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Methods are described to obtain the S-wave ~Aphase shift from the processes " ~ A~em and P+E ~ A~p.
Each of these processes is fully specified (for vanishing lepton mass) by a set of sixteen seven-dimensional
distributions describing the intensity and the various polarization spectra. From each distribution, nine
functions of a single variable, the invariant ~A mass, are extracted. Ratios of these functions determine the
S-wave phase shift, for energies where only S- and P-wave amplitudes are appreciable and where the S
phase shift is the only signihcant one. For the decays there are 36 independent determinations of this kind.
For the reactions there are 8, and these are independent of a detailed knowledge of the incoming v spec-
trum. In all instances, knowledge of the polarizations of the parent baryon and of the A is indispensable.
No assumptions on the structure of hadronic form factors are necessary. %e do assume that possible devia-
tions from lepton pair locality and from T invariance are insigni6cant.

I. INTRODUCTION
' 'N this paper we discuss ways to obtain information
~ ~ about the scattering of pions on A' s. This is but
one of a considerable number of two-body scattering
problems where access to important dynamical informa-
tion is hampered by the fact that both particles involved
are unstable. Specifically, we shall be concerned with
the extraction of S-wave vrA scattering phase shifts
from an analysis, first, of the e4 decay modes of cascade
particles:

~ A+X' +e +Pe)
—+ A+a'+e +r„

and, second, of the reaction

(1.3)

For our purpose, the principal interest in the reactions
(1.1)-(1.3) lies in the fact that in a partial-wave
expansion of the decay or reaction form factors with
respect to angular momentum in the xA system, a
partial wave with definite total and orbital angular
momentum must have the phase of the corresponding
mA scattering amplitude. This is strictly true insofar
as time-reversal invariance is valid; we shall assume'
that possible T-violating e6ects are negligible.

l,et us first make the trivial observation that if one
measures everything about these various reactions, one
also gets everything one can get, and this of course
includes xA phase shifts. It is not the exclusive purpose
of this paper to note that measuring everything means
to map out in a seven-dimensional' phase space the

*%'ork supported in part by the U. S. Air Force Once of Air
Research and Development Command.' Of course, this assumption is open to experimental verification.

'As seen in Secs. II A and III, two of the seven variables
describe the orientation of characteristic momentum vectors of
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intensity spectra, single polarization spectra, as well

as polarization correlation distributions. (In what
follows, the lepton mass is put equal to zero. ) Rather,
we shall explore what is the optimal amount of inte-
gration over phase-space domains, such that the scatter-
ing information sought for can still be extracted without
unwarranted a priori assumptions on the structure of
the form factors involved. Central to the method is
the assumption of efI'ectively local coupling of lepton
pairs to hadronic currents, an assumption tested by
Eqs. (2.27), (2.28), and (3.9) below. The methods
employed are closely akin to those recently applied'
to the problem of extracting mm scattering information
from E&4 decays.

Theoretically, the present work is addressed to the
problem, one almost of principle, of learning how to
read o8 electively what constitutes the most direct
physical information in reactions of fair complexity.
Apart from its methodological aspects, the relative
rarity of the processes considered may at some future
date perhaps make our approach of practical relevance,
as it is attuned to limited statistics situations. Indeed
the acquisition of a sufhcient number of ",4-decay
events clearly belongs to a generation of experiments
that is yet to come. Branching ratios &10 ' are pre-
sumably involved. ' We have no reliable estimates for
the rea, ction (1.3) but, surely, it will not be common
either. Even so, we believe that the formidable task of
experimentally attacking problems of this sort with
weak (or electromagnetic) probes will eventually have
to be faced, if it were only because, to our knowledge,
there exists no alternative to obtain the scattering

the problem relative to the polarization direction of the parent
baryon.

3 A. Pais and S. B. Treiman, Phys. Rev. 168, 1858 (1968). In
what follows this paper is referred to as I.' Compare estimates for Z,& decays by Y. Singh I Phys. Rev.
161, 2497 (2967)j.
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information under discussion from purely strong-inter-
action phenomena without uncontrollable approxima-
tions. To be sure, one might be able to obtain such
scattering data from appropriate reactions, if one were
able to justify extrapolations of reaction amplitudes to
some unphysical region. ' However, we shall continue
to take the view that for extrapolation problems the
more important question really is to 6nd the extent of
justification with the help of known scattering data.

We next summarize our 6ndings, first for the
decays, then for the v reaction. We believe that the
case of the antineutrino reactions may well turn out
to be of relatively greater interest, but it is methodo-
logically helpful to start with the decays.

