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Calculation of the K&, Form Factors
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We have determined the E~3 form factors f+(t) in a model of strong interactions based on the rest-frame
group 0(4,2)(SSU(3}.Using the values of the parameters determined from the boson-mass spectrum and
pion electromagnetic form factor, we obtain at t=to ——(m~ —m )', g(to) —(mz —m )/(3m@ —m ) =0.27. We
then test the validity of exact SU(3) symmetry for the rest-frame states. The condition f++(to) = $f+ (to)
yields X+——0.0152, X =0.199, and g(0) =0.097, in agreement with the latest experimental values.

I. INTRODUCTION

HE form factors occurring in the reaction J. —+ xlv

have been the subject of a large number of in-

vestigations, all using the techniques of current algebra
or field algebra. ' The results obtained diHer widely. It
is therefore of interest to have a calculation based on
an entirely different approach of symmetry breaking.
This is done here.

A number of hadron properties (mass spectra, , form
factors, decay rates, diffraction scattering) have been
successfully described by the relativistic O(4, 2) model
of strong interactions. ' The underlying general hy-
potheses can be applied to weak interactions of hadrons
and thereby further tested. In this model the hadrons
are described by the relativistic analog of "wave func-
tions" and the information contained in these wave
functions enters into strong, electromagnetic, and weak
interactions in the same way.

In a previous paper, ' the general hypotheses con-
cerning the weak currents (scalar, pseudoscalar, vector,
and axial vector) acting on the "wave functions" of the
hadrons have been discussed and the form factors in
nonleptonic decays have been calculated using scalar
and pseudoscalar couplings. In the present paper, we
discuss the important case of vector currents.

Let us emphasize that the theory amounts essentially
to a direct generalization of the usual weak-interaction
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currents; instead of writing the currents between Dirac
spinors Li.e., simplest O(4, 2) spinorsj we write them
between the relativistic hadron "wave functions, " the
more general O(4, 2) spinors. The rest-frame hadron
states are labeled by

~
nj m&, I,I3Y), where the range of

(nj m&, n = principal quantum number, (jm) = spin and
spin component, &parity) are given by the O(4,2) repre-
sentation used, and the range of I,IIY by the rest-frame
SU(3) representation, for example. The minimal
conserved-current elements are the matrix elements of
the following operator:

J tu O'I I tt+ C12I fx+ Q3PIJtS+ 1CX4Lttt 1'
+ia, ', e„.),pLg, rtpII, - —(1.1)

where I'„,S, and L„.are O(4, 2) generators; P„=(p'+ p) „;
Q.= (P' —P)„;and 11 is the simple pseudoscalar operator
in O(4,2), taken between the so-called "tilted" states of
momentum p„={m cosh/, ~ sinh)), de6ned in
Sec. II A.

The coeflicients a; in Eq. (1.1) are tensor operators
with respect to an algebra of currents, SU(3))(SU(3),
for example. Note the difference between this algebra
of currents and the SL'(3) algebra which labels the
multiplets. '

The conserved current (1.1) fixes a mass spectrum
depending on the coefficients ai, a~, and a3 (a4 and aq do
not contribute to the mass spectrum).

The hypothesis was made that the electromagnetic
current, the weak vector current, and even (perhaps)
the strong vector current are conserved and proportional
to the matter current (1.1).' ' In Sec. II, we apply the
current (1.1) to derive Ki3 decay-form factors f+(t) and
f (t). We derive general formulas for the complete
functional form of f+(t). We then evaluate these func-
tions numerically by using the estimated values of n;
from the mass spectrum. Ke then test the hypothesis
that the (unboosted) rest frame states satisfy the SU(3)
symmetry. The theory, as we shall see, contains definite
procedures for evaluating the eff ect of symmetry
breaking.
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C. Vector Vertex Amplitudes

In our model, the left-hand side of (2.1) is given by

II. Xi3 DECAY FORM FACTORS

The basic vector vertex functions in the processes
like IC~ m+ (tv) is given by

6
&&'; pxl v."I»'; p.)=(4p»'p') '12~:Lf'~~3—»ne

v2

Here i, j, and k are the SU(3) indices, I f,, j&are the
relevant SU(3) reduced matrix elements, p»" and p &

are the four-momenta of K and ir, and f+(t) are the
(invariant) scalar amplitudes.

