
PHYSICAL REVIEV VOLUME 178, NUMBER 1 5 F K BRUAHY 1969

Towards an Accurate Wave Function for Positronium Hydride'a
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A variational wave function for the ground state of positronium hydride is presented. The
wave function is considerably more accurate than any previously reported. The only simpli-
fications used are (a) only kinetic and Coulombic potential energy terms are included in the
Hamiltonian, p)) the motloIl of the proton 18 ignored, Rnd (c) the nucleus-positron distRnce 18
exclUded froIn the wave fUnctlon. The last assumption 18 the major SOUlce of error but lt
enaMes us to evaluate all integrals exactly. Several trial wave functions are examined, the
one giving the lowest energy being an open-shell exponential function times a 12-term power
series through second-degree terms in the five reInaining interparticle coordinates. Pos-
itronium hydride is found to be stable with respect to separation into hydrogen and positronium
by at leRst 0.657 eV. The annihilation 1Rte for two-photon events is fouIld to be 2.095 nsec
for the trial wave function giving the lowest energy, and 2.265 nsec for the trial wave
function which most nearly satisfies the positron-electron cusp condition. A search for
bound excited states of PSH and. a bound state for the system e+ He was unsuccessful.

1. INTRODUCTION

A number of reviews' 2' indicate that positron
annihilation xnRy px'ove to be useful, 1Q chemical
physics and chemistry, as it already is in solid-
state physics. Specifically, it appeaxs that the
positron may serve as an accurate probe of the
momentum distribution of electrons bound in
atoms Rnd molecules, px ov1ding ce1.tain technlcR1
diff iculaties can be overcome. One of these is the lack
of a reliable method for calculating annihilation
properties of atoms and molecules interacting
with positrons. %ithout such a method nonempiri-
cal prediction and interpx etation of annihilation
properties ls impossible. (Empirical correlation
of annihilation properties with other properties of
a moiecule is of course presently possible. ")

The annihilative lifetimes of the most unstable
systems are -0.1 nsec, which corresponds to an
uncertainty in the energy of -10 ' eV, a tiny fx'ac-
tion of chemical binding energies and even of thex'-
rnal enex'gies. Therefore it is reasonable to in-
vesti. gate the, structure of positron-atom and posi-
tron-molecule complexes using an RpproximRte
method which ignores interactions coupling photon
and positron-electron fields, and then to include
the coupling as a perturbation, thus obtaining the
annihilation parameters in first order. Conse-
quently, systems of interest can be treated with
nonrelativistic Schrodinger wave mechanics, and
Chang Lee" and others have shown that all the
significant annihilation pxoperties can be calculated
by evaluating integrals involving operators and
e1genfunctloQS 1Q conf lgux'Rtlon space+

A positx on interacting with an atom or molecule
is either bound to it or is scattering off it as
either a fxee positron or a positronium atom. An-
nihilation from scattering states is always pos-
sible and probably dominates for most systems;
but annihi. lation from bound states is evidently sig-
nifi. cant for many systems, and this mechanism
must be included in any scheme of interpretation
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which is complete and accurate. These two kinds
of mechanisms require rather different treat-
ments within the Schrodinger picture, but they
have in common the need for accurate calculations
on some simple systems. Such calculations are
useful even if the methods employed are not ex-
tensible to more complex systems, for the re-
sults obtained then servq as standards of com-
parison for assaying the accuxacy of other methods
which are extensible. Experimental results are
spRx'se.

The simplest system consisting of nuclei, elec-
trons, and R positron. is a positron plus a hydrogen
atom. This system has been the object of serious
calculations in several dozen publications (we es-
timate about 35). However, it does not have a
bound state, " " so its utility as a standard com-
parison system is limited to methods which seek
to understand annihilation of scattering positrons.

Our interest at present is in the mechanism for
annihilation from states containing bound posi-
trons, "so an accurate calculation on a bound sys-
tern is needed. The simplest system which con-
tains nuclei, electrons, and one positron and
forms a bound state is positronium hydride, PsH,
which is the subject of this paper. It has been
considered by other authors in several calculations
which are less extensive than those reported
here. '0 " It has not yet been observed.

Of course, the positronium atom Ps is an even
simpler system and also has bound states, but
the absence of nuclei and the lack of purely inter-
electronic forces make it a poor comparison sys-
tem for our purposes. However, some features
of its simple structure have significant implica-
t1ons for our study. The trielectron e, ~+ and
quadrielectron or positronium molecule Ps, are
also known to be bound, 3'~36 although neither has
been observed.

Some authors have suggested thRt RQQ1hilRtloQ 1Q

ionic crystals takes place mainly from a bound
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system comprised of a positron and an anion. In-
deed, severaP'~" sets of observations shorn the
lifetime for 2y events in alkali halides is roughly
independent of the cation but varies with the anion. 39

More recent experiments" 4' and calculations~~
show that the suggested mechanism does not afford
a quantitative explanation of the observations, and
indeed that structures like positronium halide may
play no significant role in annihilation in alkali-
halide crystals. Our interest in PsH springs
from its use as a primitive example of a positron-
molecule complex„and not from any supposed
connection with annihilation in alkali-hydride crys-
tals.