A. Decay Problem

The general structure of the problem is conveniently
represented by a density matrix p in the A spin space:

p=I+(e+x) s+(e—x) A

+o;Z&($,,+A;,+b;)R) . (1.4)

X is the polarization vector, assumed to be determined
separately. e is the Pauli spin vector. 2I is the spin-
averaged intensity distribution. The vectors S and A
determine single-polarization distributions. The tensors
S;; (syrnrnetric and traceless) and A,; (antisymmetric)
and the scalar E. describe polarization correlations. It
is helpful to de6ne a symbol 2 as follows:

Z= any one of the sixteen distributions

I, S, A, s... w, ,-, z.
We recalP that any Z depends on five dynamical
variables. Our choice of these variables is the same as
that in I. This will be recapitulated in Sec. II. A, where
we shall see that any Z can be decomposed into nine
parts:

Z=Z&')+Z(') cos28~+Z(') sin'8~ cos2&
+Z"' sin28~ co&+Z(5' sin8~ cos@+Z") cose~

+Z& ) sin8~ sinP+Z('& sin28~ sing
+Z'" sin'8g sin2&. (1.6)

~ Such extrapolations have proved to be most useful to obtain
Ax-scattering information from E p scattering, which led to the
prediction of Fo*(1405).The extrapolation involved extends over
an energy region ~35 MeV. The same reaction when invoked
for the low-energy 5-wave h.~ scattering would demand an
extrapolation over a region ~185 MeV.

Here 8~ and $ are the two "trivial" variables (i.e., the
variables that do not appear in the ".4 form factors).
They are, respectively, the dilepton "decay" angle and
the azimuthal angle between the normals to the planes
defined by the xA. system and by the dilepton system.
As a result of the single assumption of lepton pair
locality, the Z('& only depend on the three remaining
variables but the (8~,&) dependence in Eq. (1.6) is

fully explicit. The recurrence of the same ninefoMness
as found in I is due, of course, to the fact that this
expresses pure lepton pair properties, including both
their local pair structure and their parity-mixed
structure.

I.et us now do some counting. For EE4 we met' four
form factors; for m&= 0 this number effectively reduces
to three. In this massless case, for fixed values of the
triple of variables on which these form factors depend,
we had, therefore, 6ve real quantities to be fixed:
three absolute values and two relative phases of those
form factors. For m~=0, all information has to come
from Z=l. On the other hand, we showed' that the
nine quantities I('~ can be measured separately. Hence,
the intensity spectrum not only determines the E,4

form factors, as it has to, but actually overdetermines
them.

For ™,4 decays the situation is different. For "~4,

m~/0, one 6nds that there are 16 form factors. For
,4, m, =0, this number electively reduces to 12. Thus,

where five quantities had to be determined for E,4, the
corresponding number is 23 for, 4. While also here we
can get at the nine quantities I(" separately, the in-
tensity spectrum alone is therefore insufFicient to
determine the form factors. Nor is this a great surprise,
because now we have of course a variety of hadron
polarization distributions at our disposal.

Because of the great complexity of the, 4 problem
when treated in full generality, and because of the
absence of transparent general results, as just noted,
there is not much merit in detailing the general answers,
i.e., those containing all partial waves of the m A system.
This is all the more true because, with the limitations
on phase space, it seems ample to consider only the
S- and the two P-wave amplitudes. The various dis-
tributions obtained in this approximation will be dis-
cussed in Sec. II.

Even then the problem is still quite complex. We
shall meet four SI~2 form factors, four for P~~2, six for
P3~2. Our partial-wave expansion of course makes
explicit the dependence on 8, the xA decay angle.
The 14 partial-wave form factors just enumerated
depend only on two variables, the invariant dilepton
mass gs~ and the effective mA mass gs. In order to
get at the S~f2 mA phase shift by the present methods,
P-wave form factors had better be there signi6cantly,
as we are relying essentially on SP-interference effects.
However, it seems reasonable to assume that, for the
small vrA energies concerned, the P&~& and P'3/2 7f A phase
shifts are negligible compared with the Sj~2 phase
shift. In other words, we assume that all P-wave form
factors are real; and experimental tests for this assump-
tion will be indicated below /see Eq. (2.44)j. If this
last assumption is satisfied (and only then) will it turn
out that we will be able to get the SIf2-wave phase
shift, for fixed s, and without loss of information by (1)
integrating the distributions over all values of s~ and
8 and then (2) taking ratios of certain specific pairs of
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the thus averaged Z&". In all, there are 36 useful pairs
Lsee Eqs. (2.47)—(2.49)5.

cosh8&'= -', X '(2w' —s—t —M'), (1.10)

X= ,'PiV' 2M'(s t)+ (s+—t)'5"—' (—1.11)

where 3f is the nucleon mass. The Z(" depend on s,
t, and 8 only; the m and P dependence is fully explicit
from Eqs. (1.8)—(1.11).

