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Can Infinite Multiplets Be Inferred from the Weak Decay Rates?*

A. BoHMt AND E. C. G. SUD&RsHAN

Physics Department, Syracuse University, Syracuse, Eeu Fork 132lo
(Received 1 July 1968)

An algebraic model describing symmetry breaking, which was considered in a previous paper for the
mass spectrum problem, is applied to the weak decays E~~, %~2, ~~3, and 7i-l2. It gives constant form factors,
(=1, and a suppression of the strangeness-changing decays (Cabibbo angles) of S&2

——0.28 (tan8&~) and
S&3=0.18 (tan 8&~). The results also allow the determination of all parameters that characterize the repre-
sen«tion of I and its spectrum-generating group SI.(3,c), from which the in6nite dimensionality of the
multiplets can be inferred.

I INTRODUCTION

'N a previous paper' we have introduced an associative
- - albegra as a model for the mesons and obtained
a mass spectrum D37) of II) which was in reasonable
agreement with experimental data. In the meantime
this method of infinite multiplets has become quite
popular ' and there exists a variety of approaches to
the derivation of dynamical properties. Therefore, it
appears worthwhile to investigate further consequences
of the algebraic structure and its application to weak
interactions.

The V—2 theory of weak interactions of nonstrange
particles can now be considered to be well established, 4

with the magnitude of the axial-vector coupling con-
stant in P decay having been computed from pion-
nucleon scattering data. The treatment of the weak in-
teractions of strange particles, by contrast, appears to
suGer from the need to introduce two new smallness
parameters called the Cabibbo angles. It would be
desirable to relate the apparent suppression of the
strangeness-changing weak decays to the marked viola-
tion of unitary symmetry. In a successful model of the
weak interactions the Cabibbo angles would themselves
be deduced in terms of the unitary-symmetry violation
as manifested in the very different masses of the pion
and the kaon.

From another point of view we should also seek to
establish a connection between strong and weak inter-
actions. The V—3 structure of weak interactions is re-
produced in the existence of both vector and pseudo-

* Work supported by the U. S. Atomic Energy Commission.
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Austin, Tex. 78712.' A. Bohm, Phys. Rev. 158, 1408 (1967), hereafter referred to as
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vector couplings in strong interactions. The depar-
ture from unitary symmetry of strong interactions
would then be expected to imply diGerences between
strangeness-conserving and strangeness-violating weak
interactions. '

We propose to study the question of weak meson
decays within the framework of the algebraic model in-
troduced earlier.

Before we turn to the subject of this paper —the ap-
plication of in the calculation of weak meson decay
rates —we want to give a brief description of the prop-
erties of I. The algebra S contains the enveloping
algebra of the Poincare group, 8((P), and the enveloping
algebra of Sl.(3,c). It is generated by the usual P„, l.„„
and the generators of the spectrum-generating group
Sl.(3,c):H;, P+, G;, and P+, where i = 1, 2, a = 1, 2, 3,
and the multiplication is defined by the basic relations
(2)—(6) of II.The nontriviality of the combination of P
and SI.(3,c) in m is expressed by the relation (5) of II;
in particular, the relation (5g) gives the mass splitting
inside an SU(3) multiplet Lwhich is in good agreement
with experimental data (Gell-Mann —Okubo formula) j,
and the relations (Sh) and (Si) give the mass splitting
between the different SU(3) multiplets in an irreducible
representation of , which is in not as good agreement
with experiment and leads in the representation of 8,
which we want to consider and which contains the
pseudoscalar-meson octet, to further diKculties. In the
definition of S appears a constant g, which is a "uni-
versal. constant" of our model and whose value is de-
termined from the mass spectrum to be g= 0.142 BeV'.