Assuming an infinite nuclear mass and ignoring
relativistic effects and all but Coulombic interac-
tions, we have the Hamiltonian

X= ——(V '+ V '+ & ') — —+—+ . +1. . . (1 1 1 1
2 1 2 p (rl r2 Y]p

+ -—+-
'

la p3
(2. 1)

where me use atomic units ~' r" = t x"- r t 1 and
gg g

2 refer to the electrons, p to the positron, and
the nuclear index is suppressed.

A. Angular Momentum

The square of the total orbital angular momen-
tum L = L1+L2+ L g) and its 8 component commute
with 3C and hence Z and MJ are good quantum
numbers in our approximation. A similar remark
holds for the spin. Following Chang Lee' s' dis-
cussion of spin angular momentum coupling for
this system, we designate the spi.n functions for
the tmo electrons as Z - where i and j are the
quantum numbers for t7ie total electronic spin
and its z component, the spin functions for the
positron as 0+„,, and the spin functions for all
three light particles as y~ ~. Coupling the spins
gives two doublets and one quartet

+x(2 ~para' = Zooo+i(2ig~r (2. 2)

where we show the electronic parentage in paren-
theses. Because of the orthogonality of the two
doublet spin functions, there is no mixing between
them in any eigenfunction of our Hamiltonian
(2. 1), showing that the purely electronic spin
quantum number Se is also good in our approxi-
mation. Using

q„„~ (ort o) = (1/3)«'Z„o„„-(2/3)'~'~„,o„„,
(2.3)

X+s(2'"(ortho) = ~i+ i&+ v 2 (2.4)

(23~2(ortho) = (2/3)~~2Z, oo~, (2+ (1/3)~~2Z, ~,oq„2,

as a term symbol, we see that the eigenfunctions
have the forms

1

Z~ (rl, r2, r )y 1,2'(para) for ' &, (2. 2')

1

O (rl, r2, r )y 1,2'(ortho) for ' I. ,(2. 3')

3

H~ (rl, r2, r )y~ '(ortho) for ' I, (2. 4')

respectively, where the functions E„G, and II de-
pend upon spacial coordinates only, and are eigen-
functions of L' and Jz as indicated. Upon con-
sidering the electronic parent of each eigenfunc-
tion, we conclude that E is antisymmetric under
the electron interchanger P», and G and H are
symmetric. Since the spin parts are factorable
in each eigenfunction, and since spin variables do
not appear in the Hamiltonian, 2& L and 4~ I. states
are degenerate. The degeneracy mould be lifted
by spin-spin interaction, which me do not consider
here.

We expect the ground state to be '~'8, although
states mith other symmetries, for example, '~'P
and '~'P, may also be bound.

g. Expansion in a Basis

1 2 1p 2p
' 12 p

(2. 6)

mhere the sum is over non-negative integral
values of i, j, k, E, m, and n; the b stands for
parameters to be determined by minimizing the
energy; and g&'& is a function which we now speci-
fy so that short expansions mill give accurate re-
sults not only for the energy but also for the anni-
hilation rate.

In regions of configuration space where two
particles are close together, the Coulomb part
of the Hamiltonian (2. 1) is large in magnitude.
If the tmo particles attract each other, the poten-
tial is large and negative, and the wave function
is large [Fig. 1, curve (a)j. If the two particles
repel each other, the potential is large and posi-
tive, and the wave function is small [Fig. 1,
curves {b) and {c)]. Therefore, we should attempt

Dropping the spin functions in the following, we
now discuss the choice of a basis representation
for E for use in the variational calculation de-
scribed below. Many have remarked on the spheri-
cal symmetry of the Coulomb field, 4' one example
of which is contained in Eq. (2. 1). This implies
that an arbitrary function of the six radial vari-
ables r1, r2, rp, r12, r1h, and r2P is an eigen-
function of L' with eigenvk1ue zero. It is also
true that these six variables are not redundant,
and completely specify the positions of the three
light particles relative to each other and to the
nucleus for 8 states. A suitable expansion, then,
and the one used in this work, is

(0}E=g Zb(xl r2 rip r2p
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FIG. 1. (a) The Coulomb "hill" for attractive particles;
(b) the Coulomb hole for nonidentical repulsive particles
or for identical fermions with antiparallel spin; (c) the
Coulomb hole for identical fermions with parallel spin,
i.e. , the Pauli hole. Plotted is an accurate wave func-
tion (solid curve), a partially correlated wave function
(dashed curve), and an uncorrelated wave function
(dotted line) versus interparticle distance in regions of
space far from other particles and from nodes in the
wave function.

to represent the wave function accurately in re-
gions where attractive particles are close together,
other regions of space being less important.