'Equations (1.9)—(1.11) refer specifically to the case of zero
lepton mass.

B. v Reactions

As we show in Sec. III, it is possible to use large
parts of the formalism developed for ™,4 in such a way
that results for the reaction (1.3) can be obtained with
relatively little labor. However, this is true only under
such circumstances where we may neglect the role of
the muon mass. Thus, the results of Sec. III apply to
high-energy antineutrino reactions, where the bary-
centric energy of the (v,p) system is large, while at
the same time the invariant mA mass is below the first
inelastic threshold, so that the kinetic energy of the
muon is large compared with its mass.

By the same reasoning as used for the decays, m.A
scattering information is contained in the various dis-
tributions characteristic for the reaction (1.3). A de-
scription in terms of the A spin density matrix p, Eq.
(1.4), is again appropriate. X now refers to the polariza-
tion of the target nucleon. Z is again defined as in Eq.
(1.5).

Let us compare the five variables describing this
reaction with the set of five corresponding to the decay:

decay: s st&, 8 8g, Q

reaction: s, t, 8, zv, P.
That is to say, sg is now replaced by t, the invariant

lepton momentum transfer. Instead of the final-state
decay variable 8~ we now must deal with m, the bary-
centric energy variable of the reaction. (More detailed
definitions are found in Sec. III.) s, 8, and &t have
essentially the same meaning in both cases.

The reaction form factors depend on only three of
the five variables, namely, s, t, and 8, if lepton pair
locality is assumed once more. Correspondingly, m and
p are the trivial variables in this case. We see in Sec.
III that now the Z's, in general, take the following
form:

Z= Z&"+Z&" cosh28g'+Z&@ sinh'8g' cos2$
+Z(4& sinh28 ' co&+Z&~& sinh8 ' co+
+Z'" cosh8&'+Z&'& sinh8&' sing

+Z&'& sinh28&' sin&t+Z"' sinh'8&' sin2&t, (1.8)

where a hyperbolic angle 8~' has been introduced,
defined by'

sinh8&'= X '$3Ps w'(M'+s+t)+w'5&", —(1.9)

At this point we note the essential difference between
the decay and the reaction problem. As has been
st.ressed in I, the variables 8& and P in Eq. (1.6) can
be treated as statistically discrete; one needs to lump
the data in at most four (8&,&t) domains in order to
separate out the nine Z"'. Obviously, taking 8~ discrete
has no 8~' or m counterpart.

Let us then, to start with, disentangle Z-parts by
distinct P dependences alone. This yields a fivefold
decomposition into (Z&'&, Z&", Z&'&); Z&'&; (Z& &, Z&'&);

(Z&"
&
Z'"); and Z'". By (Z"', Z"&, Z&e&) we mean the

agglomerate of the corresponding three terms in Eq.
(1.8) which is &t independent. Likewise, (Z&4', Z&'&)

~ co& and (Z&'&, Z&") ~ sin&P, while Z&s& ~ cos2@, Z&~&

~ sin2$. To be sure, one can make further (experi-
mental) distinctions within the agglomerates by the
recognition of various distinct m dependences. How-
ever, the reader will verify that, after having done so,
one still will be unable to use integrations over t (as
we used integrations over s& for decays) to obtain
averaged ratios of Z(" which yield the phase shift.

On the other hand, no further decomposition is
necessary in the cases of Z(') and Z"', each of which
are singled out by their p dependence alone. The anal
step, described in Sec. III, is then to take the Z(3) 's

and Z~'& 's, and to integrate over 8 and t. Ratios of the
thus averaged Z(" give the S-wave phase shift, in
eight independent ways. Moreover, these particular
eight ratios are independent of w. Hence, the eight
phase-shift determinations can all be made without
reference to a detailed knowledge of the incoming f
energy spectrum.

In conclusion, vre reiterate that the phase-shift infor-
mation obtained here applies to situations where the
sects of the muon mass may be neglected. This
implies in particular that we have not made use of
information obtainable from muon polarization at such
barycentric energies of the reaction where the muon
mass cannot be ignored.

