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A method to evaluate high-energy contributions to current-algebra sum rules by combining them with
finite-energy sum rules is suggested. Applications are made to the Adler-Weisberger-type sum rules for
the 7-r and the K-r systems, and to various sum rules for the pion photoproduction process. It is shown
that the former sum rules can be approximately satisfied without requiring very large scalar contribu-
tions. Some interesting results are found for the latter sum rules.

I. INTRODUCTION

N the last few years a large number of sum rules
based on various assumptions of current algebra,
unsubtracted dispersion relations, Regge-pole theory,
etc. have been considered.! Some of these, like the
original Adler-Weisberger sum rule, have been remark-
ably successful. Some others have met with rather
marginal successes or failures. The current commutation
relations and the hypothesis of the partially conserved
axial-vector current (PCAC) provide low-energy theo-
rems which, coupled with assumptions of unsubtracted
dispersion relations, give the usual current-algebra sum
rules. These sum rules equate integrals over certain
functions of scattering amplitudes to certain known
quantities. Since in most cases the relevant amplitudes
are known only in the low-energy regions (less than 1
or 2 BeV), the high-energy contributions to the inte-
grals are either thrown away or very crudely estimated.?
In the present work we suggest that this high-energy
contribution can be evaluated from the same low-energy
data by using the so-called finite-energy sum rules
(FESR).? FESR and their generalizations (continuous
moment sum rules?) are just consistency conditions im-
posed by analyticity on functions of scattering ampli-
tudes which have Regge-like behavior asymptotically.
Combining FESR with the current-algebra sum rules
(CASR), one can get an estimate of the high-energy
contribution to CASR-independent of any high-energy
fits to the amplitudes. In many cases such as the ones
considered in the present work, high-energy fits for the
relevant amplitudes are not available. Moreover, even

1See, for example, S. L. Adler and R. F. Dashen, Current
Algebra and Applications to Particle Physics (W. A. Benjamin,
Inc., New York, 1968).

2 An exception is the original Adler-Weisberger sum rule which
requires only the #V total cross-section data. These are available
up to an energy of about 20 BeV. The high-energy contributions
to K—N and K—N sum rules have been also estimated. In this
paper, by ‘“high-energy region,” we shall mean the energy region
beyond the low-energy-resonant or nonresonant region for which
there is detailed experimental information and not just the
asymptotic region.

3 K. Igi, Phys. Rev. Letters 9, 76 (1962) ; K. Igi and S. Matsuda,
ibid. 18, 625 (1967); A. A. Logunov, L. D. Soloviev, and A. N.
Tavkhelidze, Phys. Letters 24B, 181 (1967); R. Dolen, D. Horn,
and C. Schmid, Phys. Rev. 166, 1768 (1968).

4 K. V. Vasavada and K. Raman. Phys. Rev. Letters 21, 577
(1968); K. Raman and K. V. Vasavada, Phys. Rev. 175, 2191
(1968) ; M. G. Olsson, Phys. Rev. 171, 1681 (1968) and University
of Wisconsin reports of work prior to publication.

when high-energy fits are available, they are for certain
combinations of the amplitudes and at different energies
up to which low-energy data are not generally available.
This fact makes our procedure necessary.

In Sec. IT we discuss the procedure. In Sec. III appli-
cation is made to the Adler-Weisberger-type sum rules
for the #—= and the K —= systems. The original Adler-
Weisberger (A-W) sum rule is also briefly discussed.
Some other sum rules are considered in Sec. IV. In
particular, the pion photoproduction sum rules first sug-
gested by Fubini, Furlan, and Rossetti® are discussed.