Kato" showed that the exact wave function 4 for
a system of particles interacting through Coulom-
bic forces exhibits a certain point property where
pairs of particles collide. It is

('Ie (2. 7)Bf'..
~j r =o

U

which is referred to as the cusp condition or co-
alescence condition. qg and q are the charges
of particles i and j and p, ~" is their reduced mass.
Equation (2. 7) must be modified if there is non-
zero relative orbital angular momentum between
the two particles ' or if the spin is not factorable
from the wave function. " Neither of these prob-
lems concerns us here.

Requiring our approximate wave function F to
satisfy Eq. (2. 7) does not guarantee it to be ac-
curate for small x~&, of course. However, cal-
culations with a large variety of approximate
wave functions for the helium ground state show
that, with the exception of obviously pathological
functions, there is a strong positive correlation
between the accuracy of calculated cusp values
v" and the expectation values of the operator
5/r~ —rj)." In our approximation the annihilation

properties themselves are point properties, and
their calculation involves integrals containing
delta functions between annihilating partners,
which are attractive (see Sec. 4.A). Thus, it
makes good sense to require our approximate F
to satisfy the cusp conditions (2. 7), at least ap-
proximately and at least for the attractive parti-
cle pairs.

We may proceed in any of a number of ways:
We may perform a constrained variation of the
energy by adding cusp conditions to the variational
functional with Lagrange multipliers" '; we may
calculate a first-order correction to a given F by
taking an operator involving 5(rf —r ) and/or
e/sr~& as the perturbation'~-"; and so forth. "

Our approach is simpler than any of these and
is probably fairly accurate. We simply use a
functional form for F which enables us to satisfy
the important cusp conditions exactly by a particu-
lar choice of parameters. Then the free variation
of the Hamiltonian expectation value will presum-
ably result in a good representation of F where
attractive particles collide. Relatively large er-
rors elsewhere will not affect the over-all accu-
racy of F much since it is small in such regions.

Equation (2. 7) says that in regions where parti-
cles i and j are close together and far away from
other particles which are themselves well sepa-
rated and far away from nodes of the wave func-
tion, 4 - I + v" r&

- exp(vo r~j ) but for a multiplica-
tive slowly varying function of the other interparti-
cle coordinates. The attractive pairs in our sys-
tem are the electron-nucleus and electron-posi-
tron pairs for which v" is —1 and —

2 respec-
gg

tively. Hence exp(- rl —r2 —rid, /2 —re, /2 might
serve as a reasonable g&'& in Eq. (2. 6). The
forms of P&'& used here are the open- and closed-
shell generalizations of this, namely

p "&= exp[- n(rl+ r2) —p(rl + r2 )], (2. 8a)

tt' &"&=exp(- nrl —pr2 —yrl —6r2 )0

+ exp(- prl —nr2 —6rl —yr2 ) . (2. Sb)

Z q(rl)y(r2) f-(r ) (2. 8)

corresponds to the unfavored dissociation prod-
ucts and will lead to gross inaccuracies, particu-
larly in the positronic density

p (r ) = Jdrl fdr2tE(ri, r2, r )l' (2. IO)

Our arguments for taking $t'& to be of the form
given by Eq. (2. 8b) can be stated also in simple
physical terms. The dissociation products Ps+ H
are 6. 1 eV more favorable than the alternative
products e++H . Therefore, the dominant con-
tribution in the exact (unknown) ground-state wave
function for PsH is the coupled structure: virtual
ground-state positronium, and virtual ground-state
hydrogen atom. In this light it seems clear that
representing F as the product
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and therefore in the annihilation properties as
well. While the Euler- Lagrange equations re-
sulting from the ansatz (2. 9) are particularly
simple, "~" being just the Hartree equations, the
physical situation indicates the approximation is
unrealistic.

Similar. y, if a bound excited state of PsH exists,
an important contribution to the eigenfunction is
probably virtual excited positronium, and virtual
ground- state hydrogen atom. Excited states
corresponding to the ansatz (2. 9) presume that
the positron is somehow excited relative to the
nucleus. The basis set implied in Eq. (2. 6),
where g&'& is given by Eq. (2. 8a) or (2. 8b), con-
tains all these contributions. If an excited bound
state exists, it is properly sought in the second
lowest root of the secular equation resulting from
the variation of the linear parameters in the trial
wave function.

3. ENERGY AND WAVE FUNCTION

A. Ground State of PsH

Two sets of calculations of the wave function
are presented here, one using &r&c&'& [Eq. (2. 8a}],
the closed-shell form, as P& & in Eq. (2. 6), and
one using go&o&, the open-shell form. Parameters
for g &'& are taken from the work of Neamtan et al."0 1and for Pc&'& we used n= 1 and P=-, . The coor-
dinates are scaled as described below so that the
virial theorem is satisfied.