II. R,4 DECAYS

A. Preli~i~aries

Consider either reaction (1.1) or (1.2) and denote
by E, kA, k, p, and q the momentum four-vectors of

, A, vr, e, and P„respectively. The masses are E'
M2 (k~)'= —nI'—k'= —t&' q'=0& and we also put

p'=0 throughout. Define

P=ks+k, Q=k' —k, L=P+q, E=P—q. (2.1)

The quantities I =——s, I.'=——s~

constitute two of our five variables. The other three
are

(i) 8, the angle between the pion three momentum
in the ~A rest frame and the line of Bight of the mh. in
the frame K=O;
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(ii) 8g, the angle between the electron three momen-
tum in the dilepton rest frame and the dilepton line
of flight in the frame K=0;

(iii) 4, the angle between the normals to the planes
of the mh. system and of the dilepton system, both
de6ned in the frame K=O.

These angles are conveniently exhibited in the mA

rest frame, in which we introduce Euclidean coordi-
nates, with the three direction pointing along I = K,
the two direction along LXQ, and the one direction
along (LXQ) X L. Thus, Q lies in the 13 plane, and 8
is the angle between Q and the three axis. p is the
angle between the projection of N on the 12 plane and
the one axis (going counterclockwise from the one
axis to the N projection). Finally, 8& appears in this
frame in terms of the magnitude of the X„components.
Ke find that

A and B contain the lepton variables. We make the
latter dependence explicit by putting'

A=a $, Ba=baaha,

where the $; are defined by

s= $;e;.

(2.17)

(2.18)

Here a denotes the space components' of 2z, Eq. (2.14),
while e; is the unit vector along the ith direction of the
momentum coordinate system, defined above, in the
md rest frame.

Ke now compute the decay probability for a ™
considered prepared in a polarized state, with a polari-
zation vector denoted by X, as in Sec. I. Thus, we sum
over the lepton spins, but wish to retain a spin density
matrix structure in the spin space of the A. The decay
distributions can then be written as follows:

X~=sg ''sine~ cosP,

X~= sg 'I sin8~ sin@,

¹

—— s"'(P L—) cos8~,

(2.2)

(2.3)

(2.4)

1 mX( Q[
d'ztj = (G' sin'8a) pdsds2d cos8

(42r)' M2+s

Xdcos8ghg cosa'. (2.19)
F2—— ilV4—= s "Xcos8l, X=((P L)' sst]''2. —(2.5)

Note that

P L,= ——,'(M' —s—s(), (2.6)

X=2[M4—2M2(s+s()+ (s—s()2)"2. (2.7)

The remaining kinematic quantities needed for what
follows are

Here 8 denotes the polar angle, in the frame K=0,
between X and P. P is defined in the same frame as
the azimuthal angle between the normal to the plane
defined by X and P and the plane de6ned by the ~A
decay. p is the A. spin density distribution de6ned in
Eq. (1.4), but where now the following connection
with the quantities a and b2 of Eq. (2.17) can be
established.

Qo= -2Q4 Lo= -2L4.

Again in the mA rest frame

(2 g)

JQf =s "'Ls—(m+j2)'j'12Ls —(m j2)'j"— (2.9)

I= (a *aP+b2 *bpP)r P,

S2——(a *baP+aPb2 *)r P,

Ag, ———is~i„b).*b
primp,

(2.20)

(2.21)

(2.22)I=&-»2X,

Q2
—s—1/2 (m2 ~2)

L2= —s "'(P L).

(2.10)

(2.11)

(2.12)
+sj 22jjk(aa 82p apeak~ )r~p&

&= (aa*ap+ 2b2a*bap)rap.

(2.24)

(2.25)

5,2.= (b; +fj p+bj +b;p 2b;jb2 +b2p)r —p, (2.23)

The transition amplitudes for, 4 decays are given
by'

(2.13)(G/u2) sin8o BR,

m=(xA~~, + V, (=-).„
where

2g ——2j (p)yg(1+y2) 2'(0)

is the lepton current, which satisfies

L}e}=O.

(2.14)

(2.15)

Upon reduction to the two-component baryon spinor
space, 3' will have the general form (suppressing
baryon spinors)

0R= A+o" B. (2.16)
7 6 is the Fermi constant. 8g is the Cabibbo angle. Aq and V7,

are the strangeness-changing hadronic axial-vector and vector
currents, respectively.

The symbol r p is de6ned by

r p=L Lp AXp+s(8 p—+ic,p,(SrL2 L„¹J.(2.2—6)

The explicit form of the v.
p in terms of our dynamical

variables follows from Eqs. (2.2)—(2.12). For easy
reference, the r p are tabulated in the Appendix LEqs.
(A1)—(A10)j.

Let us locate the variable dependences in the ex-
pressions (2.20)—(2.25). We have

a =a (s,si,8), bg, =b2 (s,s&,8).