The physical system —which contains the various
mesons as diGerent states —is described by an irreduc-
ible representation of I which is characterized by four
numbers: mq, pq, s, and s (connected with the eigenvalues
of the invariant operators of S).(mq, pq) characterize the
degenerate series representation of Sl.(3,c) which is con-
tained in S, s is the spin, which is an invariant in our
model, and s is the invariant appearing in the mass
formula. For the particular physical system which con-
tains the pseudoscalar mesons ~, E, and q, the four
numbers have the following values: s=0; s= —0.111

' The principal series representations of SL(3,c) have been ex-
cluded because this would require the introduction of additional
quantum numbers.
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BeV', determined from the mass formula (the dimen-
sionless t'=z/g= —0.782); ma=0, determined from the
fact that only the representations (O,p3) contain an
SU(3) octet; and pi

——2b, where b will be determined
later.

In the irreducible representation space K(f', s, (O,pa))
we have the basis of generalized eigenvectors

l I,Is, F,X; p,sl) =
l n; p;sg),

where X characterizes the SU(3) multiplets. In Fig. 1
we show the lowest states of the "weight diagram" of
$(f', s,(0,ps)) for a given value of p/tn= o [which is the
weight diagram of the SL(3,c) representation (O,p&)

with the only difference that to each point is also as-
signed a definite mass given by (37) of II and a momen-
tum p=mv, a=const). The generators E~ transform
between the states of an SU(3) multiplet, not only
changing the intrinsic quantum numbers, but also
changing the mass in such a way that (37) of II is al-
ways fulfilled; the F+ and the G; transform between
states of neighboring SU(3) multiplets, and in general
(except for pq ——0) also between states of the same SU(3)
multiplet [as given by (A9) of Appendix Aj—also
changing simultaneously the mass of the state. Since
the mass is determined by the intrinsic quantum num-
bers, it is not needed for the labeling of the states; by
m&, m is meant the value of tn given by (37) of II with
the values of I, F, and X being those for the E, ~,
However, as we have remarked above, the X dependence
in (37) of II is probably not correct and the defining
relations (5h) and (Si) are not the right ones and will
have to be replaced with relations giving a better mass
formula. The only consequence of (5h) and (Si) that we
need in our present work is the value of m, the mass of
the hadron state with the quantum numbers of the
vacuum: a=(I=O, II=0, F=O, X=O). The mass for-
mula (37) of II gives an unphysical negative value of
m '; we shall use, instead, the intuitively correct value

From Fig. 1 we see that the transition from a state
with hadron quantum numbers of the E+ to a state
with hadron quantum numbers of m' is performed by
the operators E 2 and Ii 2, and that the transition from
a E+ state to the state with hadron quantum numbers of
the vacuum 0 is performed by Ii 2. Transitions of this
kind occur in nature in the weak decay E~ 7r'lv and
E—+ pv, respectively. This suggests a connection be-
tween these decays and the transition matrix elements
of the corresponding operators in our model. The lepton
pair in the weak decay cannot, of course, be treated in
the frame of our model for hadrons. Therefore we must
split the transition operator into two parts: the hadronic

' This model does not predict the existence of a "o meson" and
the o state might have to be thought of in the same manner as the
vacuum state in quantum field theory.' We retain m &0 in the calculation and let m, ~ 0 in the final
formula (4.2},which is the only place where we need the value of

0

TT- ~ 'iso

K ~ K4

FIG. 1. Weight diagram of SQ,s, (0,p3}) or weight diagram of
the degenerate series representation of SJ(3,c} which contains an
octet.

part, of which we assume that it carries the dynamics of
the process and which is given by our model, and the
kinematical leptonic part, for which we make the as-
sumption that it has the usual well-known form.

E ~pv) Ã ~pv)
E+ —+ m'Iv, x+ —+ m'Iv.

(2.1)

We assume that the decaying E+ system (similarly
for the ~+ system) is described by a physical state
pz. As a physically preparable state, pzQp, where

&C~(s.s, (0,p.))Cy~
is the rigged Hilbert space of II.

We use the abbreviations

—lI '„I3 a) F ipse —1-) P)$3i(O,pe), s=0, $) (2.2)

(and similarly for 7r+, 7ro, o, or generally n); assuming
the normalization (B3), (B6) of Appendix B, we can
write

d'Px
ll, & )«;l l~)

2Eir (yir) cir

d'Px
I&,& )~(l ).

