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We give a model-independent exact solution in S-matrix terms to the problem of relating proper vertex
functions and physical scattering amplitudes, a problem studied extensively by Ida. The solution is of the
Omnes type, supplemented by the solution of some algebraic equations. We use conventional deanitions
of the renormalization constants Z~ and Z2 to study the composite limit (Zt=Z2=0) in S-matrix theory.
A model-independent discussion of the same problem is given in terms of the Dyson equations, where essen-
tially the same results are recovered, in a different language. Possible applications to the electromagnetic
mass shifts of composite particles are briefly discussed, including problems of gauge invariance.

I. INTRODUCTION

~ VER the last few years, a great many articles have
been written concerning the connection between

compositeness and vanishing renormalization constants,
based in large part upon ideas put forth by Salam. ' The
fundamental ideas in this field are well known, and we
have nothing new to add to them; our concern in the
present paper is to state these ideas in a model-inde-
pendent way, both in S-matrix theory and in field
theory, with a view toward possible future applications
to such things as the electromagnetic mass shifts of
composite particles. We present some new results which
connect the S-matrix approach with field theory, and
clarify some known results connected with the passage
to the composite limit.

There are two overlapping fields in which the com-
positeness problem can be studied: S-matrix theory, and
field theory (as exemplified by the Dyson equations).
In S-matrix theory, we have sol~ed a problem first
phrased completely by Ida. ,' ' which we state as: Given
the physical S matrix, say for 7l-Ã scattering, what is
the proper mEN vertex function as a function of one
nucleonic mass variable? This is to be contrasted to the
essentially trivial problem of constructing the form
factor from the physical phase shifts. With this solution
in hand, we are in a position to study the composite
limit, in much the same way as Kaus and Zachariasen, 4'
and Osborn' (among others) have done. The proper
vertex function appears in the decomposition of the
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partial-wave S matrix into two parts, of which one
contains the nucleon pole and the other is one-nucleon
irreducible but unitary. "This same decomposition was
used in Refs. 4 and 5, and our Sec. II can be considered
as an extension of the relevant part of Ref. 4. We need
not repeat in detail the arguments in Ref. 4 concerning
the bootstrap philosophy, or the way in which the
vanishing of renormalization constants insures that the
"elementary" nucleon drops out of the scattering ampli-
tude, to be replaced by a composite nucleon. What
happens, in accordance with Ref. 4, is that the Nnre-

normulised proper vertex function and propagator are
finite and well defined in the composite limit, while
their renormalized counterparts are not.

This last circumstance is an interesting one to study
with the Dyson equations. We have carried out such a
study, valid for any finite field theory, in Sec. III and
find that the results (so far as field theory and S-matrix
theory are comparable) are in agreement with those of
Sec. II.We can, in addition, construct formulas for such
things as electromagnetic mass shifts of composite
particles. The mass-shift formula comes in several
guises: one, related to S-matrix theory, in the Dashen-
Frautschi7 formula; two, a Bethe-Salpeter type of
formula', three, a dispersion formula based on the
Kallen-I. ehmann representation. ' They are all the same
when evaluated exactly; it is when approximations are
made that trouble comes in. The Dashen-Frautschi
formula is plagued by infrared problems, ' which are
related to gauge-invariance problems. Any dispersion
integral which saves only certain intermediate states is
not gauge invariant. In the Appendix, we show how to
select intermediate states in the dispersion integral so
that gauge invariance is automatic. This is the analog
of Feynman's old proof that we must add photons to
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II. S-MATRIX CALCULATION OF PROPAGATOR
AND VERTEX FUNCTION

In this section, we restudy the problem of Ida,"
which is to calculate the proper vertex function and
propagator with 5-matrix techniques. Of course, the
composite limit is of particular interest; we show how to
recover the results of Kaus and Zachariasen4' and
others.

A. Kinematics and. De6nitians

The renormalizecl propagator we write as 5(p), where
p= p„y&. Take W= (p')'12; then it is convenient to
define a function Z(W) by

S '(W)= (W—M)Z(W). (1)

By definition, Z(M) =1; according to the usual field-
theoretic arguments, the nucleon wave-function renor-
malization constant Z (conventionally written Z2)
is recovered from the asymptotic behavior of the
propagator:

(2)lim Z(W) =Z.

A dispersion relation for Z(W) can be obtained from
the Kallen-Lehman representation:

W—M - r(W')dW
Z(W) = 1+

x „5"'—8'

+pole terms, if any. (3)

It turns out that Z(W) has at least one pole, for
sufFiciently small Z. The spectral function ~ vanishes in
the interval —(M+p)&W(M+p, (where M is the
nucleon mass and p is the pion mass), otherwise, r&0.
If we save only mX intermediate states

r (W) = 3G2p(W)L ) F(W) (
2/(W —M)2$,

W&M+@, W( —(M+p),

p(W)= ~k(W)(E —M)/8 W~

and k and E are the center-of-mass momentum and
nucleon energy, respectively, in mE scattering:

k(W) = (2W) 'LW' —(M+p)'g'~'
&& PW' —(M —p)'3"' (6)

M= (2W) 'f(W —M)' —p'—j. (&)

The renormalized proper vertex function F (W)
is normalized so that F(M)=1 (hence G'/4r=14. 5,

the charged legs of a diagram in all possible ways, in
order to save gauge invariance.

