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Approximate Solution of the Nonrelativistic Lee Model in All Sectors*
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An approximate solution of the nonrelativistic Lee model in all sectors is described. The treatment is
valid only in the strong-coupling regime, but the restriction to large source radius, characteristic of North s
strong-coupling solution, has been eliminated.

'HE Lee model has been extensively studied in the
first and second sectors, but relatively little work

has been done on the third and higher sectors. ' One
exception is an interesting paper by North' which uses
the methods of old-fashioned strong-coupling theory to
solve the nonrelativistic Lee model provided'

1«(mg )/(mR) «(mR)'. (40N)

Here g is the unrenormalized coupling constant, m is the
meson mass, and R ' is the momentum cutoG.

The present paper describes the results of an attempt
to remove the restriction to large source radius which
was required in Ref. 2. The present calculation is
actually based on Tomonaga's intermediate-coupling
approximation, 4 but in order to simplify the calcula-
tions, we minimize a strong-coupling approximation of
the lower set of energy eigenvalues. Thus, the results
given below are valid only for large values of g.

The basic difhculty with regard to the construction
of a strong-coupling theory of the Lee model valid for
large g and small R can be stated as follows: The interac-
tion Hamiltonian presumably dominates if g is large.
Therefore, one should diagonalize it 6rst and treat the
rest of the Hamiltonian as a perturbation. On the other
hand, the contributions coming from the free meson
Hamiltonian become extremely large as the momentum
cutoG R ' becomes large. Therefore, one cannot treat
the free meson Hamiltonian as a perturbation. In other
words, neither the free meson Hamiltonian nor the
interaction Hamiltonian can be treated as small pertur-
bations if g is large and R small.

The Hamiltonian for the nonrelativistic Lee model
may be written in the form

&=&mes+&int+&nuci p

where

Here aj,t and aI, are the creation and annihilation
operators of the mesons of momentum k, and

uA, = (2pr) '" U(r)e'"'d'r,

where U(r) is the nucleon source function, normalized
according to

U(r)d'r=1. (6)

ap ~ fpa,

ak'~ fpa'.

(Sa)

(Sb)

The trial function fp will be chosen to minimize the
"lower" set of eigenvalues of the reduced-space Hamil-
tonian, which is given by

where
H„=wa a+gQ(r a+r+a )+p(1 rp)pp~ (9)

~—=gp &Afp, (10)

Q—=Zp upfa. (11)
Furthermore, the reduced-space operator of total charge
is given by

or& denotes the total energy of a nonrelativistic meson
with momentum k, orj, ——k'+2, where energy is ex-
pressed in units of 2m. We also note that the operator of
total charge for the meson-nucleon system is given by

q= -,'(1+rp) —Q p ag, tap.

It can be shown' that Tomonaga's intermediate-
coupling approximation is equivalent to the follow-
ing substitution of reduced-space operators in the
Hamiltonian:

(2)Hmes Z q COIcajs aa &

H;„,=gr Pp upap+H c. , .
q.= p(1+rp) a'a, —

where the normalization condition,

(12)

H~ucl p (1 rp) pp ~ (4)
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y = (1+c ') '~'~ (14)

' T. D. Lee and D. Pines, Phys. Rev. 92, 883 (1953).
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Qp fp'=1,
has been taken into consideration.

Following the same mathematical procedure as
North, ' we seek simultaneous eigenfunctions of H„and
q„ in the form
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TABLE I. Values of R, x, and E —= (27/2)m (1+@')(vR —x')/R. in order to simplify the algebra we replace expression

(19) for E„by the approximate formula'
R

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

79 X10 5

3.14 X10~
7.06 x10~
125 X10 '
1.96 X10 '
2.82 X10 3

3.83 X10 g

S.OO X 1O-'
6.31 X10 3

7.78 X10 '
3.02 Xlo '
6.51 X19
0.1096
0.1609
0.2168
0.2756
0.3363
0.3980
0.4603
1.078
1.677
2.267
2.853
3.436
4.017
4.597
5.177
5.756

6 662X10'
8-327X 10'
2.467 X 10'
1 041X10'
5.330X 1OS

3 084X 106
1 942X 10'
1 301X10'
9.139X104
6 662 X 10'
8.334X 10'
2 476x 10'

1049
539.7
312.0
193.4
123.9
78.69
46.53—149,4—467.2—1.O45X1O—1.977x 10'
—3 352X10'—5 260X10'—7 789X10'—1.103X 104—1.507X 10

where the harmonic oscillator functions f are defined
according to

where
f~ Ng/a——((u~ p), —

1P= 3ZO.

(23)

(24)

We now use Eqs. (10) and (13) to determine the
values of u and p.

