Regge Poles with Absorptive-Correction Cuts and Exchange Degeneracy in the Reaction $\pi^-p \to \eta n$

MAURICE L. BLACKMON Argonne National Laboratory, Argonne, Illinois 60439 (Received 4 October 1968)

A Regge-pole model with absorptive corrections is used to fit the differential cross sections for the reaction $\pi^- p \to \eta n$. This model, unlike the pure Regge-pole A_2 -exchange model, also predicts a nonzero polarization. Exchange degeneracy is assumed for residues and trajectory. Thus, previous work on πN scattering and KN scattering is used to fix the trajectory of the A_2 and its residue functions. SU_2 is also used to determine the size of the residues. Only a small amount of SU_2 breaking (10%) is needed to fit the data.

ECENTLY, calculations using an eikonal Reggepole model have been quite successful in fitting differential cross sections and polarizations for the reactions $\pi^{\pm}p \rightarrow \pi^{\pm}p$ and $\pi^-p \rightarrow \pi^0n$,¹ and $K^{\pm}p \rightarrow K^{\pm}p$, $K^{\pm}n \rightarrow K^{\pm}n$, $K^-p \rightarrow \bar{K}^0n$, and $K^+n \rightarrow K^0p^2$. These calculations used exchange degeneracy for the ρ and A_2 residues and trajectories and also for the ω and $f^0(P')$. With the assumptions of exchange degeneracy and SU_3 , we can therefore predict, with one extra noncontroversial assumption, the cross section and polarization for the reaction $\pi^- p \to \eta n$.

This calculation should not be considered to be a "best fit" to the data, but it is rather a zero-parameter prediction except for a small (10%) adjustment in coupling strength. This approach should be contrasted with other many-parameter fits³ which use quite different Regge trajectories for the A_2 and the ρ , thus severely breaking exchange degeneracy.

We start with an impact-parameter representation for the amplitudes G_+ and G_- , which correspond to helicity nonflip and helicity flip, respectively⁴:

$$
G_{+} = kW \int_0^\infty bdb \, J_0(b\Delta) \chi_0(s,b) \left[1 + i\chi^P(b)\right],\qquad(1)
$$

$$
G_{-} = kW \int_0^\infty bdb \ J_1(b\Delta) \chi_f(s,b) [1 + i\chi^P(b)]. \tag{2}
$$

Since we will deal only with small momentum transfers $(|t| \leq 1$ GeV²), we have considered only the effect of the lowest-order absorptive cut. The functions $x_0(s,b)$ and $X_f(s,b)$ are obtained by performing a Fourier-Bessel transform on the Regge amplitudes for A_2 exchange. $X^P(b)$ is obtained by Fourier-Bessel transforming the Pomeranchon amplitude, which has the form (pure helicity nonflip)

giving

$$
\chi^{P}(b) = i(C\mu^{2}/48)(\mu b)^{3}K_{3}(\mu b).
$$
 (4)

 (3)

'Richard C. Arnold and Maurice L. Blackmon, Phys. Rev. 176, 2082 (1968). 'Maurice L. Blackmon and Gary R. Goldstein, Phys. Rev.

 $G_{+}{}^{P} = iCkW[\mu^{2}/(\mu^{2}+\Delta^{2})]^{4},$

179, (1969).
 $\binom{3}{10}$ D. Reeder and K. V. L. Sarma, Phys. Rev. 172, 1566 (1968). ' Richard C. Arnold, Phys. Rev. 153, 1523 (1967).

In order to write Eqs. (1) and (2) , we have assumed that the absorption for ηn is the same as the absorption for πp . Hence, we take for C and μ the values found by Arnold and Blackmon':

$$
C=5.35
$$
 GeV⁻², $\mu=1.1$ GeV.

FIG. 1. Differential cross sections for the reaction $\pi^- p \to \eta n$. 178 2385

FIG. 2. Polarization for the reaction $\pi^- p \to \eta n$ produced by absorptive corrections. Data points [D. D. Drobnis *et al.*, Phys. Rev. Letters 20, 274 (1968); A. Yokosawa, *ibid.* 20, 566 (1968)] are at 3.2, 3.5, and 5.0 GeV/ c .

For the A_2 -exchange Regge amplitudes, we assume

$$
G_{+} = \frac{1 + e^{-i\pi\alpha}}{\sin\pi\alpha} \alpha b_1(t) \left(\frac{s}{s_0}\right)^{\alpha},\tag{5}
$$

$$
G_{-}=\frac{1+e^{-i\pi\alpha}}{\sin\pi\alpha}\alpha[b_1(t)-b_2(t)]\frac{\Delta}{2M}\left(\frac{s}{s_0}\right)^{\alpha}.
$$
 (6)

As in Ref. 2, we write

$$
\frac{1+e^{-i\pi\alpha}}{\sin \pi\alpha}=\frac{e^{-i\frac{1}{2}\pi\alpha}}{\sin \frac{1}{2}\pi\alpha}.
$$

Since $\alpha / \sin \frac{1}{2} \pi \alpha$ is a slowly varying function in the region of interest $(0 \le |\alpha| \le \frac{1}{2})$, we take $(\alpha / \sin \frac{1}{2}\pi\alpha)$ b_1 and $(\alpha/\sin\frac{1}{2}\pi\alpha)b_2$ to be constants, A and B, respectively. In Refs. 1 and 2, we used $B=6A$, and we assume that here also.

To estimate the size of A , we first note that in Ref. 2 the value obtained for $2b_1{}^{K^+K^- \rho^0}$ was 0.65. Exchange degeneracy gives $2b_1^{K^+K^-A_2}=0.65$ also. SU_3 gives (pure d -type coupling)

$$
g^{\pi^-\eta A_2^+} = (2/\sqrt{3})g^{K^+K^-A_{20}}
$$

and isospin gives $g^{p\bar{n}A_2} = \sqrt{2}g^{p\bar{p}A_2}$. Hence, one expects $b_1{}^{\pi \eta A_2^+} = (2\sqrt{\frac{2}{3}})b_1{}^{\kappa + \kappa - A_2^0}$. Since $\langle \alpha / \sin \frac{1}{2} \pi \alpha \rangle \approx 0.7$, we find, after combining all factors, that $A \approx 0.37$. To obtain the fits presented, we have used $A = 0.40$, which is a small amount of SU_3 breaking. For the A_2 trajectory, we use the fits from Refs. ¹ and 2:

$$
\alpha=0.55+0.8t.
$$

The results of our calculation are shown in Figs. 1 and 2. The differential cross section has been measured for six energies.⁵ Only the highest-energy cross section is fitted poorly, where the calculated cross section is too large near $t=0$ and is too small for $-t\gtrsim0.6$ GeV². The rest of the data are fitted satisfactorily.

Finally, the cuts from the absorptive correction produce a polarization, unlike the pure pole model. The qualitative features are the same as those found in the reaction $\pi^- p \to \pi^0 n$.¹ Here, however, the large negative spike is considerably broader and is located at larger values of $-t$. Since we have not included the P' trajectory in the present calculation, the low-energy small- $|t|$ polarization is smaller than that found by Arnold and Blackmon. Therefore, we must consider the 2.91 and 3.7 -GeV/ c results to be underestimates of the polarization. The $P'A_2$ cut, however, decreases rapidly with energy, and the polarization above 5–6 GeV/c should be dominated by just the $PA₂$ cut.

I would like to thank R. C. Arnold for comments and suggestions.

[~] O. Guisan et al. Phys. Letters 1S, 200 (1965).