We have been infIuenced by a number of authors
other than those explicitly cited here; a full list of
references would be inordinately lengthy. Hayashi et a/. "
have recently published a well-referenced review paper
which should be consulted for other publications.

the s.X coupling constant). F (W) has cuts for
W&M+p, W( —(M+p); the phase of I' one these
cuts is related to the /=1, J=-,' xX scattering ampli-
tude (for W&M+p), or /=0, J=—', amplitude Lfor
W( —(M+p) j. To simplify the notations and calcu-
lations, we set the 0+ scattering amplitude equal to zero
(experimentally it is small in the low-energy region),
and concentrate on the 1 amplitude; further, we save
only the elastic channel, although the generalization to
many channels is straightforward.

F(W) =D(M)D(W) '. (14)

If the scattering amplitudes decrease sufliciently fast at
infinity, we can set D(~) =17(~)= 1. LStrictly speak-
ing, this is in confIict with the Lehmann-Symanzik-
Zimmermann (LSZ) theorem, "which requires F(W) to
vanish at W= ~, so that Z as calculated from (3) is
finite. The required rate of decrease of I' need only be
logarithmic. We cannot treat the large-W' region accu-

"K. Hayashi, M. Hirayama, T. Muta, N. Saito, and T.
Shirafuji, Fortschr. Physik 15, 625 (1967).

~ H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo
Cimento 2, 425 (1955).

B. 8-Matrix Approach

Let us de6ne the invariant amplitude for xÃ scatter-
ing with /= 1, I=J= & by

T(W)=p(W) 'ai (W)

such that in the elastic region

oi (W)=e" sinh.

This amplitude T is free of kinematic singularities. If
we take the 0+ amplitude to be zero, then T(W) has a
unitary cut only on the right-hand TV axis; what would
correspond to the normal left-hand cuts in the 8"plane
lie along the imaginary axis.

First, assume that the nucleon is elementary, so that
Zi and Z are finite. Then F(W), Z(W) are also finite.
We may write T(W) in terms of its one-particle re-
ducible parts and a remainder T(W):

T(W) =(—3G'I'(W)'/Z(W)(W —M)]+T(W). (10)

The first term on the right comes from the elementary
nucleon pole. Following Ida,"the unitarity relation for
F(W) is

ImF(W)=F(W)T(W)*, W)M+p. (11)

Ida then proves that T(W) is a unitary amplitude:

ImT(W) =p(W) ~
T(W) ~', W)M+@. (12)

It follows that we can write

T(W) =X(W)D(W)-', T(W) =S(W)D(W)—', (13)

where E, S' have only "left-hand" cuts, and D, D only
right-hand cuts. By virtue of the unitarity relation (II)
for I', we can write
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where Zi is the usual vertex function renormalization
constant.

The form factor F(W) is defined by F(W)=F (W)Z '(W). Since we can write F(W) =D(M)
XD '(W), it follows that

Z(W) =D(M)D(W)/D(W)D(M) (16)

Z=D(M)/D(M), D(M) =Zg/Z.

Thus, we find

Z(W) =ZLD(W)/D(W) j.
Equation (10) becomes

(17)

1V(W) 3CPD(M—)D(M) $(W)
T(W) = + . (19)

D(W) (W M)D(W)D(W—) D(W)

Observe what happens in the limit Zi ——0, Z=O: The
renormalized quantities F(W), Z(W) ~anish, but the
unrenormalized vertex function F„(W)=F(W)Z~ '
and unrenormalized propagator 5„(W)=ZS(W) exist.
Further, the first term on the right of (19) vanishes
(see Kaus and Zachariasen' for details). Nonetheless,
there is still a particle pole at 8'=M, coming from the
vanishing of D(M) in the second term on the right in
(19).That D(M) vanish is assured by taking Z&=0; if
also we take Z= 0, we shall later prove that the residue
of the pole in T is just —3G'. The elementary particle
pole is completely replaced by a composite particle with
the same mass and coupling constant.

For sufficiently small Z and Z&, observe that D(W)
has a zero at some position W= W~. This pole in F(W)
and Z(W) was first discussed by Jin and MacDowell, '4

who proved that the pole at 8'= 8'g does not occur in
T(W), since the two terms on the right of (19) cancel
each other. T(W), of course, has a pole, whose residue
we define as

$(W~)/D'(W~) = —3g' (20)

(the prime indicates a differentiation). Obviously, when
Wg~M, Z~=D(M) D'(Wg)(M —W~), so Z~ vanishes
as M —+ H g. Later, we shall see that for sufficiently
small Z~, Z~ 1—G2/g2 so that G~ g& Z~ 0. Con-
versely, as Z, Z& —+ 0, the elementary nucleon pole,
along with one of the Jin-MacDowell poles, disappears;
the remaining Jin-MacDowell pole in T(W) represents
a composite nucleon. A full discussion is given in Ref. 4.