2czEx(yx)
(2.3)

II. PREREQUISITES

We want to apply our scheme to the following weak
meson decays
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4)»(l)») is, as a (vector) function of })»,an element of the
test-function space which is a realization nf the space
qh, and

1= ((t'z, P») = d'Pz
I((z(})»)I'. (2.4)

2c»EK()z)

The reflection of the physical situation that a state
with exact momentum cannot exist with our mathe-
matical description is that

I p»(})z) I

' cannot be a b dis-
tribution but must be a test function. Under this as-
sumption the following remains mathematically correct.
However, to make connection with the usual calcula-
tion, we shall in the final stage replace the assumption
that p» is a state of almost exact momentum (l [i.e. ,
that Pz(})z) is a test function which is sharply peaked
at })z=(l] with the assumption that Q» is a "state with
exact momentum q." Then Q»(})») has to be chosen as

I 4»(}))I

2 = 2E»«i)~(})—(i) (2.5)

in order that (I)» fu1611 the "normalization" (2.4):
d'Px

2c»E»(}))8'(p—(l)"=1. (2.4')
2c»E(z) (})(z) )

The initial decay rate or transition probability per
unit time for the decay of the state @~ into lepton pairs
with all possible momenta and polarizations is given by

de dip
8(E» E„E„)——

2E„2E„
XZ I &&...})(„),})(,) I

T I4») I', (2.6)
pOl

where T is the transition operator (T H' "~""")per-
forming the transition from p~ into the states of lepton
pairs (p,v). If we insert (2.3), this may be written

pol

d'P~ d'P„d'p o

2Eg 2E„2c E o

i)(E»—E„E„)—
2E„2E„

d'Pz 2

X 4 (}) )&~...})„,}).ITI}),fc+) . (2.7)
2E»(})»)c»

For the x —+ pv decay we just replace the E+ with sr+

in (2.7).
Similarly, one obtains the transition probability per

unit time for the E+ —+ x'lv decay

III. CALCULATION OF THE WEAK DECAY
RATES AND MATRIX ELEMENTS

To calculate these transition probabilities and related
quantities, we must postulate the expression for the
transition operator T from the. general ideas laid down at
the end of Sec. I. Guided by the usual current-current
structure of the weak interaction, we split T into a
leptonic part I" and a hadronic part H~

T=I "H~+H. c. , (3.1)

a=I,2, 3
{I')„E.+&.}, (3.2)

where 6 is a dimensionless constant describing the
strength of the interaction. " For a specific reaction,
only one or two terms of the sum in (3.2) contribute,
because the matrix elements of the other Ii and E are
zero.

We calculate first the transition matrix element for
E+~ pv

such that H~ acts between one-particle hadron states
only and I." does not change hadron quantum numbers.
Since our algebraic model describes only hadrons,
only the hadronic part Hz can be formulated in the
frame of and only Hz is an operator in the represen-
tation space K({,s, (O,p3)), ' so that the leptonic part L~

cannot be expressed in operator form and its matrix
elements between a one-hadron state and a state con-
taining the lepton pair and hadrons must be postulated
separately. The explicit form of this matrix element will
be written later. It is to contain the usual assumptions,
i.e., (i) L" y"(1+pe) and (ii) the lepton states are to
be replaced with the usual free wave functions, and it is
to serve its usual purpose, namely, to transfer the mass
difference between the decaying hadron state and the
final hadron state to the lepton pair.

Thus, the dynamical property is essentially given by
the hadronic part H),. It therefore should be propor-
tional to P), [note that I'), is not the usual "free" mo-
mentum operator describing the motion of noninteract-
ing particles, but owing to the additional relations (5)
of II it describes properties of the interacting system].
As already remarked in the Introduction, the genera-
tors of I that perform the transitions between the
hadron states which appear in the weak decay process
are the E+ and Ii+, so that we are led to the following
assumption for Hq

Xb(E» E, E) E„)—— —d'Px
4»(l)z)

2c»E»(})z)
~=(u;, 'f).,&. l Tl&»,&+). (3.3)

x&~, , ',}.,}.,}-ITI},ff ), (2.g)

and analogously for x+ ~ x lv.