Ke now have a dynamical theory to evaluate the
left hand -side of (2.1). Thus, by comparing it with the
right-hand side we can evaluate the complete functional
form of the two form factors f+ and f

D. Kinematics

In the rest frame of E, we have for the invariant
momentum transfer

t=&P» —P )'=(mx'+m '—2m»E ) (2.6)

&I'; Pxl V, 'I »'; P-)= r&I.";~»Ij,'I x'; P.)Y' (2 4')

with the states
I )r defined in (2.2) and j„idefined in

(2.3). Because of the direct-product form assumed in
(2.3), we can evalua. te the SU(3) part of (2.3) in a

X((px+p~)&f+&t)+(p» p~)—vf (t)) -(2 1) standard manner. If the octet of mesons are assigned to
the SU(3) tensor T,', the SU(3) part of (2.3) is

a=(G/v2) sine. (Lg);1,—,',—-', Iz, IIsj;1oo). (2.5)

I nj m; II3V; P)r

1
=—ei™e""i'""'~4'e'*'~"'I nj m, IISI'). (2.2)

The reason one defines these new "physical" states is
that the current operators have simple transformation
properties as elements of the Lie algebra with respect
to these new states

I ) r, and not with respect to the old
basis vectors

I ). In Eq. (2.2), on the right, the first
operation e "~&"' is simply the Cabibbo rotation'; the
second operation is the noncompact tilting in O(4, 2),
and the third is a pure Lorentz transformation; iV is a
normalization factor. The generators of the pure
Lorentz transformations are the I-,5=M; elements of
the O(4, 2) Lie algebra.

B. Current

arith respect to the new states (2.2) the current
operator (1.1), in the case of bosons, has the simple form

3

=P GX'S .a.*F. (2.3)

The terms n4 and 0.5 do not contribute in the case of
bosons. Here, X' are the usual SU(3) generators. Thus,
the current operator factorizes. The situation is more
complicated for baryons where o,4 and e~ terms are also
present.

' N. Cabibbo, Phys. Rev. Letters 10, 531 (1963).

A. States

The states IK,p„), Iir,p»), ~ ~ are the tilted, rotated,
and boosted O(4, 2)QXSU(3) states. This means we take
the basis vectors

I
njm; II3Y) and define the new states

and for the parameter f of Lorentz transformations
in (2.2) we have

noh '(—),
m~'+m

cosh/=
2

-(mx —m.)'—t- i~2

tanh2$=
(m»+m )'—t

(2 7)

E. Spin Part of the Vertex Amp]i~des

In the rest frame of E, we then have from (2,3) (2 4)
and (2.5)

&A+I(v.) 'I x'p )
=a T(n= I j =o, m=ola F„'In=1, j=o, m=o p )= agv(f) ~ (2.8)

where, in the original basis In jm),

g„(1')=(100le @»~~a F„'e 'r Me e r&&I 100). (29)
The quantities g„(p) are the actual O(4, 2) parts of the
amplitudes. In the general case these are analytic
functions of the external spin j, principal quantum
number n, and ( given by (2.7). In (2.9), e» and 8, are
the appropriate tilting parameters for the E and the
x states which we shall determine.

The evaluation of (2.9) is carried out in the Appendix.
The final result is given by Eqs. (A9) and (A10), which
can be written approximately as in Eqs. (A11) and
(A12).

F. Determination of the Parameters

Apart from an over-all coupling constant G, the con-
served current (2.3) contains three parameters ai, a2,
and e3, which are common to both the ~ tower and theE tower of states (that is states with j~=0,1+,2+, ~
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8=0, P=y =0
and, consequently,

(2.12)

ng——1, a2=1/m~, a~=0. (2.13)

With these values, Eqs. (A11) and (A12) become

go(f)=cosh '(-', 8x) cosh '(-,'f')

X(n~L1—3 tanh2(~8') tanh 2(2f')]

+n2(mx+E )(1—tanh2(281') tanh~(~f')]

+n, (mx+E.) tanh(-', 8x) cosh—'(-,'f')

X L1—2 tanhs( —8x) tanh2( —f')]), (2.14)

g~(f') cosh '—(28&) cosh '(2f)(p )3

X —L1—3 tanh'(-'8') tanh'(-'f )