"G. Kallen, Helv. Phys. Acta 25, 417 (1952); M. Gell-Mann
and F. Zachariasen, Phys. Rev. 123, 1065 (1961)."Y. S. Jin and S. W. MacDowell, Phys. Rev. 137, 8688 (1965).

rately in any event, so we shall ignore the LSZ theorem,
and calculate Z from diGerent considerations. These
problems do not arise for scalar nucleons. ] With this
normalization, and with some old field-theoretic argu-
ments, "we find

lim F(W)=Z, =D(M),

C. Solution of Ida's Problem

Our object is to try to solve Eq. (19) for specified
input forces in either 1V or $'. We may state the prob-
lem as follows: Given T(W), or alternatively, specified
force terms in 1V(W), calculate T(W) Lhence F(W)j,
and the renormalization constants Z and Zq. (We, of
course, believe that the nucleon is composite, and hence
Z=Z&=0, but it is interesting to study hypothetical
worlds where Z and Z~ are finite, as Ida calculated,
especially for the purpose of discussing the passage to
the composite limit. )

It is heuristically more convenient to solve the con-
verse problem: Given T(W), calculate the physical
amplitude T(W). It will become clear from the ensuing
arguments that the problem of the paragraph above is
readily soluble by similar techniques.

We begin with the converse problem, that is, $(W)
is given. Please observe that, throughout this paper, all
integrals are cut o6 at a large but finite value of 8' to
avoid convergence problems. Therefore, we can write

1 p(W')$(W')dW'
D(W) = 1—— . (21)

7r W—W

Let us suppose that the forces are sufficiently strong,
that there is a Jin-MacDowell pole La zero of D(W) at
W=WpWMj This .pole does not appear in T(W),
which gives us a single condition. It is convenient to
incorporate this condition by writing a subtracted dis-
persion relation for D(W) (the subtraction is actually
unnecessary):

1
D(W) = D(Wr4) (W WR)—— —

p(W')1V(W')dW'
(22)

(W' —W) (W' —Wg)

3G'D(M) D (M)
(23)D(IVg) =

$(WI4) (Wr4 M)'—
In the limit Z~=O (M= W~), (23) gives, using (20)
and (15),

D(M) = (G'/g') XD(M) .

Now for Zq ——0, Z=1—G/g2. If ZNO, D(M)=0, con-
sistent with (17); if Z=O and G'=g', D(M) is as yet
undetermined. We solve (19) for 1V:

3G'D(M)D(M) 3G'D(M)D(M)
1V(W) = T(W)

$(Wg) (Wg —M) $(W) (W—M)
W —W~ p(W')1V(W')dW'

(24)
(W' —W) (W' —W~)

Let us try the ansatz

—3G'$(W)D(M)
1V(W) =

$(M) (W—M)

+ (W Wg)H(W) T(W) . (25)—
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where the integral is over the unitary cut, and

3G'D—(M)D (M) 1
I
E(w)- -E(M)- ]8'—M

LX(WR) '—$(M) '] . (27)
fVg —M

It is easy to see that J(W) has no poles; if lV(lV) goes
like W—'atinfinity, so does J(W). The solution to (26) is

D (p')(p (p")1(w') T(w') dp"
H(W) =J(W)—

D (W') *(W'—W)

D(W)
(28)8'—8'g

where X is a number as yet undetermined. Note that
H(W)T(W) has no right-hand cut, and that as Zi
L=D(M)] approaches zero, both J(W) and the X-inde-

pendent part of H(W) vanish. Later on, we give an
exactly soluble (but nontrivial) model in which J(W)
vanishes identically; clearly, in the composite limit,
certain features of this model must be generally true,
since J(W) vanishes in this limit for any 5 matrix.

Our solution will be complete, once we have exhibited
7( and D(M) in terms of known quantities. This can be
done, in general, by writing an unsubtracted dispersion
relation for D(W):

p (W') l)7'(W') dW'
D(W)=1——

7r lV' —lV
(29)

and evaluating (29) at W=M'. This condition, coupled
with the condition (23) that the Jin-MacDowell poles
cancel in T, furnishes two equations for l( and D(M).

So far, we have only used one-half of the E/D
formalism, which expresses unitarity on the right-hand
cut via dispersion relation of the type (29). There is, of
course, a condition on the "left-hand" cut; from (19),
wc find

D(W) ImN(w) =D(W) ImE(w). (30)

We leave it to the reader to show, with the aid of (19),
(25), (27), and (28), that (30) is identically satisfied.
Finally, the renormalization constants Z~ and Z can be
calculated from (15) and (17).