~ M. I. Goldberger and K. M. Watson, Collision Theory Qohn
Wiley 8r. Sons, Inc. , New York, j.964).

' From (3.2) one can see that II7, is a continuous self-adjoint
operator in the rigged Hilbert space @( 3C( @ (i.e. , its closure in
the completion of p with respect to the scalar product of 3C is self-
adjoint)."It is obvious that the numerical value of G depends upon the
normalization that we use for E and F and the normalization in
(3.11).The numerical value of G for the normalization that we use
in II will be given later.
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Using the above postulated assumptions, we write cx= c.(mx/m. )' (3.8(l)

d3$

&,~,p. ,p, lL" lp-, -)
2cE(p)

Equations (3.8b) and (3.8c) are a consequence of rela-

tion (6) of II. Inserting (3.7) into (3.6) and using (3.8b)
again, we obtain

where the summation runs over all generalized basis
vectors (1.1) of the irreducible representation space
BC(z,s, (O,b)) and lp„,p„,v, p) are the pure lepton states
with all hadron quantum numbers equal to zero, i.e.,
(I,I2, F,li) = (0,0,0,0) = o. Since L" does not change the
hadron quantum numbers, (p,v, p„,p, lI-"Ip,a)=0 unless
0.= cr, so that

&-,p. lH lp, K )=G(p. +p, .)
C02(K+, (mx/m, )P. I Px, K+), (3.6b)

respectively. C02 is the SL(3,c) transition coefficient
given in Appendix A, Eqs. (A10) and (A12), from which
we see that it depends upon b, i.e., upon the irreducible
representation $(t'=0.782, s=0, m, =O, p, =2b). Using
the "normalization" of the generalized eigenvectors
given in Appendix 8, Eqs. (83) and (86),

(
mK mK

K+, )7. )7,)'( =2 R ()7 )v )7,—2 -), (3.7 )
mar ma

mQ mir=2'~.(2.)2' 2.— ) ) (2 )b)
lmK mK

we see that the right-hand sides of (3.6a) and (3.6b) are
the same, as they should be, because

,—K —— b' p.— K, 3.8a

px/mx =p./m„
mK mK2 1/2

Lx(px) =Ex p = mx'+
mQ mQ

mK mK(m'+p')'"= ~-: ( )
mg m (f

(3.8c)

day
(v p,p p IL lp (r)

2c,E,(p,) x(,p.'IH lp, K') (3 5)

The second factor in (3.5) will be calculated in the
frame of the model S
&a:p. I» I p,K+)= G&a&p. I

{I' 7' }Ip,K+)-
=G(p~' '+pi")(a,p. I E2I px K+).

We can either apply F 2 to the state IPx,K+) or 8+2 to
the state

I p„o), and obtain

(ap. I» I px, K+)= G(p~(xi+ pi")
XC02((r,p, I (m, /mx)px, (r) (3.6a)

ma m0
=GC»P&«& 1+ 2c.E. P. b' P.— yK, 3.9

mK mK

and therewith (3.5) becomes

mg mg
A = (v,y,P„,P„ I

L" Px.(r GCO, P), (x) 1+ . (3.10)
mK mK

We need now the explicit form of the matrix element
for the leptonic part L". The requirements on these
matrix elements formulated at the beginning of Sec.
III, dimensional considerations and relativistic covari-
ance of the matrix element of T, lead to the following
general expression":

(v, f,p,p,~, ~,p-„p- IL"
I (ms/m )p =ps, P)

agc, agc „a/et)

2maI 2m@+ 2mp

XP (P.+P„+P,+ .+P ))7
—P ~)

X "'(ph"(1+7.-) '"'(—p.), (311a)

if the hidronic quantum numbers of (c22 n))7) uid p
are the same (i.e. , (22Xa7X(22X Xai) =p), and =0
othel wise.