II. GENERAL FORMALISM

Consider a reaction a4b— ¢+d. Let s= (pa+ps)?,
t=(pa—p.)?, u=(pa—pa)® be the usual Mandelstam
variables and define »=%(s—#). Then low-energy
theorems following from current algebra, PCAC, and
unsubtracted dispersion relations lead to sum rules

of the type
/” E(nl)
0

um
where m is an integer, F(»,t) being some function of the
scattering amplitude. As shown in Ref. 3, if for v> N,
F(v,t) is dominated by the exchange of a single Regge
trajectory in the ¢ channel [i.e., F(v,t) — B(¢)»*®], the
following FESR can be shown to hold good to the same
approximation;

N B({) Naw+nt
/ v'F(v)dyv=——""""—",
0 alt)+n+1

dv=G(0), (1)

)

where # is an even (odd) integer according to whether
F(v) is even (odd) under crossing (s<>u, v <> —v).
a(t) and B(f) are the trajectory parameter and the
residue function of the ¢-channel trajectory. The right-
hand side of Eq. (2) contains many factors depending
on the normalization in », ghost-eliminating mecha-
nisms,* etc., however, for our purpose here we have
conveniently absorbed these in 8(f). Then Eq. (1 can)

8S. Fubini, G. Furlan, and C. Rossetti, Nuovo Cimento 40,
1171 (1965); 43, 161 (1966).
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be written as

NF(V)t)dV ﬂ(t)fva(l)—m-ﬂ
'/“ v a()—m+1

=G(1) 3)
with the same assumptions as above. Eliminating 8(¢)
from (2) and (3), we get

YFhdv al)+n+1 1
/0 ym a()—m+1 N™n

N
X/ v F(v)dv=G(). (4)

Thus, if « is known, the left-hand side of the sum rule
(4) can be evaluated without throwing away the high-
energy contribution. Again, as is known, « itself can be
determined by considering Eq. (2) for two different
values of #. This has been done by various authors,
leading to reasonable results approximately agreeing
with the results of Regge analysis of high-energy
scattering.®* However, for application of Eq. (4) one
does not need any detailed results from high-energy
analysis, apart from the general idea of dominance of
certain trajectories. In many cases the amplitudes under
consideration permit particles with only restricted sets
of quantum numbers to be exchanged in the ¢ channel.
Thus, the procedure is simplified.

In the above we have considered dominance of a single
trajectory only for the sake of simplicity. The procedure
can be readily generalized for an arbitrary number of
trajectories. In the general case, Egs. (2) and (3) become

N Bi([)Nai(t)-HrH
/ v*F(vt)dv=Y, ————m—— 29
0 i ai(t)+nt1
W N RGN
v,t)av H ailt)—m
/ > =G@t). (3)
0 ™ i oa;()—m+1

To determine a; and B;, one can write number of
equations of the type (2’) with different moments »
and solve them simultaneously. Equation (3’) then
gives the high-energy contribution to the sum rule.
In practice, of course, owing to the limited amount of
accuracy in the low-energy data, sum rules with very
high moments may not lead to meaningful results. Also
in some cases fixed poles may be present, or indeed re-
quired to be present, on some theoretical grounds. If
these do affect the asymptotic behaviors of the ampli-
tudes for which the current algebra sum rules are
written, they should be considered in Eq. (2’) and (3')
to be like any other Regge trajectory. For the sum rules
under consideration in this paper, we assume that fixed
poles are not present.® It should be noted also that the

¢ We are investigating at present the effect of the existence of
fixed poles on the current-algebra sum rules and the present
method of evaluating the high-energy contribution.
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usual “double-counting” problem while adding Regge
contributions does not arise here because of the use
of FESR.

III. ADLER-WEISBERGER TYPE SUM RULES

Now we consider application of Eq. (4) to the Adler-
Weisberger-type sum rules for r—x and K — systems.
According to the hypothesis of the chiral SU(2)®@SU(2)
algebra! of Gell-Mann, the axial-vector charges

0st= f Aot () )

satisfy the commutation relation
[0s+,0571=20®, (6)

where A,(x,t) is the time component of the axial-vector
current, Q® denotes the vector charge, and =+ refer to
the 1472 components of isospin. Sandwiching the above
commutator between various single-particle states and
using PCAC and unsubtracted dispersion relations, one
gets different Adler-Weisberger-type sum rules.” These
sum rules for #—N and K —N systems have been very
well discussed. Here we consider the cases of #—= and
K —= systems.

A. =— = Sum Rule

Sandwiching the commutator (6) between two =
states, we get the sum rule

1 fw Im[T_(5,0)—T4(»0)Jdv _ 4

=— 7
S =

™
where

[2=2g4'm*/g?K?(0), f.=~135MeV (expt.).