A number of generally true observations can be made
from a remarkably simple model which possesses an
algebraic solution. Suppose that E(IV) has the form

$(w) =8'/(W+Wi, ). (31)

It is immediately apparent from (27) that J(W)=—0,

Ke find
1 p(w')H(W') T(W')dlV'

11(lV)=J(lV) —— (2')

It is clear that as LVg ~M, X —+ 1; indeed, it is easy to
show that ii= 1+0(wip —M)' by solving (34) and (35)
together. Thus for sufficiently small Z~ and 8'g —M,
(34) becomes

D( M) /D( M)=Z=1+3G')D'(M)/S(M)]'
+OL(wii —M)']. (36)

LThe first equality follows from (17).] In the limit
Zi=0, Ws =M, we conclude, with the aid of (20), that

Z = 1—G'/g'.

In the composite limit Z~=Z=O, X=1, we get

/W —Wp
7)7 (W) =

i $(W),
kW —M

(W—Wp
D(w)=~ D(w),

kW —M
where

Wp =M+3G'$D (M)/S'(M) ]

(37)

(38)

(39)

Equations (37), (38), and (39) are independent of our
special model; see the remarks below (28).

observe the following: The condition that the com-
posite particle and the elementary particle have the
same mass is that Z~=O; that they have the same
couplings requires Z=O. This is perhaps the opposite
of one's naive expectations. Furthermore, it is clear
that, for sufliciently small Zi, X(w) always has a zero
which approaches 8'0 in the composite limit. Ke shall
argue in Sec. III that Wo can be identified with the
bare mass of the nucleon, Mp. Since D(M) =Zi/Z)0,
X(M))0 (for attractive forces, in general), we see from
(39) that Mp& M', as would be expected in conventional
mÃ field theory. As far' as pure S-matrix theory is
concerned, Z& and Z are logically independent, and
D(M) =Zi/Z can have a wide range of values; there-

and we know H(W) directly from (28). The whole

model is solved algebraically, and we find

E(w) =$(W)P.—3G'D(M)/S'(M)(W' —M)], (32)

D(W) = 1—l)+U7(W) —L3G'D(M)/S'(M)(W —M)]
XLD(W) —D(M)] (33)

(A special case of this solution in potential theory has
been given by Kaus and Zachariasen. ')

From (33), we find

D(M) =
t 1—X+ED(M)]L1+3G'D'(M)/X(M)] '. (34)

Use (33) and (23) to obtain

3G'D(M)D(M)
D(wip) = 1—l).+

E(M)(wg M)—
3G'D(M)D(M)

(35)
S(W )ii(W's M)—
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fore, so can 8'0. But we always have a finite number
(zero in the composite limit) for ZbM, defined as

ZbM=Z(MO —M) =3G'Zi/$(M). (40)

The reader must not suppose that Zi/Z can be chosen
completely arbitrarily, at least without the expense of
unphysical complications. If Zi/Z =D(M) is sufficiently
small, then it follows by continuity arguments that
D(W) has a zero at some point W= W, M. By hy-
pothesis, the physical amplitude T(W) has no other
poles except the nucleon pole, hence E(Wi) must also
be zero, and Wi is the same zero of 1V(W) as discussed
in the preceding paragraph. A glance at (19) shows that
the right-hand side of this equation will have a pole,
unless D(W) has a Castillejo-Dalitz-Dyson (CDD)
pole at W=Wi. Now D(W) vanishes at Wii~M (for
small enough Zi), and by drawing graphs it will be easy
to see that the addition of the CDD pole at t/t/'i~M

produces another zero in D(W), at W~ M. This can
produce a pole in the right-hand side of (19) at W= W2,
unless the residue of the pole vanishes Lwhich it must,
since T(W) has no such pole7. The condition that there
be no such pole in (19), along with other previously
mentioned conditions, allows one to determine the
residue of the CDD pole as well as t/t/'~ and H/2. Every-
thing is well-behaved at the composite limit, when
8'0=IVi=R'2 and the CDD pole and extra zero in
D(W) disappear (because the residue of the CDD pole
vanishes). It is difficult to make any physical sense out
of all these zeros and poles before the composite limit
is reached. In Sec. III, we indicate that field theory
probably avoids these complications by not letting
Zi/Z become too small in the composite limit.

III. DYSON EQUATIONS

We now turn to the problem of compositeness as
expressed in the Dyson equations. All of the features
of the S-matrix theory of Sec. II emerge, as well as some
new ones, which involve the nucleonic bare mass, as
brieQy mentioned in Sec. II.

To simplify the presentation of this section, we
suppose that the only composite particle in the world is
the nucleon, all others being elementary; furthermore,
we treat all particles as isotopic scalars. The practical
distinction we make between elementary and composite
particles is that the renormalzsed propagators and
vector functions of elementary particles are supposed
to be well defined, and to have no extra poles or zeros.
Unrenormalized quantities are distinguished by a
subscript u; renormalized quantities have no subscript
of this sort.