Judging from the work of Green et al."and
others on the helium ground state, one expects
the most significant terms in the expansion [Eq.
(2. 6)] to be linear terms in the coordinates not
present in the exponential factor, namely x12 and

rp. Unfortunately, the difficulty in evaluating the
integrals (see Appendix) if arbitrary powers of
both these coordinates are included is prohibitive,
and one of them is omitted from the expansion. A
series of simple calculations summarized in Table
I indicates that x„ is significantly more effica-
cious than xp in lowering the total energy of the
system, so r& is omitted.

The expansion was then built up stepwise by in-

eluding first the constant term plus all possible
linear terms, then the constant plus linear plus
quadratic terms, and so forth, always with the
coordinate r~ omitted. Because of speed and
memory limitations of the IBM-7044 at the Uni-
versity of Iowa Computer Center, the expansion
could not be extended beyond cubic terms for the
closed-shell function and quadratic terms for the
open- shell function. The closed- shell calculation
was extended slightly beyond quadratic terms in
an attempt to obtain an energy comparable to the
best open-shell results. Results are given in
Tables II and III.

With the nonlinear parameters o., etc. , in Eq.
(2. 8) fixed at each stage in the expansion, the
energy minimization reduces to the solution of the
familiar secular equation

det(3C —ES ) = 0,
Pe Pa'

(3. l)

where p and q denote terms in the expansion in
Eq. (2. 6), and 3Cp and S~& are matrix elements
of the Hamiltonian and unity, respectively. At
each stage the virial theorem is satisfied in the
manner described by Hylleraas. " If one replaces
the arguments of a trial function r1, r2, rp by
Xr1, Xr2, Xrp then Rp& can be written

X =X2T +X V
PQ' PQ' PQ'

(3. 2)

where Tp& and Vp& are the values of the kinetic
and poten(ial energy matrix elements calculated
for X =1. The virial theorem is satisfied by giving
X the value which minimizes the desired root E of
Eq. (3. 1). This value for X is calculated by itera, —

tion, but the quantities Tp& and Vp& need be cal-
culated only once.

The lowest energy obtained for any of these
calculations is —0.7742 a. u. which indicates bind-
ing of Ps and H of 0.657 eV. The most accurate
previous wave function, that of Neamtan et al."
yielded —0.7584 a. u. , indicating binding by 0.228
eV.

TABLE I. Preliminary calculations.

Wave function

~c'"(1+b~»)
&c'"(1'b p)
Cc'"(1+bn2')

(P) (1+b~p2)

0 "(1.+b 12)
y,")(1+b~p)
&,'"(1+b~12')
g '"(1 b p')

0.4882
0.8912
0.6682
1.1468

0.6862
1.1939
0.8175
1.1468

Ep (au)

Closed Shell [Eq. (2.8a) ]
—0.7307
—0.6975
—0.7244
—0.6974

Open shell [Eq. (2.8b) ]
—0.7631
—0.7595
—0,7613
—0.7608

E( (au)

+ 0.0967
—0.3953
—0.1913
—0.4778

—0.6050
—0.6727
—0.6876
—0.6974

aZ0 and E1 are the two roots of the secular equation.
=1"The values of n and P (before scaling) are ~ = 1 and P = 2.

e, P, p, and 6 are the values calculated by Neamtan et al. (Ref. 31). All coordinates were scaled so that the
virial theorem is satisfied for the ground state.
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TABLE II. Closed-shell results. 0,'= 1, P = 2 before scaling.

Eo (au)
Binding energy (eV)
Scale factor

Norm of ga

i j kl mn

00000 0
00001 0
01000 0
00010 0
00002 0
02000 0
00020 0
11000 0
00110 0
01001 0
00011 0
01010 0
01100 0
03000 0
00030 0
11010 0
01110 0

—0.6968
-1.45

0.6108
17.580

0.5

—0.7429
—0.193

0.6518
33.884

0.5
0.2300

—0.2697
0.0661

—0.7722
+ 0.604

0.6604
70.546

& coefficientsb

0.5
0.1317

-0.1553
0.0679

—0.0103
0.3071
0.1119

—0.2042
—0.0847
—0,0484

0.0868
—0.2971

0.1503

—0.7724
+ 0.610

0.6584
57.238

0.5
0.1232

—0.1936
0.0125

—0.0092
0.2749
0,1351

—0.1552
-0.0860
—0.0397

0.0737
—0.2641

0.1381
0.0002

—0,0048
—0.0144

0.0081

aNorm of p= Jdr& Jdr2 Jdrp/2, where the coordinates in p have not been scaled.
b = 2 for ijklmn= 000000 so the leading term in the expansion (2.6) is unity.

B. Bound Excited States of PsH

The second lowest root of the secular equation
was obtained for all the calculations performed.
The lowest second root in any case was that ob-
tained from the 12-term open- shell function in

Table IH. Its value i,s —0.7432 a.u. which falls
short of binding by 0.184 eV. The virial theorem
was satisfied by separate scaling of this root.
This result should not be taken as strong evidence
that a bound excited state does not exist, however.
The wave function is independent of the coordinate

TABLE III. Open-shell results. Exponential parameters e, P, p, and 0 are those of Neamtan ef al. (Ref. 31).