T4 (»,0) is the forward invariant amplitude for scatter-
ing of a zero-mass =, by a physical #+ meson. The
amplitude T_—T can be readily shown to be a pure
I=1 {channel amplitude and odd under crossing. Thus,
among the known Regge trajectories only the p will
contribute to this amplitude at high energies.

This sum rule has been discussed by various authors
in the resonance approximation.8? Saturating by p and
f° resonances, Adler finds that a large S-wave scattering
length (ao>1.3/m.) is necessary to satisfy the sum
rule. In contrast, Weinberg’s calculation of the r—=
scattering length from current algebra suggests a con-
siderably smaller scattering length (~0.2/m.,). Several
authors have introduced a scalar-meson resonance ¢ of

7 S. L. Adler, Phys. Rev. 140, B736 (1965) ; 149, 1294(E) (1966) ;
175, 2224(E) (1968); W. I. Weisberger, zbid. 143, 1302 (1966).
Also see Ref. 5.

8S. L. Adler, Ref. 6; G. Furlan and C. Rossetti, Phys. Letters
23, 499 (1966); I. J. Muzinich and S. Nussinov, ibid. 19, 248
(1966) ; K. Kawarabayashi, W. D. McGlinn, and W. W. Wada,
Phys. Rev. Letters 15, 897 (1965).

?F. J. Gilman and H. Harari, Phys. Rev. 165, 1803 (1968).
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large width in order to account for the discrepancy.
In Ref. 9, for example, the existence of a ¢ meson with
me="765 MeV and I';=650 MeV is shown to be neces-
sary to satisfy the sum rule. Experimentally, the ex-
istence of scalar mesons is not well established.® We
will show in the following that if the high-energy con-
tributions are taken into account, the sum rule can be
approximately satisfied without requiring very large
scalar contribution.

For this purpose we divide the integral into high- and
low-energy parts. Since a reliable phase-shift analysis of
T — scattering is as yet not available, we will adopt in
this paper the resonance approximation as done by
previous authors. For the low-energy region, we retain
p and f° contributions.

In the narrow-resonance approximation we obtain

4’”(3m,21‘p+1—(2 mﬂ‘;) 4

; n=—_,
Voo ™

(8)

3 viqs

where m,, my, T',, and Ty are the masses and widths of p
and f° mesons, and »=21(s—u)=3%(s—m,?). Here g¢,,
gs, v,, and vy are the values of the c.m. momenta and »
of the 7— system at the position of the resonances.
Iy denotes the high-energy contribution. Relating the
widths to the coupling constants by

szg(gpnz/‘hr)q:rs/mpgr ©)
Ty=15(gr/4m)q%/mz, (10)
this becomes
28pnn’  Erunt(MP—my2)? 4
i Flg=—-.  (11)
12m* 72

m,?
Now if only the p trajectory dominates,

T_(»,0)—T4(»,0) — B(H)y=.
v>N

Writing a zero-moment FESR, we can obtain [y as
explained in Sec. IT and find

ngn'z(l % ‘-"p"i'l\J &rea(mpP—my2)?
mE N\ Neay—1) — 12mp
v a,+1
><<1—— : >=— (12)
Nla,—1/ f:?

First of all, note that, since @,(0) <1, the high-energy
contribution is in the right direction to correct the dis-
crepancy. The question of choice of V is a rather delicate
one, especially since we are using a crude narrow-
resonance approximation. More careful integration over

10 Several phase-shift analyses for the =-r system based on the
study of pion-production reactions have appeared recently. There
is considerable disagreement between them at present but some
of them do show existence of o at around the p mass region.
Evaluation of the 77 sum rule using these analyses is under con-
sideration and will be reported later.
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resonant cross sections is certainly possible. But in
view of the large uncertainty in the experimentally de-
termined values of the width of p, we have not at-
tempted such a procedure. In conformity with the recent
discussions on the FESR bootstrap,!! we choose NV to be
about halfway between the last resonance included and
the next higher one. Thus when only the p is retained,
we choose N =27.5.12 After f° the next higher resonance
is the g(1650) meson. So when we retain both p and f9,
N=354.9. The results are shown in Table I. It can be
seen that without the high-energy contribution (7z)
the sum rule is off by about a factor of 2 or more.
Inclusion of Iy leads to a reasonable agreement, which
is particularly good for larger values of p width. It is
interesting to note that variation of N from the value
between v, and v, to that between v, and v, leads to a
quite small variation in the results. This seems to
confirm the reasonableness of the scheme.