Treatments similar to ours have appeared in the
literature before, but they have generally been based on
specific models (e.g. , Pradhann and Passi" have studied
the Lee model with recoil). The only assumptions we

"T. Pradhann and J. N. Passi, Phys. Rev. 160, 1336 (1967).

make are that the field theory is renormalizable, and
that the field-theoretic expressions for Z~, Z, etc. , are
finite in principle, and can be varied by varying renor-
malized couphng constants and masses. For simplicity,
we consider only Yukawa vertices coupling two baryons
and a meson.

A. Compositeness via Dyson Equations

Consider a world in which there are a certain number
of pseudo scalar mesons (vr,E, ) and baryons
(N,Z, ); the nucleon can appear as a bound state in
a number of two-body channels (xX,KZ, ).There is
quite a difI'erence in spirit between a nucleon which is
a bound state of itself (and a meson), as in the xE
channel, and a nucleon composed of two elementary
particles (e.g. , KZ). The latter case is more straight-
forward but there are no insuperable difFiculties for the
former case.

Let us begin by defining a renormalized oG-shell
scattering amplitude for baryons and mesons by

(2n.)4

XK+, K„K„(0~(0(x)g(x')4(y)4(y'))+~0), (41)

which describes the scattering of a baryon (of momen-
tum p —k) md meson (k) in the initial channel i, into
a baryon (p'= p —

q) and meson (q) in the first channel
f. The renormalized meson field is Q, the renormalized
baryon field is ip, and the E's are free Dirac or Klein-
Gordon operators. As before, we set p'=8"; when all
external momenta are on the mass shell, and we put
P= W, the appropriate partial-wave projection of (41)
is just the amplitude T(W) introduced in (8). We
define a one-nucleon irreducible amplitude T'(p, k,q; if)
by subtracting from T(p,k,q; if) all Feynman graphs
which can be separated into two disjoint pieces by
cutting a single-nucleon line of momentum p. This
amplitude yields T(W) on the mass shell. We define the
unrenormalized version of T' by

where Z; are wave-function renormalization constants
for the external legs. The fundamental hypothesis we
make is that T (p,k,q; if) is finite and well behaved in
the limit when the nucleon becomes composite. This is
easy to accept if the channels i, f do not contain the
nucleon itself. If they do, a nonperturbative point of
view is required, since as a result of our hypothesis we
shall prove that all renormalized Yukawa vertices con-
taining a nucleon vanish. Nevertheless, we proceed on
this assumption.

We use the notation I'„(P,q; f) to denote a certain
pseudoproper unrenormalized vertex function, describ-
ing a nucleon (of momentum p) going to a channel f
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consisting of a baryon (p —q) and a meson (q). The
vertex function is proper with respect to the nucleon of
momentum p, but contains full propagator corrections
to the legs of channel f Th. e Dyson equation for this
object is

6;Zg;z

F-(p,q; if) =iso &(p,q; f) —, d'k Z
(2z.)' ' Ggzu

XzorzogSo(P k)ho(—k) T'(P,k,q; if), (43)

H(p~q; f)=S„(p q)So—'(p q)a—(q)Ao '(q),

So(p q) = (p—q~) —' ~o(q) = (q' u') '.—
In (43), the G; are renormalized coupling constants
coupling a nucleon to channel i, Z~; are vertex renor-
malization constants, and Z2f Z3f is the product of
wave-function renormalization constants for the baryon
and meson in channel f

Let us put the particles in channel f on the mass
shell, and set p= W in F„.Under these circumstances,
we have

f'-(p q'f)=&&&ofzvF (W'f) (44)

where I" (W; f) is the unrenormalized form of the
proper vertex described in Sec. II. From (43), we find
(with channel f on shell)

S„(W)'=W —Mo —Z„(W), (51)

Z (W) = d'q i&oSo(p —q)~o(q)
(2or)4

O'Zx'
X F.(p,q) I, ~. (52)

z~,z
In (52), G is a renormalized coupling constant, Z is the
nucleon wave-function renormalization constant, and
Z~, Z2, Z3 refer to the intermediate state to which the
nucleon is coupled. Use (43), (46), and (48) to find the
pole contribution to Z„(W)

Of course, we assume that E exists and is not zero; by
our previous assumptions about T', both R(p, q) and R
are well behaved in the composite limit.

By definition, Z& '=I' (M'). For sufficiently small
values of M—8'g, we 6nd

Z& = (3E W&)/—~g+0 L(M W&) o—j (50)

This is in agreement with the general results of Sec. II,
that Zq M —Wa. Observe also that F„(W)is well
defined for small Zq, hence, F(W) =Z&F„(W)vanishes
in the composite limit.

We may also calculate the unrenormalized propa-
gator, as usual setting p=W. In the usual language,
we have

G;Zg;
F (W f)=1— d4k P

(2or)' ' Gfz~

XSo(p—k) Ao(k) T'(p, k,q; if) (45).
Z2 2

Z„(W)=G' — +.
Z 8'—S'g

By de6nition,

(53)

To simplify the notation in what follows, we write
explicit formulas as if the nucleon were only coupled to
one channel, so that channel labels may be dropped.
The reader may convince himself, using (43) and (45),
that no real generality is lost in the ensuing discussion.