Eo (au)
Binding energy (eV)
Scale factor

Norm of g

i jhow mn

—0.7584
0.228
1
2.050 ~ 10

—0.7679
0.487
0.9135
9.486 x 10'

5 coefficients b

—0.7742
0.657
0.8643
3.935 x 10

0.5
0.0894

—0.2050
-0.0494

0.0044
0.0154
0.0029
0.0163
0.0002

—0.0232
—0.0044

0.0056

00000 0 0.5
00001 0
01000 0
00010 0
00002 0
02000 g
00020 0
11000 0
00110 0
01001 0
00011 0
01010 0

Norm of g= fdr1 Jdr2 fdr p, where the coordinates in g have not been scaled.
The term for ijklmn=0110(4 was inadvertently left out of the basis set. b= 2 for ijwrns =000000 so that the

leading term in the expansion (2.6) is unity.
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yp and the calculations reported in Table I indi-
cate that this coordinate has a more significant
influence on the second root than on the first. %'e
conclude that if PsH has a bound excited '~'S state,
its wave function probably contains a small but
significant contribution in which the positron is
excited with respect to the nucleus, as well as
excited virtual positronium contributions.

Finally we note that all the roots of our secular
equations belong to ' 'S. It is quite possible that
a state with some other symmetry has an energy
level below —0.75 a. u.

C. Is e He a Bound System~

For the wave function of this system Khare,
Wallace, Bach, and Chodos" wrote

—&Fl —Pt2 —Pt']PI'=e (j.+or) ~ r)p)

—Ptl —0Y2 —Pt'2P (

Optimal values of the variational parameters
yield an energy of —2.895 87 a.u. which is 0.215
eV above that of the unbound system He+ e+ (the
helium ground-state energy is —2.903724 a. u. ).
These authors compared their result with the He
energy obtained with the trial w'ave function

I P

1 2+g 1 2
—nr —pr, —px —nr (3.4)

which is 2.8754 a.u. for optimal values of n' and
P' and concluded that the positron is bound by
0.0205 a. u. or 0.558 eV. This procedure is not
strictly valid since the difference between two
upper bounds is not itself a bound and may con-
tain errors difficult to estimate. In particular,
we would like to point out that the proper com-
parison with the function (3.3) is with

P 'r2(l lt 2)

pent

+e " ' '(1+ex, )

g = exp(- o.'x&- P~2 —yx& —&~2&)

+exp(- Prl —nr2 —5~i —y~2 ),

which is obtained from (3. 3) by omitting rp. This
is so because the form of Eq. (3. 3) admits to the
trial function some purely interelectronic correla-
tions not present in (3.4). The energy for helium
with a trial function of the form (3. 5) is not in the
literature, so the proper comparison cannot be
made. However, the energy of helium in the
radial limit (infinite expansion in powers of r, and
r, only, omitting x») is well characterized'4 and
is known to be within 0.0003 eV of —2.879 02 a. u. ,
which is still above the energy for e+He as re-
ported by Khare et gl. by 0.460 eV. Thus we
cannot definitely show on the basis of these num-
bers whether the system is bound or not.

However, a valid comparison can be made from
the work of Oczkowski, "who minimized the ener-
gy of e+He for the trial wave function of the form
(2. 8b)

4. ANNIHILATION RATE

A. Results for the Calculation

Several" ~23~"~" have shown that for one-positron
many-electron systems in which the electrons con-
stitute a closed-shell structure, the annihilation
probability for two-photon events can be written

P = m '($o[Z 5(r r)[.g), .—i p
(4. l)

where the sum i = 1, ..., n goes over the electrons,
g is the wave function, n is the fine-structure con-
stant, and the units of P are (atomic units of
tame) ' One a u. of tame is 2.4l.89xl0 "sec"
soI is

P =50.47n(gl6(r —r )i() nsec '
p

(4. 2)

for n electrons owing to the symmetry of !(I'
and Z&5(rf —r~I under P». Equation (4. l) im-
plies" that the annihilation event involves only
the annihilating partners; i.e. , that other parti-
cles present play only spectator roles and begin
to rearrange themselves into eigenstates of the
(n —l)-electron system only after annihilation is
completed. Recent theoretical results" indicate
that in a degenerate electron gas annihilation
events in which a spectator electron is excited
may be significant. This mechanism is due to
degeneracies not present in our system and need

and found the lowest energy was —2.8754 a.u. for
y = 5 = 0 and values of o. and P equal to n' and P'
in (3.4). The structure corresponding to these
parameter values is, of course, a free positron
and a helium atom.