There are large number of resonances coupled to the
m—m system at higher energies. Thus it is not surprising
that Iy, which takes into account the contributions of
these resonances, makes an important contribution to
the sum rule. This idea is also supported by recent
results of Meiere and Sugawara.’® They first write
dispersion integrals for S-wave scattering lengths and,
using these, rewrite the Adler sum rule so as to suppress
the high-energy contribution still further. As a result,
they find that an S-wave scattering length of magnitude
only about a fourth of that suggested by Adler is
sufficient to saturate the sum rule. Thus it appears that
if proper account of the high-energy contribution is
taken, the sum rule can be saturated by only a small
S-wave scattering length consistent with current
algebra and there is no particular need for very large
scalar contribution as far as this sum rule is concerned.!
Of course, we have made several approximations.
Neglect of the continuum may be the most serious one.
However, qualitatively, the results appear to be reliable.
Next, we discuss the K—= sum rule in an exactly
similar fashion.

B. K— = Sum Rule

Taking the matrix element of the charge algebra
commutator (6) between two K+ states yields the sum
rule

v Nz

11 C. Schmid, Phys. Rev. Letters 20, 628 (1968).

12 All quantities are in units of #=c=m,=1 unless otherwisc
mentioned.

18 F. T. Meiere and M. Sugawara, Phys. Rev. 153, 1702 (1967).

14 Recently G. Patsakos [Phys. Rev. 165, 1667 (1968)] has
considered the evaluation of a high-energy Regge contribution to
this sum rule and concludes that appreciable contribution is
obtained. However, he takes the residue function B(0)=38(m?).
The value of B depends on the normalization energy and this can
be a rather unreliable approximation for certain values of this
energy. See, for example, Ref. 11.

o —(»,0)—T,(» v

™
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where now T.(»,0) denotes the forward invariant
amplitude for scattering of a zero-mass n*+ by a physical
K* meson. Also we have

V=%(s—m1<2).

Saturation of the low-energy part by K*(890) and
K**(1420) mesons gives

1 gK“K1r2

2r2ggsk+
—I: jL (mxnz—— sz)z]
3 mKﬂ 12 MK**4
+Ig=2/f2. (14)

The coupling constants are related to the widths in the
same way as above.

Following the same procedure as in the m— case
and assuming that only the p trajectory dominates for
v>N, we get

8gK*K,.-2<1 ViR O!,,+ 1)i gKnK,,2(man—-mK2)2
N? a,—1 N

mi* 2mpcest

When only K*(890) is retained, we take N =29.8. The
next higher resonance coupled to the K—= system
appears to be the L meson (1800). So when both
K*(890) and K**(1420) are retained, NV is taken to be
61.1. The right-hand side of (15) is numerically equal
to 12.84. The left-hand side has the following values:
(a) When Iy is neglected, the left-hand side=7.12;
(b) when only K* is retained and I is included, the
left-hand side=10.03 with «,=0.5 and 11.36 with
a,=0.6; (c) when K** and Iy are also included, the
left-hand side=9.95 with «,=0.5 and 10.87 with
a,=0.6. Thus inclusion of 7y certainly leads to a better
agreement. Also the results are not sensitive to the
values of IV chosen as above. The remaining discrepancy
can be perhaps cured by including continuum contribu-
tions. As in the 7-w case, several authors have concluded
that a large scalar contribution in the form of a reso-
nance is required to saturate the sum rule.8 We find that
this need not be the case.

It should be noted that our results are not inconsistent
with the existence of scalar resonances. If they do exist,
they should be included on the left-hand side of the
sum rules. Our results only imply that there is a very
substantial high-energy contribution to these sum
rules and that there is no great need for large scalar
contributions to the sum rules.