+a2 cosh2(~~f')Ll —tanh2(28rr) tanh2(~f')]

+n3 tanh(-', 81')

X(1—2 tanh~(~8x) tanh (~l )]

with the same internal quantum numbers as the ~ or
the E). Now the condition of current conservation
expresses the mass as a function of nj., n2, n3 and two
new parameters P and p.' This can also be seen by
noting that the current conservation is equivalent to
writing down an equation of the form

(2'„'P"+p'S+y')rp(p) =0 (2.10)

with j„' given by (2.3). Here, S=1.46 is the Lorentz
scalar element of the Lie algebra of O(4,2). The param-
eters P and y are, in contrast to a~, a~, n~, different for s
and E tower because of the E—7r mass differences
which cannot be neglected. Our formalism takes care of
these mass differences via the values of f and via the
tilting angles 8x and 8 in Eq. (2.9). These angles are,
however, not new parameters; they are related to n;
and to P and y by'

sinh8„= n(P —asM ')j(y —a2M' ') (2.11)

where n is the principal quantum number, n=1 for
both x and E.

From the mass spectrum, the normalization condition
and pion electromagnetic form factor we determine, '

Equation (2.14) inserted into (2.8) together with (2.5)
and (2.1) completes the evaluation of the vector-vertex
amplitudes.

1. m~3 Form Factors

Current conservation implies that f (t)=0, and we
immediately obtain from (2.14) and either (2.18) or
(2.19)

(4m.E.) '" v2
f+(t) =

(m +E ) cosh'(-,'f) cosh'(-,'8 )

X f Ln~+n2(m. +E.)]
—L3ng+ng(m~+E )] tanh (~8 ) tanh (—'1 )

+n~(m. +E.) tanh(-,'8.) cosh —'(-', 1)

X Li —2 tanh (28 ) tanh~(2f')]+ ), (2.17)

or, with our value 8 =0,
(cosh'') '"

f+(t) =v2 Lni+2n2m cosh'(-,'f)]
cosh'(-,' f )

(cosh'') '"
=&2

cosh'(-,' f)
Hence,

f+(1'= o) =~&

(2.18)

(2.19)

(/=0 is t=O for s.~s).
The form factor f+(t) falls oB much faster with t than

does the electromagnetic form factor. '

2. E~3 Form Factors

The two Eqs. (2.15) and (2.16) are now

G. Determination of the Form Factors

Having determined the left-hand side of (2.1) we can
now determine f+(t) occurring on the right-hand side.
In the rest frame of E, and taking p &=(E,O, O,p ),
we have

ago(f')=(E+~ (Vo)3'~s'; p )=(4mrrE ) '~'v2a

X$(mx+E )f+(t)+ (mx —E )f (t)], (2.15)

ag3(f.) =(&+1(V3)3'I~' p &= (4mxE.) 't V2a

Xp-Lf+(t) —f-(t)]; (2 16)

the components U~ and V2 vanish.

(mx+E )f+(t)+(mrs E)f (t) = 2(mrrE )—"'— L1—3 tanh2( —8') tanh~(~ f)]
v2 cosh'P8a) cosh'(-'f )

n, (mx+E.) n3(m&+E ) sinh(28~)
+ L1—tanh'(~8x) tanh2(~~i')]1 L1—2 tanh2(~8') tanh2(~~i)7 (2.20)

cosh'( —'8') cosh'(-'f') cosh'(~sl ) cosh'(-', 8x)

~ A. Q. Barut, D. Corrigan, and H. Kleinert, Phys. Rev. Letters 20, 167 (1968); Phys. Rev. 167, 1527 {1968).
~ A. O. Barut, Nuel. Phys. B4, 455 (1968).
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2(ggxZ. )&&2 n, 1
f+(t)—f (&) =—— — L1—3 tanh'(-, '8&) tanh'(-, 'f.))

v2 1 m 2 cosh'( —28x) cosh4(2'f)

+om L1—tanh'(-,'8x) tanh'(-', f') )
cosh'(-', 8x) cosh'( ,' f-)

sinh(28x)
+n3 (1—2 tanh'(~8x) tanh(~~/)) . (2.21)

cosh'(-,'8x) cosh4(2i )