We performed a number of calculations with
closed-shell expansions, including one with 13
terms, with the ratio n/P [Eq. (2. 8a)] held fixed
at 2 and obtained —2.8092 a. u. as the best (scaled)
energy. On the other hand, by varying o. and P
independently with only a two-term expansion [the
constant term and a term in (r, + x,)] gave E
= —2.8475 a. u. for XP =0.007. The variation was
not carried to completion because E and &P were
both decreasing, indicating no binding. We feel
these results provide a good indication that @+He

is not bound.
A more convincing indication that @+He is un-

bound was given recently by Gertler, Snodgrass,
and Spruch. '6 These authors exhibit a necessary
condition based upon the adiabatic potential for a
positron scattering off a helium atom. The proof
depends upon a knowledge of the exact adiabatic
potential, which in this case is the energy of the
molecular ion HeH+. The exact potential is un-
known so the proof is not strictly rigorous. How-
ever, a very accurate variational estimation of
the energy of HeH+ is available, "and based upon
this potential Gertler et al. conclude that a posi-
tive particle will not bind to a helium atom if its
mass is less than 2. 38 times the electronic mass.

In view of the results of Oczkowski, "Gertler,
Snodgrass, and Spruch, "and ourselves, it is dif-
ficult to understand the numbers reported by Khare
et al.63
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not concern us here. Events which produce a
number of photons diffex'ent from two are also
ignored. These events axe known to be much less
probable.

Equation (4. 2) gives the annihilation rate for
PsH as

(4. 3)P=100.94(gt5(r I—r )I g) nsec ',
where g is assumed to be properly scaled and
normalized. Results are listed in Table IV for
both the annihilation rate and the electron-posi-
tron cusp value calculated for each of the wave
functions reported in this work. The cusp value
[Eq. (2. 7)] is taken to be"

(qg(rl —r )(e/srl )lp)

($)5(rl —r )lg)
(4.4)

It is seen in Table IV that the addition of linear
terms to the expansion (2. 6) serves to depress
both the calculated annihilation rate and the mag-
nitude of the cusp value„and that higher-order
terms xesult in larger values for these quantities.
Trends in the rate and cusp value are weak. In

fact, the rate is fairly insensitive to the si.ze of
the basis set, at least fox the open-shell functions

5, 6, and 7. This suggests the possibility that
for positron-atom systems, reliable rates may
be calculated with less labor than reliable binding
energies. Further investigations are in progress.

B. Results for other Calculations

Binding energies and annihilation rates calcu-
lated from the wave functions of other workers
are listed in Table V. The wave function of Neam-
tan et al."is identical to our open- shell function
with no expansion, and Ore's function'0 is obtained
from that of Neamtan eI; gl. by setting the smallest
exponential parameter equal to zexo. The agree-
ment between our results and those of Ore and
Neamtan et al. is therefore not surprising. The
size of the discrepancy between these results and
those of Ludwig and Parr'4 and Goldanskii et al.32~"

is very large. The wave function of the latter
authors is of the form (2. 9) and hence has none of
the important electron- positron correlation: The
cusp value vip [Eq. (4.4)] calculated with this

wave function is zero. That the calculated anni-
hilation rate is an order of magnitude too small
serves to emphasize the importance of electron-
positron coxxelation in the calculation of anni-
hilation rates. The enhancement factor is thus
about 10, in rough agx'cement with calculations on
scattering systems' and solids. '

The annihilation rate calculated from the wave
function of Ludwig and Parr" may also be under-
stood in terms of electron-positron correlatjon.
It is well-known that the method used by these
authors, namely, expansion in nuclear-centered
configurations, is less efficient in representing
accurately short-range correlation between light
particles than the method used here, expansion
in interpartiele coordinates. " " Indeed, this
fact is reflected in the energies reported by Lud-
wig and Parr. Their best function is very com-
plicated, being an expansion in nine configurations
with a total of 30 independent variational parame-
ters, and yet the binding energy obtained is about
a tenth of that found by the present authors.

Accurately representing short- range correlation
between light particles is accomplished by allow-
ing one's trial wave function to represent accurate-
ly the Coulomb hole (in the case of repulsive parti-
cles) or "hill" (in the case of attractive particles)
in interparticle space. The hill has a cusp at the
top, and the hole has an inverted cusp at the bot-
tom unless the particles are identical fermions
with parallel spin. (In the latter case, which does
not concern us here, the hole is called the "Pauli
hole. " Of all points in two-particle space, only
the peak of the hill is sampled by the delta func-
tion in Eqs. (4. l)—(4.4). Experience has re-
peatedly shown that accuracy in the wave function
at this point can be achieved in small expansions
only by including the interparticle coordinate di-
rectly. The situation is shown qualitatively in
Fig. 1. Solid curves represent an accurate trial
wave function, the dashed lines represent a par-
tially correlated wave function such as that of
Ludwig and Parr, and the dotted lines stand for
the uncorrelated wave functions, such as the
Hartree-Fock wave functions of Goldanskii et al.
It is seen that insufficiently correlated trial func-
tions underestimate the expectation values of a
delta function between attractive particles and
overestimate that quantity for repulsive particles.
The trend of the calculated annihilation rates
listed in Table V is consistent with this point of
view.

TABLE IV. Calculated annihilation rate.