A natural question arises at this point : What happens
if we apply our procedure to the original Adler-Weis-
berger relation for the -V system, for which the high-
energy contributions have been accurately evaluated
due to availability of the total cross-section data? The

HIGH-ENERGY CURRENT-ALGEBRA SUM RULES. 1
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TasLE L. Left-hand side of Eq. (12) for various values of
N, a,, and T',. Right-hand side=4//f.*=4.28.

a N  T,=90MeV TI,=125MeV TI',=150 MeV
0.5 © 1.95 2.49 2.73
0.5 27.5 2.67 3.68 4.12
0.5 54.9 3.10 3.76 4.04
0.6 27.5 3.08 4.24 4.75
0.6 54.9 3.47 4.16 4.47
sum rule is given by
2mn2? /” kdv[ortp(v)—02p(¥)] . 1
=l=,
w8 Jomx v g4®

where v=(s—m,?)/2m, is the lab energy of the pion,
and £ is the lab momentum. According to the numerical
estimates of Weisberger,” the (3,3) resonance in above
gives theright-hand side=0.451, resultingin | g4 | =1.35.
The higher resonances, continuum, and high-energy tail
contributions bring this value down to 0.246 which
gives |g4| =1.15. Thus, because of the peculiar way in
which g4 occurs, namely as (1—1/g4?) in the right-hand
side (unlike 1/g42 as for the =-r and K-m cases), a
change in the right-hand side by a factor of about 2
brings only a few percent change in the value of g4.
Thus, states other than the (3,3) resonance contribute
quite significantly to the left-hand side, even though this
is not reflected significantly by the change in value of g4.

Now according to our procedure the correction term
will be given by

a,+1 2m,?
a,—1 mg?N?

fm N Hows ()= 0= () 1.

Here N should be large enough so that the Regge term
can be expected to give a reasonable approximation to
the amplitudes. If ¥ is given a value just after the (3,3)
resonance, as was done in the case of the 7w system, a
large contribution in opposite direction to that required
to satisfy the sum rule will be obtained. It is clear,
however, that such a low value of N=400-500 MeV is
completely unjustified. For /=0 we have v= —m, cosb,,
where cosf; is the cosine of the scattering angle in the
¢t channel. In the 7w case, near the p resonance, cosf; is
already very large (our N in the nr case corresponds
to |cosf| = 27) whereas in the 7-NV case, near N*, it is
about 3 or 4 and very low values of N are not justified.
In other words, this implies that energy at which Regge
behavior takes over should be high enough relative to
the threshold. Thus, in the 7-N case NV should be taken
to be at least at 1.5 to 2 BeV. In the usual treatments on
FESR for =-N scattering, NV is taken to have some
value in the range 1.5 to 3 or 4 BeV.? Although we have
not done any numerical calculation of the A-W relation
for the w-NV case, we can show that with any reasonable
choice of N, the correction term will be small. It
is known that the major contribution comes from
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N*(1238), N**¥(1520), and some other low-energy reso-
nances, and that there is a cancellation between con-
tributions of N*(1238) and other resonances in the A-W
relation. This cancellation will be more effective in the
correction term given above because of the absence of
the factor 1/»? in the integrand. This, along with the
factor 1/N? in the denominator, will make the correc-
tion term small. Furthermore, the large contribution to
the correction integral from the I=% resonances can
be seen to give the right sign to the correction term.
Thus, the fact that p and f° do not saturate the - sum
rule, but a few low-energy =~V resonances do saturate
the -V sum rule, may be due to the essential differences
between the 7-r and the =~V systems.

In Sec. IV we consider some sum rules for the pion
photoproduction process.