P i 1/2 1
f+(&)=

2mx) cosh'(-28x) cosh'(-,'3') m

21811,
L1—tanh'(-', 8x) tanh'(-,'i))—L1—3 tanh'(28x) tanh'( —,'1))

mz —&~
X 1+

I
(222)

2m cosh'(x2f))
I/O 1 m~+E

(/) = — 1— L1—3 tanh (—'8x) tanh (—'i)).
2mx cosh (x8x) cosh (xi') 2m cosh2(xi )

From these two equations we obtain, using the parameters (2.12) and (2.13), n&——1, e2—1/m, a3—0

f+(t)=0.7(1+0.015$/m '),
f (/)=0.068(1+0.199t/m ').

(2.27)

(2.28)

We predict therefore, subject to small uncertainties in

(Note again that f (t)=—0 for mx=m .)
There is still one undetermined parameter left in

these expressions, 8~, the tilting angle of the E tower.
But at pion momentum zero, i.e.,

/=0, i.e., t= (mx —m.)', (2.23)

we can determine the ratio of the form factors inde-
pendent of 8~. Ke have

f (t=(mx —m.)')
((t= (mx m.)')=-

f+(t= (mx —m )')

(mx —m.) —0.27. (2.24)
(3mx —m.)

In order to determine f and f~ separately, we now
impose at f=0, the SU(3) syrrunetry condition

fp ($=0) = ,'f+ Q =0) =-2%2='1/W2 . -(2.25)

This requirement is in accordance with our general
point of view that the SU(3) symmetry holds exactly
for rest-frame states, i.e., (/=0), The factor 1/V2 comes
from SU(3) Clebsch-Gordan coeKcients; f has also to
be normalized by multiplying it by 1/V2. The right-hand
side of (2.25) has been determined above in Kq. (2.19).
Consequently, we obtain

cosh'(-', 8x) =-', (3mx —m.)/(mxm. )'I'=2.6. (2.26)

Now we have the complete values of the form factors

the parameters 0;~, n2, n3, that we have chosen

X+.=0.0152, P =0.199,
$(0)—=f (1=0)/f+(1=0) =0.097. (2.29)

The form factor f+(t) is a very slowly varying function
in the range t=0 to t=(m& —m )'. We could equally
well write the symmetry condition (2.25) at 3=0. The
other form factor, f, which is the result of the sym-
metry breaking, is, although more than an order of
magnitude smaller, a rapidly varying function. These
results are in agreement with the present experimental
values within the errors

Xy(E+) = 0.023&0.008, (Ref. 7)
$(&=~ ') = —0.06&0.2, (Ref. g)

$(&=0)= —0.13&0.25 (Ref. 9)
(assuming X =0.1).

Whether the theoretical requirement (2.25) is true is
not clear. In fact, more accurate experiments would test
this symmetry hypothesis. Another possibility of deter-
mining the parameter 8x, instead of (2.26), would be
to use the mass spectrum and form factor of the E tower
as we did for the ~ tower, Eqs. (2.12) and (2.13).

ACKNOVf LEDGMENTS

One of the authors (A.O.B.) would like to thank
Professor Abdus Salam, Professor P. Budini, and the
International Atomic Energy Agency for hospitality at

K. J. Willis, in Proceedhngs of the Beidelberg International
Conference on elementary Particles, edited by H. Filthuth (Wiley-
Interscience Publishers, Inc. , New York, 1968).

g T. Eichen et al. , Phys. Letters 278, 586 (1968).' D. R. Botterill et al. , Phys. Rev. Letters 2I, 766 (1968).



2282 A. O. BARUT AND K. C. TRIPATHY 178

the International Center for Theoretical Physics,
Trieste.

APPENDIX: EVALUATION OF 8„(f)
From (2.9),

g (f ) —(1QQI e &6&—& '6&—r45e 6l—4'4a F„4e r-Me 614'5I 100)
=p (100!e *&6x-'&-"4I noo)

X(noola~F& *f(f'~8~) l100) 4 (A1)
where

~ P f's ~-i8~L4g~ P aei8~L48
8 8

=a&T6+a2(pK+ p~) 6

+a3(P&r+P )„(cosh8 S+sinh8 166),

Q (100!e '&-' 6 &~"Inoo)(nOOIXf(f) !100),
n

X=L46 and L56.