All (8~,$) dependence resides in the r p. The r p are
speci6ed in terms of the nine independent real expres-

A summation from one to three over doubly occurring indices
is implied.

'Because of Eq. (2.15), the time component of e7, can be
eliminated from the description.
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sions given in Eqs. (A1)—(A9). Evidently, the following
properties of Z, defined in Eq. (1.5) are generally true:

(i) Every Z has a ninefold decomposition of the form
given in Eq. (1.6).

(ii) Consider the dependence of any Z on 8~, all other
variables being integrated over. Then,

dZ/d cos8~= a+b cos8/+c cos'8/. (2.27)

(iii) Likewise, integrating over all variables but @,

dZ/d4 =a+P co++y sing+8 cos2$+ e sin2P. (2.28)

Equations (2.27) and (2.28) are the simplest direct
consequences of lepton pair locality and provide tests
for this assumption.

Thus far all results are general. For the reasons
explained in Sec. I, we now turn to the approximation
where orbital angular momentum values 0 and j. in the
mA system are retained only. Then 5R defined in Eq.
(2.13) can be written as follows:

our analysis through the rela, tions

a;or a;=(la;I or la;f)e", i=1, 2

p' or 0'= (Ip*l or
I p'I)"',

(2.34)

(2.35)

1 m)Q)
d'w= ~~ sin'8e W(p)ds

(&)' 3P+s

y, or y;= ([y;[ or [y;j)e'~", j=1, 2 3. (2 36)

Correspondingly, these phases appear in a specific way
in the p and co symbols given in Eqs. (A17)—(A30), and
hence, via Eqs. (2.30)-(2.33) they appear in Eqs.
(2.20)—(2.25).

As has been stressed in Sec. I, we are only concerned
with such extractions of phase shifts which can be ob-
tained by optimal integrations over all variables that
are extraneous to the determination of the s dependence
of the phase shifts. Accordingly, instead of Eq. (2.19),
we consider the reduced distributions

&/2 (a&~a2) +5 1/2 (al) a2) ++I/2 (pl)p2)

+f 1/2 (pl) p2)++3/ 2(71/y'2/r8)

+&v2'(vi, v2, vs) (2 29)

where

Xdsgd cos8= 2 Jd's&, (2.38)

Xdcos8ghg cos8df, (2.37)

Sl,/2 ~&/2 +3/Q refer to the contributions which
stem from the Am system in the corresponding Lg state.
The superscripts A and V distinguish contributions
from the axial-vector and the vector current, respec-
tively. The a' s, p's, and y's, barred and unbarred,
represent the set of 14 form factors, functions of s and
s& only, which contain all dynamical information.
Explicit representations for the various S and I' quan-
tities are given in the Appendix fEqs. (A11)—(A16)j.

In our 5 and I' approximation, the 0 dependence of
the u and the b~ can now be made explicit. Ke have

Xpds~cf cosg. (2.39)

XZdsgd cos8. (2.40)

The (Z)'s satisfy the same ninefold decomposition,

(p) is the same function of the 16 quantities (Z) as p is
of the Z, where

6~=p~ sln8) 0!=~
p

2

o8 =

/dan+

pg cos8,

(2.30)

(2.31)

(Z) =(Z&")+(Z&s') cos28g+

as do the Z's, where

(2.41)

b, =p/, sin8, (ka)=(13), (31), (23), (32) (2.32)
=co/, „+p/t, cos8, otherwise.

(Z'*') = XZ&'&Is)d cos8. (2.42)

All p and ~ quantities, generally functions of s and s~,
are linear combinations of the a, p and y form factors.
These connections are recorded in the Appendix
LEqs. (A17)-(A30)j. The reader will readily observe
the existence of numerous 8 tests, Lsimilar to the 8/ and
p tests given in Eqs. (2.27) and (2.28)j which provide
checks on the validity of the 5 and I' approximation.

Ke are now prepared to discuss the ways in which
mA phase-shift information can be extracted from ™,4

decays.