It is easy to s e tha. t (3.11a) fulfills the above require-
ments for every E=0, 1, 2, . Since L~ has the dirnen-
sion 1, the matrix element has the dimension MeV ~~;
since we exclude the possibility of introducing a new
constant of the dimension of MeV (or length), the right-
hand side can only have this form, because replacing
the m „m „,mp with Lorentz-invariant expressions
formed out of the momenta is equivalent to the intro-
duction of dimensionless functions of these expressions
on the right-hand side, which we excluded with the
requirement that dynamical properties are not to be
carried by Li.)2 As c /m, 2=cd/ms' is an arbitrary con-
stant we could have chosen instead of it any arbitrary
constant of dimension MeV ', e.g. , g '. It is easy to see
that this introduces in the result only a new constant,
which can be absorbed in a. The constant a will appear
in the branching ratios of decay processes which
have in the final state diferent numbers of hadrons

"A discussion of (3.1ia) in the usual field-theoretic formulation
is given in a different place; A. Bohm and E. C. G. Sundarshan,
Syracuse University Report No. SU-158 (unpublished).

"The introduction of a diInensionless factor f(q'), q=p —P~
for %=1, e.g. , will change the constancy of the form factor in
(4.5a) and (3.23a) into q dependence, which is favored by the ex-
perimental data; however, such a q dependence of the form factor
should come from the hadron matrix element,
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Lcf. I'(E —+orlv)/I'(K —) Iv)j. However, we will see in
the following that this constant u is uniquely determined
from the fact that in the process E~ xlv the hadron
parity does not change whereas it has to change in the
process E—+ lv.

For our special case E+ -+ )&v, (3.11a) gives

m, agc.
&p,); p„,p„lI." p„,a = b'(p.+p„—px)

m+ 2m

X '"'(p„)(1— ) " '"'(—p,). (3.11b)

Inserting this into (3.10) and using (3.8d), we obtain

&~, ,p.,p. l &lp, & )

lation the index E+ with 7r+ and F 2 with F ~, the result
ls

Q 2 m. 2r(:-.,)=( )c„*(i+ ).
mÃ mr

m22
X4'~m„2m 1— . 3.15b

m~ 2

We remark that the "normalization" factors c~, c„
have completely disappeared as we would have ex-

pected, because the physical result can not depend upon
normalization.

We shall calculate now the decay rates for E+—+ ~ lv

and m+ ~ m lv according to the same principles. For

m, q1+ l(av'«»'(p +p.—px)
2m~ m~i

we obtain

&«(")(p,)(1-7h "I'"'(-p.) (3 12)

To calculate the decay rate, we insert this into (2.7) and
obtain

de /

&t v, ~o,P*,P P"II-'lP-', a)
2c E

X&a,p.'lII), l px, It+)

(3.16a)

P=
d p„dp„

~(E -E.-E.) l~ (p.+p.) I'
2E, 2E„

X (2c)rEx(p,+p„))-'8m„'(E„E„—p„p„)

m. )
X Gcoo 1+ lav cx

mE„m~~
(3.13)

dop I

&t,v,~',p„p.,p. lI.'l p.',~o)
2c,oE,o(p ')

X &oro,P 'l II), lP)r, E+), (3.16b)

because of the property of I." not to change the hadron
quantum number. In this case two terms contribute to
the hadron matrix element, because, in general, E 2 and
F 2 transform between the E+ and m state

where we have used

Z l
(")(p.)."(I+~.)(p"")+p.(")) ')(-p.) l'

pol

gm op~(v)p{v)

If we make now the incorrect but usual assumption
that r(I))r is a state of exact momentum {i=(0,0,0) and
insert (2.5) into (3.13), we obtain

e ( m~ ' 8m„2
P= GCoo

I
1+

2m~k m~ 2E~ q

=G()r",p~''l (&), &—o+E—o) l p)r, It+)
=GC(pg(x)+ p), '(~")&)r"p o'

l
(rw~o/tnx) px or') (3.17)

where

C=C»+&I=1, Io=0, I'=0, )&=1lP o

X l)(=1, F=I~ Io=o I=o)=C»—V 1'2~ (3 18)

and C(o is given in Appendix A, Eqs. (A10) and (A15).
So we obtain for the hadron matrix element, using (3.8),
(B3), and (86),

