57 0.444 9.23 0.398

100 4.39 0.374 5.88 0.375 7.22 0.358 10.00 0.312

From the above discussion it is clear that the pole
positions m; are functions of three parameters, n, v, and
the range of matching LO, (1+vs) 'j. Hence to be
explicit we should write instead of Iv;, Iv;(n, v, vs) The.
variations of zv; with v, v~, and n are shown in Figs. 5
and 6. In order to produce a completely self-consistent
solution, as the input vg is varied in search of a self-

consistent vg the pole positions m; must be varied
correspondingly. The variation of m; with v is not too
large as can be seen from Figs. 5 and 6, but there is no
consistent way of handling it within the Balazs method
as it now stands. m; is usually evaluated for v around
vv. In the present paper we have used Iv;(n, —2,5.5).
This leads in the two-pole case to m~=8 and m&

——35.
Balazs uses m~=6. 25 and m2 ——50, which are values
corresponding to v= —2 and vg=3.5. Table II shows
the variations of (vs, l'I') with (wI,wI). The table is a
little misleading because, as Figs. 5 and 6 show, for a
given vg the pole positions are allowed small variations
which are not nearly as large as those shown in Table
II.

B. Inelasticity

Inelastic effects are introduced into the problem
through two parameters: v~, which is the point of
separation between the high- and low-energy regions,
and RII (v), which is the ratio of total to elastic partial-
wave cross sections. For v& v~ the amplitude is approxi-
mated by low-energy resonance contributions, and for
v& va by a Regge representation, thus including high-
energy contributions to the amplitude. RII(v) appears
in the integrand of the denominator function. It is
possible to include the full functional form of RI (v) as
given by the Regge representation in the integrand and
evaluate DIr(v) numerically, but for simplicity we set
RI (v) = 1 for v& vn and RI (v) =RI (vo) for v&~ vn.

The variation of RII(v) with v as given by the Regge
representation is shown in Fig. 7; for completeness, we
show its behavior for several values of l. For l=1 and
v) 20, RI'(v) is suffIciently slowly varying that Eq. (8)
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should be reasonable. Asymptotically, R&r(v) is inde-
pendent of / and proportional to e~, the slope of the
Pomeranchuk trajectory, and increases logarithmically
with v as can be seen from Eq. (7). For all v) vo,
Ri (i) ~ I/cr«ir(v). Since o«tr(v) is not known with any
degree of accuracy, it was found convenient in Fig. 7
to graph o«ir(v)Rir(v) rather than Rir(v). The units
are h=c=m +=1, so that 0.=1 corresponds to 20 mb.
In our calculations we have set o«~r(v)=o«&r(~) for
v) vn, and we have used a value of 0.75 for o«i'(~)
which corresponds to 15 mb. o«&r(~ ) may be shown to
have approximately this value on the basis of the
factorization theorem. For e~ we used a value of 0.05
which Balazs finds to be self-consistent. The Pomeran-
chuk trajectory seems to have in fact a much Ratter
slope than that. ' But our use of a sharply rising tra-
jectory should compensate in part for the smooth
functional form we assumed for the Pomeranchuk
residue function where we set P(s) = const)& v t', while

TABLE III. Variation of (vg, FI ) with (vz, EI ). The parameters
are I=1, /=1, m=2, vI=8, m2 ——35, ~,=0.05, vD ——20, and
vQ = 2.0.

vp = —5.0 vg = 3.5 vg ———2.0
EI Vg FI Vg FI V~ FI

5.28 6.32 0.318 6.26 0.317 5.80 0.314
3.00 6.41 0.517 6.32 0.515 5.81 0.510
1.00 6.38 1.13 6.28 1.12 5.80 1.08

%'. Rarita, R. Riddell, Jr., C. Chiu, and R. Phillips, Phys.
Rev. 165, 1615 (1968).

in fact P(s) seems to be much more rapidly changing
than that. '

Figure 8 shows the dependence of (va, i'i') on vn. As
expected, we find that as the eGect of inelasticities is
reduced (vn increased) the reduced half-width I'i' is
increased, and the p mass is decreased slightly, but is
quite insensitive to the change.

Decreasing Rir(v) has, of course, the same qualitative
effect on (vii, l'& ) as increasing vn. This is shown in
Table III, where (va, l'i') are given as functions of
(Ri (v),vv) in the two-pole case. We note that I'i' is
almost independent of vp and increases with decreasing
RP, while s ~ is abnost independent of R~ and increases
with increasing

~
vv~. Bond' also finds I'i' to be in-

sensitive to vp in the special case of neglecting inelastic
e8ects. He finds F&'=1, which is essentially in agree-
ment with our results for s~~~, as seen from Fig. 8.
The small discrepancy is due to the difference in the
numerical values of our parameters and those of Bond.
The three values of R~' tried in Table III are R~' ——5.28,
which is the value used by Balazs in BIII, R&' ——3.0,
which is the value we use throughout this paper, and
Ri'= 1.0, which excludes inelastic eGects in Di'(v).

The discrepancy between our value of Ri'(vD) and
that of Balazs is due to a missing factor of 2/s in the
derivation of Appendix A of BIII. It seems to us that
Balazs evaluated Ri'(vn) for o«ii=0. 75 and vn=18. If
he had used v~=20, which is the value we use, he
would have obtained R~'= 4.85, which, when multiplied
by the missing factor of 2/ir, gives Ri'=3.0. Of course
the value of Rj' is, in any event, uncertain because
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of lack of knowledge of the parameters ep and 0t tr (~ ).
In his Erratum to BIII, Balazs mentions that the value
of Ri' should be multiplied by a factor of 4/n. because
of an extra factor of ~ introduced in the Pomeranchuk
residue function as given in the Erratum,

p(0) = —~~,'/(g~') .