The idea behind compositeness, as expressed in Sec.
II, is that the amplitude T' picks up a pole in the
momentum p, as the various forces in the problem are
adjusted. Therefore, in the neighborhood of this pole,
T' has the form (irrelevant Dirac matrices omitted)

T'(pk q) s = R(pk)R(p q)/(W —W—a)+ . (46)

The residue functions in (46) make sense only at
p'= Wa'. We shall be interested in evaluating functions
at IV= M; as the composite pole moves close to M, we
need only save the pole terms. Insert (46) into one-
channel version of (45) to find

8Z„(W)
Z—1 (54)

This yields

Z= 1—6' (55)

We note in passing that the mass-shell version of T' has
a pole at W= Wa of residue —g' I see (46) and (49)j.It
is easy to check that the pole at 8'= 8'& of the one-
nudeon reducible terms has precisely the opposite
residue, so that the pole does not appear in T; this is
the Jin-MacDowell result. "Of course, in the composite
limit, the one-nucleon reducible terms vanish so that
T= T'.

For sufficiently small Z&, we can use (50) to get

F„(W)= 1+kg/(W —Wa)+ (47)
Zg ——1—Gz/g'+

d'k iyoSo(p k)ho(k)R(p, k) ~, —~, (48)
(2s)4

g=R(p, q) at the point
P'= Wa', q, and P—

q on the mass shell. (49)

This is the same result as previously derived in S-matrix
theory Lsee (37)j.

It is easy to see that Z vanishes like ZP/Z in the
composite limit, so that the unrenormalized propagator
becomes the bare propagator: S„(W)(W—3Eo) '. We
have S„(W)=ZS(W); using (1), the function Z(W)/Z
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exists in the limit Z —+ 0 and is given by

Z(IV) IV—Mo
linx-

Z lV —M
(57)

With the aid of (50) and (51), we find

Z = (M—Ws)/(M —Mo) (59)

By comparing the expressions derived in Sec. II with
those of the present section, we derive the following
relation which holds in the composite limit:

D'(M) = (Rg)-~

Use (17) and. (38) to find

This agrees with the S'-matrix theory of Sec. II, pro-
vided we identify Wo in (38) with Mo, since Z(W)/Z
=D(W)/D(W) from (18).Observe also that, since the
propagator is a simple rational function, the phase of
the unrenormalized proper vertex function and of the
form factor are the same, both being equal to the
physical phase shift. In connection with the comparison
with S-matrix theory, we remind the reader that Eqs.
(37), (38), and (39) are model-independent, although
most easily derived from a special model.

We can draw some conclusions about the rate at
which Z approaches zero, when Z~ is already small. The
unrenormalized inverse propagator must have a zero
at 8'=M; saving only the pole terms gives, with the
aid of (51) and (53),

Z2 g2
0=M—Mo—G'—— + 0 ~ ~

Z M —TVg

B. Electromagnetic Mass Shifts of
Composite Particles

We shall be brief in this subsection, because it would

take another long article to describe (much less avoid)
all the pitfalls involved in doing a reliable calculation of
the neutron-proton mass difference. There are many
techniques for evaluating this mass difference: (1)
Feynman diagrams, with form factors (the original
work is by Feyman and Speisman"); (2) the Dashen-
Frautschi method', (3) dispersion methods applied to
the propagator'"; (4) Bethe-Salpeter method, as well

as several other methods. "All of these would give the
same answer if evaluated exactly, but certain methods
give trouble especially when approximations are made.
A particularly interesting trouble, from the point of
view of compositeness, arises in the work of Fried and
Truong": If one sets Z=O in their formula, the mass
difference vanishes identically. This happens inde-

pendently of any approximation. The reason for it is
that the Fried-Truong formula does not take into
account the Jin-MacDowell pole in the inverse propa-
gator, which must occur for suSciently small Z.

In Sec. III A, the nucleon was coupled to a strong
interaction channel which made it composite. Let us
now add in the photon-nucleon channel, and discuss the
situation for small (but finite) Z. Among the T"s there
is a set of photoproduction amplitudes, which for
suSciently small Z, have composite-particle poles, as
in (46):

7 (P,u, g = —R(P,u)P1/(W —W,))R„(P,q). (62)

Here p, is a four-vertex index which couples to the
photon field. R&(p,q) is a residue function which gives
the total charge of the composite nucleon; thus for the
proton, ignoring magnetic moments terms,

Zj/Z =D (M) = (M—I'Vo)D'(M), (61) R„(p,q)-+y„e(p'=Ws p —
q and q on shell). (63)

which, with the aid of (50), (60), and the previously
mentioned identification Wo= Mo, yields (59).