B. ~A Phase-Shift Extraction

I.et 5, 5', 6" denote the S~/~, I'j/2, I'3/2 ~A scattering
phase shifts, respectively. These phase shifts enter into

The (Z"'), which depend on s only, can be determined
individually (for any Z) by making large cuts in the
8~ and fIt distributions along the lines detailed in I. The
question before us is then whether the average quan-
tities (Z&") can give us tangents of phase-shift differ-
ences by taking appropriate (Zt'&) ratios. This was
possible, we recall, for the xm phase shifts in the
instances of the E,4 intensity spectrum and the E„4
polarization spectrum. ' A careful inspection of the
present situation reveals first of all the following two
general facts:

(1) The method of taking ratios does not work in
the general presence of P-wave phase shifts. As dis-
cussed in Sec. I, this led us to consider the presumably
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reasonable approximation

S'=S"=0. (2.43)

The experimental validity of Eq. (2.43) can itself be
checked with the observations on the (Z&"). Thus, for
example, Eq. (2.43) implies that

(I(9)) 3(R(&)))=0 (2.44)

(2) Even in this approximation, the set (I&'&) by
itself does not su%.ce for our purposes. That is, the
ninefold decomposition of the intensity spectrum alone
does not carry enough information. It is indispensable
that polarization distributions be considered as well.
We give next a complete list of determinations of
tan&& in terms of (Z&'&) ratios.

I combined with E yields two of these:

tanb = —-'(I&'& —3R(")/(I" —3R"')
= —2(I(s& —3R&'&)/(I&" —3R&'&), (2.45)

which have perhaps the "experimental" advantage that
they do not depend on the orientations of momentum
three-vectors of the individual decay event. All the
others do. They are

tan5= ——(S &7&)/(S, & ))= —2(S & )/(S & )
=2(A»"')/&A»'") = 2(A»"')/(A»"')
= —2&S "')/(S "')=—l&S '")/&S "')
= —,'(A3"))/(A, ('&) = 2(A, (8&)/(A, (

= l&T '"&/&T "')= l&T "'&/&T. "'&
= —2&T8"'&/&T "')= 2&T&"')/(T&"'&
—2(T (8))/(T2(5&) — 2(T (8))/(T (5))

Here T; is defined as

(2.46)

T,=S;;+2(I R), t=—1, 2, 3. (2.47)

All ratios in Eq. (2.46) refer to diferent parts of one
given Z. In addition there are 20 ratios between corre-
sponding parts of distinct Z's. They are

(A mg(6))/(S (6)) &S ( ))/(A 3y ) &S» ( )/(A ( ) (A 2
( ))/&Sa ( )) (A 2

( )+A ( ))/(S ( )+S ( ))
&&) 3A (2))/(S&o) 3S)(~))= (S20)+S2(2))/(A 3&(&)yA &(2))—&S2o) 3S2(2))/(A 3 0) 3A ~&(2))

=(A,&»+A, &'&)/(S»&»+S3$&'&)= —(A2&'& —3A2&'&)/(Sl&&" —3SI&&")=(Sg &'&yS2 &'&)/(A &"+A &'&)

= —(S23&'&—3S23&'&)/(A &&'&—3A) &'&) (2.48)
and finally

tanh = —&S)"))/(A 23'")=(A»'")/&S2'") = (A»"')/&S&"') = —(S2"')/&A»"'&
= —(A)"')/(Spa"') = —(S))& ' )/(A 2&' )=(A g"')/(S&)&&")=(S2&)"')/(A &"'). (2.49)

To recapitulate: Eq. (1.4) defines a total of sixteen
independent, spectra, describing the spin-averaged decay
distribution and various spin-dependent sects. Each
spectrum has a ninefold decomposition with respect to
the variables 8&, &t&, according to Eq. (1.6), the coeflici-
ents depending on the variables s, s~, and 8. Integrating
over sg and 8, the cotjIicients become functions of the
single variable s, and the results recorded immediately
above describe the various ratios which serve to deter-
mine the h.-m S-wave phase shift as a function of the
variable s. %e have not discussed here the geometrical
arrangements required experimentally to isolate in turn
the various elements of the density matrix, e.g., the
correlation functions S;;, A;, , etc. What is required is
obvious, and experimentally formidable.

III. ANTINEUTRINO REACTIONS

We turn now to a discussion of the reaction (1.3).
For the sake of brevity, the notations are chosen so that
large parts of Sec. II can be taken over for the present
purposes without much rewriting. This necessitates the
use of a number of common symbols for the decay and
the reaction processes, but where some symbols have
a diGerent meaning in either case. The reader is warned
wherever this happens.

Denote by E, k~, k, p, and q the momentum four-
vectors of the nucleon, A, ~, p,, v, respectively. The Eg——t'~' sinhe)' co~, (3.3)

masses are &2= —JP P~= —~2 $2= —&~ *2-1
and q'=0. Define

P=k'+k, Q=k' —k, L= p q, N= p+q. (—3.1)

Please note the replacement q ~ —
q in the definitions

of L and N in Eq. (3.1) as compared with Eq. (2.1).
The quantities

A=——s, L'=—t, (q+X)'=——r&)s (3.2)

constitute three of the five independent variables of
the problem. The remaining two are

(1) t&, the angle between the pion three momentum
in the ~A rest frame and the line of Qight of the mA in
the laboratory frame, K=O.