P(cf P(v) P( ))P(v).P( ) (3 14) ( o~
P &~lII lP It+)—GCP (Ic) I+

p V m~

so that the decay width for E+—+ pv is

m 2

rR(+ r )=( ) c '(&+ ) s'

m o

X2c 'o '(lt ')ll'(o. '— o ) . (&.&9)

Inserting (3.19) into (3.16a) gives

mp 2 2

X-' m„'mx 1— . 3.15a A= L,v,~'P), „,P ~ I."
m+ mQ

We obtain the decay rate for x+~ pv in exactly the
same way, replacing everywhere in the previous calcu-

m o

XGCp) '~' j.+ . 3.20
mg
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For the leptonic matrix element we obtain from (3.11) where C is the sum of SL(3,c) matrix elements,

m o 1
I' = a'GC 1+-

2m~ m~ 2m&o 2+~ P&+ ~+P~e

d'3y„d3p o

b(Ex—E o—E„—E&)
2zt 2E„2E

Xb'(l.+l,+l &-l x)Z Iu'"&(P.)
pol

X(1—vs)v"u"'( —
l&&)p~& 'I' (3 22a)

Again the "normalization" factor for the (unphysical)
generalized states disappears in the final (physical) re-
sult. Comparing (3.22a) with the usual expression for the
decay width"

16m~

d'l» d'P. d'l& o

(2&r)'
E&(2m)' E„(2&r)' E,(2&r)'

Xb'(p&+p.+p '—px)Q IORI', (3.22b)
pol

we obtain for the invariant amplitude 5R

CG m 0 1
OR= (2&r) 3&'-', &r 1+ C

mE m~ mrro

XP&, 'x'u'"'(1 —y;)y "u "&. (3.23a)

Repeating the same calculation with everywhere E+
replaced with m+ and E 2+Ii 2 with E j+F ~, we ob-
tain the invariant amplitude for the process w+ ~ m'ev

Qg& m 0 1
VR= (2&r)'&2-'m. 1+ C'

Xp&,
& +&u&"&(1—y5)y"u&'&, (3.23b)

"See, e.g. , J. S. Sell, in IIigh Energy Physics, edited by C.
DeWitt and M. Jacob (Gordon and Breach, Science Publishers,
Inc. , New York, 1965), p. 401.

m~6

&,&, ',s,s u. lL' s, ")
m+

age, o age o'

b'(l& +I&.+l&"—l&x)
2m o 2m

X "(l.)(i-v.b" '(-p), (311")

and insert this into (3.20) and use (Qc o')/m, o'

= (V'&:x)/mx

m. Qc„"+ex
a=GC 1+ p, «&

m+ 2m&0 2m

Xb'(l&,+l&„+l&. —l& ) -&"&(l&,)(1—~,h" '(—l&). (3.»)
To obtain the decay rate we insert {3.21) into {2.8)

and make again the assumption that we have initially
a E-meson state with sharp momentum, so that we can
use (2.5) and obtain

IV. PREDICTION OF THE MODEL

We have considered four processes:

E+—+ m'lv, m+ ~ x'ev,

E ~pv~ 7l ~pvp

and we have the unknown parameters G, u, and b. How-
ever u and b are not independent but connected by
parity considerations. After b has been fixed by parity
properties, u is determined by the ratio F(E'&3)/1'(E&2)
or the ratio F(s&,/F(s&, ). After a and b are known, G
can be determined from any of the partial decay widths.
Our model predicts then the ratio between the strange
and nonstrange decay widths, i.e., essentially the
Cabibbo angles Hy and 8~. In addition, our model gives
expressions for the weak form factor, which can also be
compared with experimental data.

We first calculate those properties which are inde-
pendent of the values u and b= (—,'p~) which characterizes
the representation $(f= —0.782, s= 0, (O,b)); then we
evaluate a, b, and G.

