Regge Poles with Absorptive-Correction Cuts and Exchange Degeneracy in the Reaction $\pi^- p \rightarrow \eta n$

MAURICE L. BLACKMON Argonne National Laboratory, Argonne, Illinois 60439 (Received 4 October 1968)

A Regge-pole model with absorptive corrections is used to fit the differential cross sections for the reaction $\pi^- p \to \eta n$. This model, unlike the pure Regge-pole A_2 -exchange model, also predicts a nonzero polarization. Exchange degeneracy is assumed for residues and trajectory. Thus, previous work on πN scattering and KN scattering is used to fix the trajectory of the A_2 and its residue functions. SU_3 is also used to determine the size of the residues. Only a small amount of SU_3 breaking (10%) is needed to fit the data.

R ECENTLY, calculations using an eikonal Reggepole model have been quite successful in fitting differential cross sections and polarizations for the reactions $\pi^{\pm}p \rightarrow \pi^{\pm}p$ and $\pi^{-}p \rightarrow \pi^{0}n$, 1 and $K^{\pm}p \rightarrow K^{\pm}p$, $K^{\pm}n \rightarrow K^{\pm}n$, $K^{-}p \rightarrow \overline{K}^{0}n$, and $K^{+}n \rightarrow K^{0}p$.² These calculations used exchange degeneracy for the ρ and A_{2} residues and trajectories and also for the ω and $f^{0}(P')$. With the assumptions of exchange degeneracy and SU_{3} , we can therefore predict, with one extra noncontroversial assumption, the cross section and polarization for the reaction $\pi^{-}p \rightarrow \eta n$.

This calculation should not be considered to be a "best fit" to the data, but it is rather a zero-parameter prediction except for a small (10%) adjustment in coupling strength. This approach should be contrasted with other many-parameter fits³ which use quite different Regge trajectories for the A_2 and the ρ , thus severely breaking exchange degeneracy.

We start with an impact-parameter representation for the amplitudes G_+ and G_- , which correspond to helicity nonflip and helicity flip, respectively⁴:

$$G_{+} = kW \int_{0}^{\infty} bdb J_{0}(b\Delta) \chi_{0}(s,b) [1+i\chi^{P}(b)], \quad (1)$$

$$G_{-} = kW \int_{0}^{\infty} bdb J_{1}(b\Delta) \chi_{f}(s,b) [1+i\chi^{P}(b)].$$
 (2)

Since we will deal only with small momentum transfers $(|t| \leq 1 \text{ GeV}^2)$, we have considered only the effect of the lowest-order absorptive cut. The functions $\chi_0(s,b)$ and $\chi_f(s,b)$ are obtained by performing a Fourier-Bessel transform on the Regge amplitudes for A_2 exchange. $\chi^P(b)$ is obtained by Fourier-Bessel transforming the Pomeranchon amplitude, which has the form (pure helicity nonflip)

giving

$$\chi^{P}(b) = i(C\mu^{2}/48)(\mu b)^{3}K_{3}(\mu_{b}).$$
(4)

(3)

178

¹Richard C. Arnold and Maurice L. Blackmon, Phys. Rev. 176, 2082 (1968). ²Maurice L. Blackmon and Gary R. Goldstein, Phys. Rev.

 $G_{+}^{P} = iCkW[\mu^{2}/(\mu^{2}+\Delta^{2})]^{4},$

179, (1969). *D. D. Reeder and K. V. L. Sarma, Phys. Rev. 172, 1566 (1968).

⁴ Richard C. Arnold, Phys. Rev. 153, 1523 (1967).

In order to write Eqs. (1) and (2), we have assumed that the absorption for ηn is the same as the absorption for πp . Hence, we take for C and μ the values found by Arnold and Blackmon¹:

$$C = 5.35 \text{ GeV}^{-2}, \mu = 1.1 \text{ GeV}.$$

FIG. 1. Differential cross sections for the reaction $\pi^- p \rightarrow \eta n$. 2385

FIG. 2. Polarization for the reaction $\pi^- p \to \eta n$ produced by absorptive corrections. Data points [D. D. Drobnis *et al.*, Phys. Rev. Letters **20**, 274 (1968); A. Yokosawa, *ibid.* **20**, 566 (1968)] are at 3.2, 3.5, and 5.0 GeV/c.

For the A_2 -exchange Regge amplitudes, we assume

$$G_{+} = \frac{1 + e^{-i\pi\alpha}}{\sin\pi\alpha} \alpha b_{1}(t) \left(\frac{s}{s_{0}}\right)^{\alpha}, \qquad (5)$$

$$G_{-} = \frac{1 + e^{-i\pi\alpha}}{\sin\pi\alpha} \alpha [b_1(t) - b_2(t)] \frac{\Delta}{2M} \left(\frac{s}{s_0}\right)^{\alpha}.$$
 (6)

As in Ref. 2, we write

$$\frac{1+e^{-i\pi\alpha}}{\sin\pi\alpha}=\frac{e^{-i\frac{1}{2}\pi\alpha}}{\sin\frac{1}{2}\pi\alpha}.$$

Since $\alpha/\sin\frac{1}{2}\pi\alpha$ is a slowly varying function in the region of interest $(0 \le |\alpha| \le \frac{1}{2})$, we take $(\alpha/\sin\frac{1}{2}\pi\alpha) b_1$ and $(\alpha/\sin\frac{1}{2}\pi\alpha)b_2$ to be constants, A and B, respectively. In

Refs. 1 and 2, we used B = 6A, and we assume that here also.

To estimate the size of Λ , we first note that in Ref. 2 the value obtained for $2b_1^{K^+K^-\rho^0}$ was 0.65. Exchange degeneracy gives $2b_1^{K^+K^-A_2} = 0.65$ also. SU_3 gives (pure *d*-type coupling)

$$g^{\pi^{-\eta A_2^+}} = (2/\sqrt{3})g^{K^+K^-A_2^0}$$

and isospin gives $g^{p\bar{n}A_2^-} = \sqrt{2}g^{p\bar{p}A_2^0}$. Hence, one expects $b_1^{\pi\eta A_2^+} = (2\sqrt{\frac{2}{3}})b_1^{K+K-A_2^0}$. Since $\langle \alpha/\sin\frac{1}{2}\pi\alpha\rangle \simeq 0.7$, we find, after combining all factors, that $A\simeq 0.37$. To obtain the fits presented, we have used A = 0.40, which is a small amount of SU_3 breaking. For the A_2 trajectory, we use the fits from Refs. 1 and 2:

$$\alpha = 0.55 + 0.8t$$

The results of our calculation are shown in Figs. 1 and 2. The differential cross section has been measured for six energies.⁵ Only the highest-energy cross section is fitted poorly, where the calculated cross section is too large near t=0 and is too small for $-t\gtrsim 0.6$ GeV². The rest of the data are fitted satisfactorily.

Finally, the cuts from the absorptive correction produce a polarization, unlike the pure pole model. The qualitative features are the same as those found in the reaction $\pi^- p \rightarrow \pi^0 n$.¹ Here, however, the large negative spike is considerably broader and is located at larger values of -t. Since we have not included the P' trajectory in the present calculation, the low-energy small-|t| polarization is smaller than that found by Arnold and Blackmon. Therefore, we must consider the 2.91and 3.7-GeV/c results to be underestimates of the polarization. The $P'A_2$ cut, however, decreases rapidly with energy, and the polarization above 5-6 GeV/c should be dominated by just the PA_2 cut.

I would like to thank R. C. Arnold for comments and suggestions.

⁶ O. Guisan et al. Phys. Letters 18, 200 (1965).