These matrix elements can easily be evaluated in the
parabolic basis Inln2m) and transformed back to

I
nlm) by means of the relation

I nlm) = (—1)™(21+1)'(2

—,'(n —1) ,'(n —1)—
!XI,

42(m n—l+nl) -', (m+nl —n2) mP—

X Inln2m). (AS)
Ke also have

and the vector T„has the components

Tp=cosh8 Fp+sinh8 S,
F1 L16 p

~2 F2 L26 y

T3= F3——L36.
Further,

f(P g '}
~
—i8sl 48~-3'gLsgei8~L4g

~
—i aL34g—i P L45e—i y L34

)

(A2)

(A3)

~46 2(V 1 ++1 +$2 +%2 )=4VI +%2 ) (A6)
J36 A 2 A I 23(lV2 $2 N l +lVl ) y

A'3+
I nln2m) = —[(nl+ 1)(nl+ml+ 1)]'"

I nl+ 1, n2m),
lVl-

I «n2m) = —[n, (n,+ m)]'(2 In, —1, n,m),
v2+Inin2m) = [(n2+ 1)(n2+m+ 1)]"Inl, n2+ 1,m),
E2

I
nln2m) = [nl(nl+m)]'"

I
nl, n2 1,m)—. (A7)

with
sinh-', p= cosh8~ sinh2(,

sinn = —cosh-',f'/cosh2'P,

P =Q+x.

Thus, we need the matrix elements of the form

g (1OOIe '&' '»" InOO)(nOOI I'6f(f) I 1OO)

=P n(100!e '&6x 6'~44! noo)(noo! f(f') !100) (A4)

In the basis
I
nlnlnl) we have, because 1.46 ——El "&+lv2&2&,

(n, 'n, 'm'
I

e-'"44
I
n,n,m)

nI'+ (m+ 1)/2, n I+{m+1) /2
(m+1) /2 f L 1 q

X i a4'+(m+l&(2, n2+(m+3&/2 ( Slnh2tr)8m'ml(m+1) /2f ' L l„q

where &',6(a) are the matrix elements of 0(2,1) used
extensively before.

Thus, collecting terms together, we 6nd, finally, in
the rest frame of E,

( ,'(n 1) —',—(n 1) Oq ( ,'(n 1) ———,'(—n 1)—O—
q

g.(f)=Z Z I,
n $162 E2 ( nl+n2) 2 (nl n2) 0~ ~2 ( nl+n2) 2 (nl n2)

X Vy „,+y&(sinh($8&r —28 ))Vl, „,+l (—sinh(28&r —28 ))f [n[al cosh8, +a3(mz+E ) sinh8 ]+a2(m&r+E, ) J

X V 3+~,y&(sinh)8 ) V 2+~, ~&(—sinh)8 )e ' &"' "»+[al sinh8 +a3(m&r+E ) cosh8 ]
X[—$(nl+1)e lm&"' "3+'&Vm+~.1&(sinhgp)V»+~, ~&(—sinh$p)e lm&"' "2 '&V 1,~&(sinhslp)V„~~, ~1(—sinh$p)

+$(n2+1)e 'm&"' » '&V„,+ p(sinh$p) V~3+1,~1(—sinh$p)+sln2e lm&"' "2+'&

X V~,+y, y&(sinh2P) V» y, y1(—sinh/P)]), (A9)
and similarly,

( s(n —1) s(n —1) 0) ( 2(n —1) —,'(n —1) 0
go)=z z I,(-,*(—n,+,) —,'(n —n & Oi \-,'(—n, +,& —,'(m —n, & 0)

X V1, ,+11(sinh(-', 8lr ——',8 ))V~,„~,&(—sinh(-,'8» ——,'8 ))
X((a2P,+a3P n sinh8 )V„,+y, & (sinh28 ) V„24.~, ;&(—sinh-', 8 )e

*' &"' "»

+a3p cosh8 [——,
' (nl+ 1)e ' '"' " "V,+3,;4(sinh2p) V„2+;,;3(—sinh-,'p) ——,

' nle ' & "4 "~'&V ) g&(sinh-'p)