Just as in the S-matrix case, all renormalized vertex
functions which involve one (or more) nucleons vanish
in the limit. The amplitude T then becomes equal to
the amplitude T' and it is perfectly straightforward to
believe that T' is well behaved when it describes some-
thing like EZ elastic scattering, since there is some part
of this amplitude which has no nucleon vertices in it at
all. But when T' describes, e.g. , mA scattering, the
situation is a little different. Any finite number of
Feynman graphs contributing to T' must vanish if all
vertices involving nucleons vanish. Our hypothesis has
been that T' does not vanish in the composite limit;
this can only be true when an infinite number of graphs
contribute. We cannot prove that T' does or does not
vanish from simple graphical considerations; one must
study a set of nonlinear integral equations for all T"s
which involve external nucleons to see if they have
nontrivial solutions.

Just as for the strong interactions, we introduce a
quantity

g„,= d4u &„S,(p —k)~,"(k)R.(p,&). (64)
(2z)'

The corresponding quantity for the neutron vanishes,
because it has zero charge. In (64), 60"' is the free-
photon propagator. Electromagnetic vertices and cor-
rections to the proton propagator, in the neighborhood
of the pole at TV= S'g, can be expressed with the aid
of (64).

To make the point we have in mind, it is simplest to
forget the neutron completely, and discuss the electro-
magnetic mass shift of the proton, as a sort of analog of
the Lamb shift in hydrogen. Adding the neutron merely

"R. F. Feynman and G. S. Speisrnan, Phys. Rev. 94, 500
(1954)."H. Fried and T. Truong, Phys. Rev. Letters 16, 559 (1966)."H. PageIs, Phys. Rev. 144, 1261 (1966)."T.Saito, Phys. Rev. 145, 1302 (1966); 152, 1339 (1966).
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complicates the writing of formulas. The unrenor-
malized proton propagator, with electromagnetic cor-
rections included, takes the form

Z2
S„'(W)=W—M', —G'

eGZ,AR,
„ + . (65)

$V—8'~„
where Wap, is the position of the Jin-MacDowell pole
including electromagnetic corrections. In writing (65),
we have used the fact that Z~»„=Z.

It is well known that unrenormalized propagators are
not gauge-invariant, because Z is not gauge-invariant,
in general. However, an interesting thing happens when
Z becomes very small and nucleon approaches com-
positeness. Gauge-dependent terms can only come from
that part of the proton propagator A„„(k)which goes as
k„k.. It is a consequence of the %'ard identity that these
ga,uge-dependent terms must vanish (at least) linearly
in lV—M, as 8' approaches M; this must be so, or the
electromagnetic mass shift fwhich comes from evaluat-
ing (65) at W= Mj would be gauge-dependent. In the
composite 1miit, this factor of 8"—M will cancel the
pole at 8'= IVY, with the result that the gauge-depen-
dent corrections to Z vanish with a higher power of
M—8'g than the Feynman gauge electromagnetic cor-
rections. Intuitively, this accords with our belief that
the notion of compositeness, as expressed via Z=O, is
gauge invariant.

Ke distinguish between M and M„,the proton mass
before and after (respectively) electromagnetism is
turned on. There is a similar distinction between 8'g
and Wa~. Since (by our notion of compositeness) the
electromagnetic corrections to 8'g are the same as they
are to M, we have

(66)

As the composite limit is approached, the wave-function
renormalization constant behaves like fsee (59)j

Salpeter type of mass-shift equation; such formulations
have already been discussed in the literature. It has
an advantage over the Dashen-Frautschi formula that
infrared problems are relatively easily disposed of.

Dispersion relations for 5„'(W)' " are yet another
technique for hnding mass shifts. The necessary ingre-
dients are things like I'„(W),the EXy vector with the
nucleon oB shell. These are constructed in terms of
D(W) (see Sec. II), which reveals the composite
particle pole. This pole is exhibited in S„'(W),as
discussed by several authors, "' by the deformation of
an integration contour as the pole moves from the
second sheet (for weak forces) to the nrst sheet (as the
strength of the forces is increased). Thereby all the
results in Secs. II and III can be exhibited in an approxi-
mation in which only a small number of intermediate
states is saved. Unfortunately, not all such approxima-
tions are gauge-invariant. In the Appendix, we show
how to maintain gauge invariance in approximate calcu-
lations; for example, if one begins by saving only the
~E channel as an intermediate state in the propagator
without electromagnetism included, then one must add
both the yE and the ymX channels to compute the
gauge-invariant propagator. The electromagnetic ampli-
tude must satisfy the relevant Ward identities. That
these two channels should be included is intuitively
obvious, if one thinks of computing a gauge-invariant
set of Feyrunan graphs by the Cutkosky rules, but the
authors are unaware of a detailed discussion in the
literature.