Ke disagree with this result and find

p(O) = ~~—,'/(4~')

C. Sensitivity to vF and vo

We studied the sensitivity to vF and vo in the I= 1,
l= 1 channel of the m-~ system, that is, the p bootstrap.
(For /=1 there is, of course, no dependence on vir. )
In the two-pole case we find the matching of the two
forms of the partial-wave amplitude is good and is
insensitive to vF in the range —6~& vF~& —4. In the
same region (vz, Fi ) is also insensitive to vv, while for
vF & —4 there is a sensitivity to vF in both the matching
of the partial-wave amplitudes and the value of (vs, Fi').
From Fig. 9 we see that the partial-wave amplitudes are
better matched for vF = —3.5 than for vF ———2.0. From
graphs similar to these for vF= —5.0 and vF ———6.0 we
come to the conclusion that in the two-pole case vF

should be taken less than —4, giving a value of v~ ——6.4
and F&'=0.52. A similar study for the three-pole case
shows that vF= —5.0 is far superior to vF ———6.0 but
almost indistinguishable from vF = —3.5 as far as
matching partial-wave amplitudes is concerned. From
Table I we find that, for I=3, (v~,Fi') are the same
for vF = —3.5 and vF = —5.0 but have a slightly diGerent
value for vF= —6.0. Thus for the three-pole case we
choose vg ——5.6 and F~' ——0.5. The matching of the
partial-wave amplitudes for the four-pole case is shown
in Fig. 10, and it is clear that vF ———3.5 is to be preferred
over vF= —5.0 and vF= —6.0, thus giving a value of
v~=4.9 and F~'=0.55.

The alternative form of the WE criterion where the
optimum vF is that which forces the nth derivatives of
the two forms of the partial-wave amplitude to be
equal gives the same results as above for the case n= 2
and 3. For the two-pole case the second derivatives are
exactly equal for vF= —4.5 and are well matched for
the range —6(vF( —4, while for vF& —4 they are
not as well matched. The results are shown in Fig. 11.
For m=3 the third derivatives are equal for vF= —4.6
and are well matched for the range —3.5& vF& —5.0,
while for —5& vF& —6 they are not as well matched.
The results are shown in Fig. 4. For the four-pole case
the fourth derivatives are not equal at any one point
but are well matched over the entire range —6~vF
& —3.5 making a choice of vF based on this form of the
WE criterion impossible, and more information is
needed before a choice can be made. In fact, from Table
IV we see that even matching of the fourth derivatives
over the range —5.5&v& —0.5 for each vF does not
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Fzo. 9. Matching of the two forms of the partial-wave
scattering amplitude. {a) vF= —3.5; {b) py= —2. The parameters
are the same as in Fig. 3.

provide a criterion for choosing an optimum vF. Thus
we have to resort to the criterion of matching the
two forms of the partial-wave amplitude discussed
ea,rlier which gave strong preference to vF ———3.5 over
vF= —5.0 and vF ———6.0.

Bond' gives a general proof showing that the boot-
strap equations are independent of the subtraction
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D. Sensitivity to Degree of Self-
Consistency Required

In searching for self-consistent solutions, one must
make an arbitrary decision concerning how close an
agreement one will demand between input and output
values. In view of the approximate nature of the
method, there are no grounds for demanding exact self-
consistency even if it could be obtained. Corresponding
to the range of output values one is willing to accept
for given input values, there will be a range of values
of vg and 1 ~ which one will consider as giving accept-
able bootstraps. In our calculations we considered the
pair (vg, F~') to be a solution if the input and output
values were equal to within about 2%. Relaxing this
restriction to about 5% has negligible effect on the
possible values of v& because of the sensitivity of the
bootstrap calculation to the input value of vg mentioned
earlier, but allows one to choose F~' anywhere within a
range of about &10% around the values given in Table
I. Hence these values should be considered to have
uncertainties of roughly 10%.
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V. CONCLUSION

From the above discussion we see that the Balazs
method is a very convenient scheme for doing partial-
wave bootstrap calculations at low energies. It includes
high-energy contributions to the amplitude, and avoids
the need for a cutoB in the integral equations. Also, it
does not require the solution of simultaneous integral
equations or the introduction of free parameters. At
the same time it gives reasonable results. In the p-boot-
strap problem we 6nd that as n, the number of poles
approximating the left-hand cut, varies from 2 to 4, the
value of vg for optimum matching point v~ varies from
6.4 to 4.9, corresponding to a variation of the p mass
from 760 to 680 MeU, as compared with the experi-
mental value of 750&25 MeV corresponding to van=6. 2

I-6 I-4
MATCHING POINT Vi

FIG. 11.Second derivatives of the two forms of the partial-wave
amplitude in the two-pole approximation with the parameters of
Fig. 3.

&0.4. For the same variation in n, the reduced half-
width in v varies from 0.51 to 0.55, corresponding to a
variation in the p half-width in energy from 155 to 141.
MeV as compared with the experimental value of
about 50 MeV. Since most bootstrap calculations give
too large a value for the width, the results obtained
above do not represent a shortcoming specific to the
Balazs method.