(2) p, the angle between the normals to the planes
of the xA system and of the dilepton system, both
defined in the frame K=O.

%'e confine ourselves to configurations where m is so
large and s is so small that the muon energy is large
compared to m„. Accordingly we put m„=0, so p'=0.

Next, we compute the same kinematic quantities as
were given in Kqs. (2.2)—(2.12) for the decay, and use
the same coordinate system in the m A-rest frame as in
Sec. II, with reference to the (redefined) I, and to Q.
We obtain



PHASE SH IF T F ROM P REACTIONS AN D:-e4 DECAYS 2371

(3.4) We record these here once more:X2——t'" sinh8~' sing,

X3———s '"(E L) cosh8g', t»8= —&S,"')/(W „"'&=&a „"&&/&S,"&&

= &g q3(3))/&S~(3)) ——&S2(&))/(g 3~(3))
'

&/&S ')= —&S '»/&a, "&
=(~."'&/&S "')=(S "'&/&~ "')

(3.5)

Xo——s—"'X cosh8(', X=[(P L)'+st 1'". (3.6)

(3.13)

Ke repeat that these are ratios of functions of one
single variable, the invariant xA mass. Ke have inte-
grated over all values of the lepton momentum transfer
t and of the xA decay angle 8. Moreover, the ratios are
independent of m. Hence, the phase-shift determina-
tions Eq. (3.13) are independent of the spectrum of the
incoming v energies.

(3.7)I'.L= ——'(M' —s+/) .

The transition matrix element has again the structure
given by Kqs. (2.16)—(2.18). By a reasoning similar to
the one used to obtain Eq. (2.19) we get the following
differential cross-section expression:

APPENDIX

The hyperbolic angle 8r' was defined in Eqs. (1.9)—
(1.11). ((}(, Qo, (L~, and Lo again take the form
(2.9)—(2.12) but where now X is as in Eq. (3.6), while

1 rrIMw'f Q i

H sin'8g — pdsdk
2(4s)' (ws —M')'gs

The quantities r s defined in Eq. (2.26) are fully
speci6ed as follows:

Xdcos84g cosrMf, (3.8)

p is again given by Kq. (1.4), where X now denotes the
nucleon polarization. The phase space has six dimen-
sions, as compared with seven in Eq. (2.19) because
now one of the variables, m, refers to the initial state.
8 and f have the same meaning here as for the decay.
The Eqs. (2.20)—(2.26) also apply to the reaction case."
%e further note that all Z's have the decomposition
given in Eq. (1.8) and that [in the same sense as for
Eq. (2.28)] the relations

dZ/dP=a+P cosP+y sing+8 cos2$+~ sin2$ (3.9)

Ter= si(1—slI1 8g cos Q),

'r22 sr(1 —sin'8r sin $),
r33 ——s '(P L,)' sin'8~,

Reri2= —
~ s~ sin'8~ sin2$,

Imr~2= s~ cos8~

Reri3= —,'y sin28~ co+,
Imr j.3=y s~n8) sing,

Rer23= 2y sin28~ sing,

Imr23= —y sin8~ co@,

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

(p) = fI chd cosll (3.11)

is expressible in terms of

(Z(r)& = Z|:"d1d cos8, (3.12)

where the (Z&o) depend on s only. We again use Eq.
(2.43). One will verify that of the 36 expressions for
tanb, in the case of decay, only the eight relations
(2.49) survive as useful ratios in the case of reactions.

' In Eq. (2.26) it is of course necessary to replace s& with —t.

provide a large number of tests for the lepton pair
locality assumption.

Also for the reaction case we employ the 5 and P
approximation, so that Eqs. (2.29)—(2.36) and (A11)—
(A30) may be used once more.

In the reaction case, the reduced distributions are

1 mMw[Qf
W sin'8g )ds@

2(4s)' (w —M')'Qs
XdcosrMiP, (3.10)

where

where

y=s "s "(8 L). —
(A10)

Ke have used the following explicit representation
in baryon spin space of the S and P quantities which
appear on the right-hand side of Eq. (2.29).