X V~~& &&(—sinh2p)+2(n2+1)e ' &"' "2 '&V„4+3 J&(sinh2p)V„~t;3( —sinh-', p)
+2n2e '«("' "'+"V ~,y&(sinh~P) V„, ~ 6&(—sinh-,'P)]

+al( sli)[(n2+—1)e '~&"' "2 '&V„,+&,33(sinh22p)V„~t, ~&(—sinh2p) —nle ' &"' "2+'&V
y, ~3(sinh2lp)

X V~2 1,~&(—sinh2p)+(nl+1)e ' &"' "~l&V„,+3,y3(sinhzp) V„~~,3&(—sinh2p)
—nle-' &"3-"~'&V» ),)&(sinhgP) V ~),)&(—sinh-,'P)]. (A 10)
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The current conservation condition g3({)/ga({)=sinhi{/cosh2{ would be satisfied if the E—ir mass difference
could be neglected. Tt follows from (A9) that the contribution of the intermediate state

~
n00) goes like

[(mir —m.)'—t]'" '»'

{1—cosh'8 [(mir m—)' tj/4m—rrm }'"+""

so that for small {,i.e., small [(mir —m )'—t), higher n values can be neglected in the numerical evaluation. Thus,
to a good approximation we 6nd with =8~ —8

go($) =[ni cosh8 +(mir+E )(ni+ni sinh8 )) cosh '(-,'0) cosh '(-,'P)
+ [2ai cosh8, + (mar+ E ) (ni+ 2nq sinh8 )~2[sinh(2 0)/cosh'(~ 0))(—&2 cosn[sinh(2P)/cosh'(2P)))
+[3ni cosh8 +(ma+E~)(ai+3oi sinh8 )jv3[sinh'(~0)/cosh'(20))3%3(1+2 cos2n)[sinh'(2p)/cosh (2p)]
+[4Ql cosh8, + (mir+ E~) (nz+ 4ai sinh8 ))

&&2[sinh'(-,' 0)/cosh'(-', 0)][—(coscx+cos3n) [sinh'(-', P)/cosh'(-, 'P)]]+
+[(ui sinh8 )+ai(mir+E ) cosh8 ]{—cosh '(20) cosa[sinh(2P)/cosh'(~P)]

+&2[sinh(~0~)/cosh'(20)j~v2 cosh '(~p)[1+tanh'(~p)(1+2 cos2n))
—Vj [sinh'(i~ 0)/cosh4(i20~))v3[sinh( —',p)/cosh'(2 p)][cosa+ tanh'(~ p) (cosa+ cos3n)]
+2[sinh'(-,' 0)/cosh'(-', 0))[sinh'(-'P)/cosh'(-, 'P)]

&& [1+2 cos2a+ tanh'(~P) (1+2 cos2a+2 cos4n)]+ ~ ~ ~ }. (A11)

gi($) = —ai {cosh '(-', 0~) sina[sinh(-, 'p)/cosh'(-', p))+ v2[sinh(-,' 0)/cosh'(-', 0)](—K2) sin2n[sinh'(-, ' p)/cosh'(-' ,p)]
+v3[sinh'(i~0)/cosh'(20) jv3 sin3n[sinh'(~P)/cosh'(~P))+ ~ ~ ~

I

+ (ai+ai sinh8 )P cosh '(~0) cosh '(-,'P)
+(ni+2n3 sinh8 )pp/2[sinh(-', 0)/cosh'(-, '0))(—V2) coso[sinh(-', p)/cosh'(-, 'p))
+ (ni+3ai sinh8 )p v3[sinh'(~ 0)/cosh'(i2 0)]i343(1+2 cos2a) sinh'(2p) cosh '(~ p)
+ni8 P {—cosh '(-', 0) cosn[sinh(-', P)/cosh'(-', P))

+42 [sinh(2 0)/cosh'(~ O)]2v2 cosh '(~i p) [1+tanh'(2 p) (1+2 cos2a)]
+v3[sinh'(-,' 0)/cosh'(-,' 0)][—V3 sinh(-,'p)/cosh'(-, 'p)][cosn+ tanh'(-' ,p) (cosa+ cos3a)j
+2[sinh'P 0)/cosh'(-'0)) [sinh'(-'P)/cosh'(i2P))

X[1+2cos2a+tanh2(2P)(1+2 cos2n+2 cos4n)7+ ~ }. (A12)