Wave function label
I

Cnsec )

2.009
1.900
2 ~ 200
2.265

2,023
2.019
2,095

Electron-positron
cusp value

—0.3054
—0.2897
—0.4312
—0.4521

-0.4163
—0.4069
—0.4070

See Tables II and III. bEquation (4.3) . Equation (4.4)
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TABLE V. Binding energies and annihilation rates from other calculations.

Ore
Neamtan et a/.
Goldanskij et Q/. ,
Ivanova and Prokopev
Ludwig and Parr
This work

Refex'ence

30
31

Binding energy
(eV)

+ 0.0686
+ 0.226

+ 0.068
+ 0.657

Annihilation rate
(nsec

2.o45b
2.015 c

O.82'
2.095

Refined values fox' the parameters in Ore's wave function are given by Daxewych (Ref. 69).
Calculated by the present authors. Tkachenko (Ref. 70) reports 1 nsec ~, a value which we are unable to

xeproduce.
cCalculated by the present authors. Neamtan et a/. report 1.978 nsec Darewych (Ref. 69) reports 2.024 nsec

Calculated by the present authors from wave functions given graphically by Goldanskii et a/. who repoxt 12.5
nsec . Note added ig proof: Goldanskii now reports (private communication) 0.3 nsec

Ludwig and Parr report 6.6 nsec in their paper, but owing to an error in their calculation, this is incorrect.
Recalculation (Ref. 71) yields the result listed above.

It is interesting that, up to the present work, all
the annihilation rates in the literature appear to be
wrong. In the case of Neamtan et al.s' the error
is very small and apparently arises from a trivial
arithmetic mistake. Tkachenko" and Goldanskii
et al.32 use a formula for the annihilation rate
which we do not understand. In addition some
numerical errors were made in evaluating the
terms of their formula. " Some errors were made
also in the calculation of Ludwig and Parr. "

5. DISCUSSION

The major source of error in the calculations
reported here is the omission of the positron-
nuclear coordinate xp from the wave function.
The omission makes the calculated wave function
F cusp up at the positron-electron coalescence
position independently of the distance of the co-
alesced pair from the nucleus. The effect of this
omission is probably not great because it is felt
only in three-particle (electron-positron-nucleus)
space, but, on the other hand, it is probably not
insignificant because E is large where x, or x,- zero. Practica. l considerations (see Sec. 3.A
a.nd the Appendix) dictated that E be independent
of either z» or zp and our preliminary calcula-
tions (Table I) showed the desirability of including
x» in g instead of xp. The inclusion of both would
probably have a small effect on the calculated
properties for the ground state, but might lead to
a bound excited ' 'S state as well.

The effects of spin-spin interactions, finite nu-
clear mass, and relativistic effects are certain
to be small.
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APPENDIX

The method of integral evaluation is rather in-
elegant and in some cases wasteful, and we de-
scribe the procedure here in the hope that a reader
will suggest a better way.

The most difficult integral encountered in this
work can be represented by diagram (Al) in Fig.
2, where the dashed lines indicate the presence
in the integrand of nonzero integral powers of the
coordinates x» and zp. The solid lines denote the
presence of the indicated coordinate as the argu-
ment of an exponential times an integral power of
the coordinate itself. The simplest integrals are
those like diagram (A2) in Fig. 2, where we have
suppressed the particle labels. The other two
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FIG. 2. Diagrams for the integrals discussed in the
Appendix.
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r»' = xP+ x,' —2r, ~,(cosy cosh

+ (siny sin5) cos~), (A1)

where y is the angle between rp and r1, 5 is the
angle between rp and r„and & is the angle between
the planes intersecting in rn (see Fig. 3). By
orienting the z axis along the "internuclear" axis
rp, e can be written as p, —p„where p, and p,
are the familiar ellipsoidal coordinates, the azi-
muthal angles of electrons 1 and 2. Integration
over e thenyields zero for the second term within
brackets of Eq. (A1). For the first term we use the law
of cosines to write the product cosy cosh in terms of
the radial variables ~1, x2,x1*, ~2p, and rp. A
sum of nine terms results on the left-hand side of
Eg. (Al) leading to nine integrals of the type (A3)
unless i = 2, in which case four integrals of type
(A2) and five of type (A3) arise. The same treat-
ment applies in case the integrand contains the
factor x 2~rp2 instead of rp r12 .

Type A1) integrals which contain in our treat-
ment one of the factors xp~r12+ or r12~rp+1
times a product of exponentials (i is a positive
integer) were the most difficult encountered in
this work. In the case rp~x12- 1 the integration

possibilities are shown in diagrams (A3a) and (A3b)
in Fig. 2, which are not to be distinguished from
each other since an integral of the first type can be
converted to one of the second by placing origins
of coordinate systems on other particles or, equiva-
lently, by renaming integration variables.