IV. PION PHOTOPRODUCTION SUM RULES

As another set of sum rules we now consider the pion-
photoproduction sum rules first suggested by Fu-
bini, Furlan, and Rossetti.> The commutators of the
SU((2)®SU(2) algebra used to derive these sum rules
are given by

[Q5(3):jﬂ(v):]=0 ’ [Q5(3)’]'F(8)]=() ’ (16)

where Q5 is the axial-vector charge and 7,* are the
isovector and isoscalar electromagnetic currents. These
commutators taken between two proton states, together
with the use of PCAC and unsubtracted dispersion rela-
tions for the pion-photoproduction invariant ampli-
tudes, give rise to the following sum rules:

i/‘” ImAl*(V)dV=(up—un)g a7
T Jo v 4m
and
1/“‘ ImAl"(V)dv= (ﬂp+l’-n)g. (18)
wJo v dm

We have adopted the notation of Ball.'® 4, is one of the
four invariant amplitudes for the pion-photoproduction
reaction. u, and p, are the anomalous magnetic mo-
ments of the proton and neutron and g is the usual
w-N-N coupling constant. 4 and O refer to the isospin-
symmetric part of the amplitudes for scattering of
isovector and isoscalar photons. The first sum rule has
been numerically evaluated by Adler and Gilman!®
using the photoproduction analyses of Walker and of
Schmidt and Hohler.” Apart from a special model
used for the S-wave contribution, they take into
account only the resonant terms and find the left-hand

18 J. S. Ball, Phys. Rev. 124, 2014 (1961). See also G. F. Chew,
F. E. Low, M. L. Goldberger, and Y. Nambu, Phys. Rev. 106,
1345 (1957).

16 S. L. Adler and F. J. Gilman, Phys. Rev. 152, 1460 (1966).

17 R. L. Walker (private communication) and Phys. Rev. (to be
published); W. Schmidt and G. Hohler, Ann. Phys. (N. Y.) 28,
34 (1964_1). The author is grateful to Professor Walker for com-
munications regarding the pion-photoproduction multipole fits.
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side of (17) to be about 869, of the right-hand side.
We have evaluated these sum rules using the more
recent fits of Walker in which the amplitudes are given
as sums of Born terms, resonant contributions, and
background terms.

For zero-mass pions, we express the amplitude 4,
in terms of the multipole amplitudes

A1(»,0)= BaW /W?*—m?) (Eoy+ M1 +3E1+3Moy

+6Eo. —3My +E. —6M; +3E;-). (19)
W is the c.m. energy and the multipoles are taken with
the appropriate isospin factors for the 4 and 0 cases
separately. Furthermore, since they refer to the final
pions of zero mass, we multiply them by factors
(1q| me=o/]q|)* following Ref. 16. A factor [gonysica1/g(0)]
has been also eliminated from the left-hand sides of the
sum rules.

The integrals are evaluated up to a photon lab
energy of 1.2 BeV. It can be readily shown that among
the known leading trajectories, only w contributes to
Ast whereas both p and B contribute to A,". High-
energy contributions can be evaluated as in the previous
cases by writing first-moment FESR. This gives

1 ¥Imd () 1 a+11 V¥
—f dy—— ~/ v ImA 1+ (v)dv
mJo v Na,—1mJy
(.“ _I-‘n)g
=_p._ﬁ, (20)
4m
1 VM ImA(>») 1 aq+11 ¥
-—/ dy—— ~/ v ImA °(»)dv
mJo v Nla,—17 Jy
(ptun)g
=2 """ 1)
4m

Since the B trajectory is expected to lie considerably
below the p trajectory, we have neglected it in writing
(21). N corresponds to the photon lab energy of 1.2 BeV,
up to which Walker’s multipole fits are available.

Numerically we find that the first term on the left-
hand side of (20) is 0.0389 (with m,=1), whereas the
right-hand side is 0.0419. Thus there is about 79, dis-
crepancy. The second term gives the high-energy
correction. Taking «,=0.5, we find it to be 40.0127.
Thus the correction term is of the right sign but rather
large in magnitude. However, this discrepancy could
be cured by a more precise multipole analysis.

In the case of the sum rule (21) we find that the first
term on the left-hand side is —0.00069 while the right-
hand side is —0.00136. Again we take a,=0.5 and find
that the correction term is —0.00062. Thus the left-
hand side becomes —0.00131 in remarkable agreement
with the right-hand side. This can be accidental to some
extent. However, in both cases the correction terms
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have the right sign and reasonable magnitudes. This
would indicate the general validity of the assumptions.