S)(2"——n)f .s+znsa (Xxs), (A11)

Sgipv ——ug(e X)(X, s)+a2(e. s), (A12)

f'„,"=P [Q'—i (Qx.)j
+(P.-P.)C')[Q ~-'- (Qx@j, (A»)

P„,v=P, [(Q s)(rr X) ~X .(Qx—s)
—(~.Q)(~.s)+(~ e)(Q ~)j
+(pm —P~)(& e)[2(~ ~)(Q ~)—(~ Q)j (A14)

2'„;=~,[2Q'+i (Qx.)j
+(,.-„)Ã')[2Q L+'.(QX@j
+~.[(Q ~)C')-(Q')

+i(Q ~)f (~X ))j (A15)

f'i '=~ [2(Q.e)( ~)+(~ Q)(& e)-( ')(Q &)+ ~.(Qx.)j
+ (l'2 —

Y&) (X, e)[(e L) (Q L)+ (p Q)j
+~ [2(-@(Q@(~'&-(-~)&Q')-( *)(Q L)3 (A16)
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pi=Ps+2vi —vs,

Zps=P1 'rl,

ps =Ps+ 2ys,

603= CX] ~

~W

pll p22 Pl Yl 7s t

(A17)

(A18)

(A19)

(A20)

(A21)

Baryon spinor symbols have been dropped. L and Q
denote unit vectors along L and Q, respectively. s is
the three-vector part of sq, see Eq. (2.14).

Correspondingly, the ~ and p symbols de6ned in
Eqs. (2.30)—(2.33) are given by

pss =Ps+2m s,

ZP12 = ZP21 P1+71++3p

p ls Ps+72

psl Pl+2 rs Ys I

&P23 P2 P2 y

spss Pl Yl y

ll 22 2 p

6033=0!]+CX2)

12 2l, ~&2 ~

(A22)

(A23)

(A24)

(A25)

(A26)

(A27)

(A28)

(A29)

(A30)
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Crossing-Symmetric Regge Amplitude, Complex Trajectory Functions,
and Phase Contours*

G. D. KmsER

Center for Theoretical StuChes, University of Miami, Coral Gables, F/orida 33124
{Received 4 November 1968)

The behavior of a crossing-symmetric Regge model is discussed in the complex t plane at fixed s. The tra-
jectory function is allowed to take on an arbitrary imaginary part. Phase contour maps are drawn.

l. INTRODUCTION

HE purpose of this paper is to add to the descri p-
tive literature on the phase-contour model. ' 3

In Ref. 2, a crossing-symmetric Regge model is de-
veloped with the drawback that the trajectory function
is allowed no more than a small imaginary part. %e
erst of all, in Sec. 2, investigate the phase and modulus
contours of a crossing-symmetric Regge amplitude in
the complex a plane (a is the trajectory function). A
linear parametrization of a is used to transfer to the
t plane at axed s (see Sec. 3). It is shown that zeros
deduced in Ref. 2 are very convenient for the drawing
of phase contours in a simple way. In Sec. 4, the effect
of secondary trajectories is considered and modihcations
made to phase contour maps.

Throughout this paper we shall be concerned with an
amplitude that is even under crossing and describes the
scattering of equal-mass spinless bosons of mass ns. The
kinematic invariants s, t, and I are those used in Refs.
1-3.

*Research sponsored by the Air Force Once of Scientific
Research, Once of Aerospace Research, United States Air Force,
under AFOSR contract/grant No. AF AFOSR 1268-67.' C. S. Chiu, R. J. Eden, and Chung-I Tan, Phys. Rev. 170,
1490 (1968).' R. J. Eden and Chung-I Tan, Phys. Rev. 170, 1516 (1968).

I R. J. Eden and Chung-I Tan, Phys. Rev. 172, 1583 (1968).

s &'& exp(ssrt 1——',a(t) j)
F(s,t) =

I'(a(/)) sinLsssra(t))
(2.1)

This amplitude is valid when we approach the physi-
cal sheet in the limit s+i0 from complex values of s. The
r function is introduced as a convenient parametrization
of the existence of zeros of the Regge residue in the
physical region. The sine function introduces poles at
positive even-integer values of n and cancels some of the
zeros produced by the F function; the remaining zeros
occur at negative odd-integer values of o.. WVe now 6x s
real, positive, and in the limit +i0, and investigate the
phase contours and modulus contours of amplitude
(2.1) in the complex a plane. It is straightforward, but
tedious, to do this and the results are presented in Fig.
1 for s=300. To transfer to the complex t plane, we
invent a parametrization for a(t) and read phases
directly oG Fig. 1.For example, a linear parametrization
of a(/) would mean that phase and modulus contours in

2. PHASE CONTOURS OF SINGLE REGGE
AMPLITUDE IN COMPLEX a PLANE

In Ref. 2, a discussion is held about the phase con-
tours of a Regge amplitude that is even under crossing.
For example, when s (the square of the c.m. energy) is
large and t (the square of the four-momentum transfer)
is small, the following amplitude is assumed to dominate