The presence of a product of negative exponen-
tials between attractive particle pairs renders all
these integrals formally the same as those en-
countered in diatomic molecule calculations ex-
cept that now we have to integrate over the posi-
tion of one of the "nuclei". For example, integrals
of the type (A2) can be written as fdr&f (rp) where
f (rp) is the product of two two-center overlap in-
tegrals between Slater-type ns atomic orbitals
situated on points which here are the nuclear and
positronic positions. The overlap integrals are
most conveniently obtained by generalizing formu-
las given by Roothaan. ' The final integration is
easy and the integral is obtained in closed form.

Type (A3a) integrals involve in addition a fa,ctor
of r~ raised to some nonzero integral power in
the integrand and similarly are obtained in closed
form. In the case of the type (A3b) the Slater orbi-
tals are considered as centered on the appropriate
electron, and the final integration is over r», but
other than this name change there is no distinction
between (A3a) and (A3b).

Type (Al) integrals are not so simple in general.
However, if the non-exponential part of the inte-
grand is xp~ r122 where i is a positive integer, the
integral may be performed analytically by using
the expression

FIG. 3. The coordinate system. cu and co' are inter-
planar angles. The other angles are between interparticle
axes.

over the electrons is formally the same as evalu-
ating a two-center interelectronic repulsion in-
tegral. Integration over the "internuclear" vector
rp completes the evaluation. The repulsion in-
tegrals were evaluated by extracting an appropriate
portion of the Harris- Taylor diatomic molecule
program~ and modifying it for our purposes.
Each repulsion integral was evaluated for a number
of values of r~ Once. these values are obtained,
a final numerical integration over these values
and the power of xp is performed. In this work
the change of variable y =my/(1+ rp) was made and
the range 0&y ~ 1 was divihed into 13 unequal in-
tervals and a three-point Gaussian rule applied
on each interval.

When the factor is xp ~&2, x12 is rewritten as
x»2/r» The nu.merator fhen expanded as in type
(Al). Now, however, the cosv term does not in-
tegrate to zero but leads to a repulsion integral
over Slater type 2P~ atomic orbitals. In all, 10
repulsion integrals result, and each one is evalu-
ated as above.

Integrals involving the factors ~12~~@+1are
evaluated in the same way by renaming the inte-
gration variables. Further details are recorded
elsewhere 85

Clearly this method is extensible to more gener-
al forms of integrals, but experiments with some
of these indicated computation time required is
prohibitive. Other methods might be useful. "-"

Taken in part from the thesis submitted by C. F.
Lebeda to the University of Iowa in partial fulfillment
of the requirements for the Ph. D. degree in chemical
Physics.
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Exact Treatment of the Stark Effect in Atomic Hydrogen~
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A boundary-condition method is used to investigate the energy levels of atomic hydrogen
in a uniform electric field. At low fields the misbehavior of trial eigensolutions in the non-
classical region enables one to obtain high-accuracy upper and lower bounds to the Stark
shift. At higher fields the energy levels are treated as resonant states imbedded in a con-
tinuum. A modified WEB approach is used to obtain both the position and width of these reso-
nances. Comparison is made with the usual perturbation-theory results.

I. INTRODUCTION

An adequate explanation of the Stark effect in
atomic hydrogen was one of the first tests applied
to the old' and new'~' quantum theories. The appli-
cation of perturbation theory was successful in con-
firming both the linear and quadratic Stark effects. 'y ~

Recently these results have been extended to higher
order. ' Several authors have also treated the
Stark effect using the WKB technique. '~' As yet,
however, no exact solution of the appropriate
Schrmingel equation has been undertaken This is
perhaps due to the we].].-known fact that at large
distances from the proton the potential energy be-
comes infinitely negative. 3~'~' Thus the electric
field, however weak, eventually strips off the
atomic electron. The problem then becomes more
complicated than a simple determination of bound-
state energy levels.

In this paper we use a modification of the bound-
ary-condition method, recently used by Rosenthal
and Wilson, "~" to investigate the energy levels of
atomic hydrogen in a uniform electric field. We
obtain series solutions to the appropriate Schrb-
dinger equation for various trial eigenvalues. At
low fields the nature of the misbehavior of these
solutions in the nonclassical regions changes as the
sequence of trial eigenvalues crosses the true
eigenvalue. This enables us to obtain high-accuracy

upper and lower bounds to the Stark Shift. The un-
certainty in the energy caused by the unbounded
character of the state is less than the difference
between these bounds.

At higher fields it becomes necessary to consider
explicitly the unbound character of the initially
bound states, which now appear as resonant (meta-
stable) states imbedded in a continuum. We use
the boundary-condition method together with a
modification of the WKB technique to obtain the
phase shift of the asymptotic (unbound) eigen-
function. In exact analogy with elementary scat-
tering theory, analysis of the energy dependence
of this phase shift yields both the position and
width of the metastable levels.

II. GENERAL REMARKS

The SchrMinger equation for atomic hydrogen in
a uniform electric field of strength I' directed
along the z axis is separable in parabolic coor-
dinates, $, q, Q, yielding the three ordinary dif-

ferentiall

equations'~"

+ -~ +Z, M(()=0, (2)
dP, d$ 4 2 4$