3u= QI, ~I,fI'= Zl k'fi'+k, (10')

(13)

Assuming a square momentum cutoff at k=1/R and
going to the continuum limit, Eqs. (10') and (13)become

k4dk

3p——,'=
2(1ra)' 0 (k'+-', —p)' 2(s.a)'

b21
X —j ——,'b tan '(1/bR), (10")

R 2R(R '+b')
b= (1 n)1/2 (25)

E„—=n (n —1)w'(gQ)
—'. (22)

Using Eq. (21) one can easily verify that expression
(22) has a minimum value of (9/4)n(n 1—)w(ga) s when
b= —~am. We, therefore take

„=0,

a af~=nf„.
The desired eigenfunctions satisfy

(15a)
2(s.a)'=

(15b)

(15c)

(k'+s —~)'

1
+—tan '(1/bR) . (13')

2R(R '+b') 2b

q~„= —(n —1)y„. 2(sa)'= 1/R —b'/R(b'+R ') (26a)
The matrix equation (16) is equivalent to two simul- or
taneous equations: n= q+ 1/Rs —1/2(sa)sR~. (26b)

nw+ c„gQ+n =E„, (18a)

gQ+n+c (n 1)w+c„—~0=c~ (18.b)
Substituting (26b) into Eq. (13') one finds

(1+x )R tan '(1/x)=x(R+2/R), (27)
where

x—=bR (28)
Eliminating c„, one 6nds that the energy eigenvalues
are given by

(16) Eliminating tan '(1/bR) from Eqs. (10")and (13'), one

(17) finds that

~-'= (n —2)w+2g'Q+ '~5~. , (19a)

g„—= y L(g'Q'/w)'+2(2n —1)g'Q +HJ". (19b)

Here eo has been set equal to g'Q'w ' in order to make
E& vanish (i.e., in order to renormalize the physical
neutron mass to zero).

At this point we introduce the ansatz

For small values of R, the solution of Eq. (27) is
given by

x—(gs)R'. (29)

On the other hand, for large sources the solution of
Eq. (27) is given by

x—R/VS. (30)

(~1+b)fi =Na (20) The numerical values of x for various values of E are
given in Table I.v

where the parameters u and b are to be chosen to
minimize E„and simultaneously satisfy the normaliza-
tion condition (13).Note that Eq. (20) implies

(21)

6 The approximate formula (22) is obtained from (19) by
expanding b,», assuming g~P&) (2n —l)H.

'In connection with the values of R listed in Table I, it is
essential to remember that energies have been expressed in units
of 2m. Thus, R =0.01 actually means 2mR=0.01 or mR =0.005.
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Using Eq. (26b) to express 1/a' in terms of x and R,
one finds

9n(n —1) w

4 gs u'

X'= (67r2R') ',
=-'+ (-')R ',

3n n(n —1)
E —~ R'(1+1.2R ')' (22N')

27 n(n —1) (1+x') (-',R '—x')
=—7r2 (31)

2 g2 R

For reasons which are discussed in detail in Ref. 2,
North's treatment is only valid in the large source
limit, in which case

which reduces to the following expressions in the two

limiting cases of large and small R:
3xmn(n —1)

R3.
4g2

(22N")

E = M~n—(n 1)R'—/g' for R&)1, (32a)

E„=(27/4)s2n(n 1)—R 'g—' for R«1. (32b)

Numerical values of

E = [g'/n —(n 1)jE—„=(27—/2) n'(1+x') (-',R-' —x')R—'

for various values of R between 0.0i and 10 are also
given in Table I.

It is of interest to compare these results to the
"large-source approximation" results given in Ref. 2,
namely,

where

E„—n (n —1)co'/f,

Cd=A Py (dyne

f—=gX,
X'—=Pq nP.

(22N)

Again assuming a square momentum cutoff at 0= 1/R
and going to the continuum limit, one can easily
verify that

Note that the present treatment leads to substantially
lower eigenvalues in the same large source limit; in
particular, the eigenvalues given by Eq. (32a) actually
turn out to be negative. In this connection it should also
be noted that the reduced-space Hamiltonian (9) be-
comes identical to the bound-state Hamiltonian derived
by North, provided we make the ansatz (20) with a= 0.
Then the normalization condition (13) requires us to
take b=X. In other words, the static approximation
obtained by North may be regarded as a special case
of the treatment described above.

If we had chosen u and b in the ansatz (20) to
minimize expression (19) for E„,then a and b would
turn out to also depend on the isobar state (i.e., on the
value of n) and on the value of the coupling constant g.
Instead we have chosen u and b to minimize the approxi-
mate expression (22) for E„,and the resulting calcula-
tion is much easier to carry out because u and b then
depend on only the value of the single parameter R.
However, we wish to emphasize that in principle the
same procedure can be used to minimize expression
(19) for E„.