APPENDIX: ON GAUGE INVAMANCE

We want to show what combination of intermediate
states must be saved in the Lehmann representation of
the propagator, in order that the propagator be gauge-
invariant. For simplicity, suppose that the charged
particles are scalars, called @ particles, and that there
is a qP vertex. We dehne the renormalized propagator
and its Fourier transform by

'~.(x) = (0l(~(x)4t(0))+I0),

(67)
6 (P)=fd'x L x(x).

(Al)

where the higher-order terms contain gauge-dependent
terms. If we forget about electromagnetic corrections to
the strong vertices and propagators, so that 6, ZI, and
R are unchanged, we can use (50), (66), and (67) to
evaluate (65), which must vanish at W =31„;the result
is the electromagnetic mass shift of the proton without
feedback:

rkM„—M =eA'». (68)

It is easy to check that including feedback would still
lead to a finite result at Z=O, in contrast to the Fried-
Truong" formulas. Clearly, formula (68) is a Bethe-

In what follows, we set p'=s.
Any change in hr(p) coming from a gauge trans-

formation has two parts: one part from changing the
photon propagator, and one part from the phase
transformation of the fields p, p+,

4(x) ~ e '"'*'4(x)
y+ (x) —+ (tp+(x) e'&~(*)

where q is the charge of the scalar held.
Let us consider an operator gauge function A(x)

which commutes with (fp, (p+ and is causal (6elds coin-
mute at spacelike separations). To 0(g'), the change is
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Ap coming from (A2) can be written The change 5&2& in 6r (s) is computed from (A9) and the
Ward identity

Zg

~"'~r(p) =
(2s)4

d4k 6p(p k)—D(k), (A3) q'C s—M'
b&» Imhp(s) =-

16n- s
(A11)

a„„(k)—+ A„„(k)+k„k.D(k) . (A5)

This induces a change h"'AF(p). For gauge invariance,
the sum of these two changes must add to zero.
Although D(k) is rather general, we study the kine-
matically simple case

D(k) =C/(k'+is) (C= constant) (A6)

corresponding to the addition of massless scalar ghosts
to the electromagnetic field. This D(k) generates
divergent e~~ressions in the propagator, but the change
in the propagator discontinuity function is hnite; study-
ing this discontinuity function is sufhcient for our
purposes.

Consider the following approximation to the I.eh-
mann representation: Only the ~ and yp channels are
saved. We write

Here,

1 " Imhp(s')ds'
hp(s)= ——

S S

Im&I&r(s) =z.h(s —M')+G'0 (s)+q'&r(s).

s—uP i~2 ms 2

0(S)=
16&r s (s—M')'

(A7)

and (in the Feynman gauge),

1 s—M'
(s) = — g„,l'"I'"*i& (s) i'. (A9)

16m s

F(s) is the strong P' form factor, while I'" is the electro-
magnetic proper vertex function.

Under a gauge transformation of the photon propa-
gator, —g„„in (A9) is changed to —g„„+Ck„k„,where
k„is the photon momentum. The Ward identify for F„
reads k„l'"(s)= AF(s) '. The change (A3) can be
analyzed with the aid of (A/) and the usual Cutkosky
rules; we have

8'C
h&" Imh&;(s) =

16m'

X Lm &1(s'—M')+0 (s')]. (A10)

where D(k) is the Fourier transform of

D(z) = —f(Oi (A(z)A(0))„i0). (A4)

To the change (A3) must be added the change coming
from the modified photon propagator h„„(k),which
occurs in the internal lines of 6p(p):

which just cancels off the first term of (A10). It remains
to cancel o6' the second term. This can be done by
adding the p~ intermediate state. We do not require
full knowledge of the amplitude V„for p~ y~, but
only the Ward identity

FL(p —k)']
k„U~(p,k, q) =

(p k)' —M2— (A12)

where F is the same form factor as in (AS).
We compute the change in hF coming from the

photoproduction graphs:

d'kd'q Ck k V&V"

X b+(k') &1+(q'—M') 8+i (p —k —q)' —M']. (A13)

With the aid of the Ward identity (A12) we can inte-
grate (A13) into the form

q'C
S&» Ima, (s) =

256m'

(S S)

s' —4M' '&' iF(s')['

(X, (A14)
s' (s'—M')'

where we have set (p —k)'= s'. We recognize the
appearance of the spectral function 0 (s) Lsee (AS)] in
(A14). The total change in Az(s) is given by adding
(A10), (A11), and (A14), which gives zero, no matter
what F(s) is chosen to be. F(s) itself is gauge-invariant
even when electromagnetic corrections are included,
because it is (in principle) a measurable quantity.

The general principle is clear: If a particular channel

i e) is included in the propagator without electro-
magnetism, then the channel in') must be included
in the I.ehmann representation with electromagnetic
eGects included. The Ward identity then insures gauge
invariance.

We conclude by observing that it is quite simple to
make up approximations to the amplitude p~y~
which satisfy the Ward identity (A12), for example, the
Born graphs with form factors at the vertices, and fully
corrected propagators. A somewhat more elaborate
analysis is needed when composite-particle poles are
present, but it is not difficult in principle.