Finally we make some remarks about the supercon-
vergence sum rules (SCSR). In many cases when at-
tempts are made to saturate these sum rules by low-
energy data alone, some inconsistencies appear. For
example, Halpern'® has considered the SCSR

1 00
- / Im(Al_—l-tAf)(iV:O,
1]

™

(22)

where A,~, As are two of the invariant amplitudes for
pion photoproduction. This amplitude gets a contribu-
tion from only the = trajectory. The SCSR follows from
the assumption that a.(0) <0 for the pion trajectory.
Using Walker’s fits on multipoles, Halpern finds a
rather large discrepancy. This sum rule has been
studied by using a FESR and its generalization, a con-
tinuous-moment sum rule.!* These take into account
the high-energy contribution, and reasonable results
are obtained without any discrepancy.

Similarly, Choudhury and Nussinov® have studied
the SCSR

1 00
Iz—/ Im[ A5t (v,0)+34,°(»,0)Jdv=0. (23)
T Jo
Here A; is again an invariant amplitude for the pion-
photoproduction process. These authors find some dis-
crepancy in the sum rule. Using the more recent fits by
Walker, we have reevaluated the sum rule and find that
I=—0.0203 with the cutoff N corresponding to the
lab photon energy of 1.2 BeV and 7/(nucleon pole
term)=~ —2%. Thus there is about 509 discrepancy. It
is quite possible that this may be due to inaccuracies
in the multipole fits. However, it can also be explained
by writing a FESR if a Regge cut is present.?

In the presence of a cut, the last relation can be
approximately written as

N

1 ]
- / Im[A+(v)+34L(v) Jdv

m™Jo

1 at21 ¥
1 / 22 Im[ A5+ () +340(») Jdv=0. (24)
N2 a wJy
18 M. B. Halpern, Phys. Rev. 160, 1441 (1967).

19 K. V. Vasavada and K. Raman (Ref. 4); K. Ramanand K. V.
Vasavada (Ref. 4); D. P. Roy and S. Y. Chu, Phys. Rev. 171,
1762 (1968) ; A. Bietti, P. di Vecchia, F. Drago, and M. L. Paciello,
Phys. Letters 26, B457 (1968).

(1290657.) R. Choudhury and S. Nussinov, Phys. Rev. 160, 1334
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Muzinich, Phys. Rev. Letters 18, 381 (1967). We will ignore the
usual logarithmic factors associated with the cuts in the following.
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Numerically we estimate the second term to be
4+0.0120 (a+2)/a. Thus for ac.:>0, the second term
goes in the right direction to remove the discrepancy.
goes in the right direction to remove the discrepancy.
When the cut is present, the above treatment may be
at best qualitatively correct. However, we can regard
these examples as indicative of the importance of the
high-energy contributions.

In the present work, we have examined the possi-
bility of evaluating the high-energy contributions to the
current algebra sum rules by combining them with the
finite-energy sum rules. In many cases we arrived at
interesting conclusions. Also it was shown that the dis-
crepancies in some of the superconvergence relations
could be removed. With the assumption of FESR, one
needs only the low-energy data and not any detailed
high-energy fits. Thus the present method seems to be
quite useful in studying the sum rules. Further applica-
tions of this method to some other sum rules are in
progress and will be discussed later.

Note added in proof. We have now completed the
evaluation of the #— A-W sum rule using the available
m— phase shifts, which strongly indicates existence of
a scalar meson ¢ resonance near the p mass. The scalar
contribution is substantial but the high-energy con-
tribution is equally important. These results, along with
consideration of some other sum rules, will be discussed
in a forthcoming publication. Here we just discuss the
scalar contribution in a narrow resonance approxima-
tion. o contribution to the left-hand side of Eq. (12) is
given by

%g”rz{l-}' (Va2/N2)[(1+ap)/(1—ap)]} )

using the notation of Ref. 9. With N=354.9, m,="730
MeV, and «,=0.5 this gives 0.66, 1.1, and 2.86 for
I',=150, 250, and 650 MeV, respectively. Thus the
sum rule is consistent with only small values of T,
(=150—250 MeV) and not with the large value
(=630 MeV), that was obtained in Ref. 9. Our treat-
ment of the sum rule seems to be more satisfactory in
view of this fact.
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