We define the suppression of the strangeness-changing
leptonic decay by the definition

P(E+~ pv) m (1—m /m )'

F(or+~ p&) mx (1—m„2/mx')'
(4.1)

which is identical in the Cabibbo theory'4 with tan~8&~.
Inserting (3.15a) and (3.15b) into (4.1), we obtain as
the result of our model

m (1+m./mx)
S)2= =0 28,

mx (1+m./m. )
(4.2)

which is in very good agreement with the experimental
value. ' "Here we have used the fact that C02=CO~,
which can be seen from their values given in Appendix
A, but which is generally true for these matrix elements
of SU(3) octet operators. For m„ the mass of the hadron
state with the quantum numbers of the vacuum, we
have chosen, in accordance with our considerations in
Sec. I, m, =0.

The invariant amplitude for the decay E+ —+ x'lv is
expressed by the weak form factors f+(q') and f (q')
I:q'= {p- —px)']:
~= (Gx/~&)Df++f )pa& '+(f —f--)p& '"']

u'"'(1 —y5)y "u' (4 3)
"N. Cabibbo, Phys. Rev. Letters 10, 531 (1963);R. H. Dalitz,

Varenna Lectures, 1964 (Academic Press Inc. , New York, 1966)."N. Cabibbo, in Proceedings of the Thirteenth Annual Inter-
national Conference on High-Energy Physics, Berkeley, 19N (Uni-
versity of California Press, Berkeley, 1967), p. 29.

C'={&=1, I=i, Ig ——0, V=OIF x+8 x

X II=1, I,= 1, F=O, X= 1)=Cn++3, (3.24)

and C» is given in Appendix A DA16)].



2270 A. BOHM AND E. C. G. SUDARSHAN

a'Gt' m o 1
Gxfx=s'"

~
1+ C

mxk mrs m o

(4.5a)

In the same way we can writ for the decay x+ —+ m "ev

from (3.23b)

(4.5b)

Here G, is the usual weak coupling constant (for the
nonstrange-particle decay")

G~=(1 023~0002)X(10 '/m„') X0980, (4 6)

f.=&2m(10%) . (4.7)

Thus, our model gives a constant form factor, whereas
latest experimental results'6 seem to indicate a weak q'
dependence of the form factor

(4.8)

with average value of" X=0.023&0.008. For $=f /f+
our model predicts &= 1, consistent with the latest ex-
permental results, '6 and '7

(4.9)

Ke de6ne the suppression of the strangeness-changing
semileptonic decay by

G f(1/C) G f
S&3—— ——2, (4.10)

G f (1/C') G f
which is to be compared with tan8~-'I in the Cabibbo
theory. '4 Here C'/C= 2 is the ratio of the relevant SU(3)
Clebsch-Gordan coefficients (in particular, this value is
obtained also from the values of C and C' in Appendix
A). Inserting (4.5a) and (4.5b) I (3.23a) and (3.23b)]
into (4.10), we obtain

where G~ is the weak coupling constant for the strange-
particle decay.

Comparing this with the result of our model (3.23a),
we obtain

(4 4)
and

These results of our model may indicate that the
Cabibbo suppression is connected with the breaking of
unitary symmetry. '

Ke now proceed to the determination of the constants
a and b.

It is clear that transitions between different
SU(3) multiplets in an irreducible representation
$(f', s, F3=0, b) can only be performed by the non-

compact operators F, G, of SI (3,C) because the com-

pact operators E do not transform out of an SU(3)
multiplet. Therefore transitions such as E—+ pv, x ~ pv,
and also K —+~x/v can only be performed by the F .
However transitions which do not lead out of an SU(3)
multiplet such as E—+ mlv, m. —+ ~tv are in general per-
formed by E as well as F, as seen from (3.18) and
(3.19). For the general case, we can see from (A3) and
(A6) of Appendix A or for the special case under con-
sideration from (A15) and (A16) of Appendix A, that
only in the representation S(|', s, m3 ——0, b) with b=0
the noncompact generators F do not contribute to
transitions such as K —+ xl'v, ~ ~ ~ev.

Since the transitions E—+ p, v, m —+ p, v are 0 ~0+
for the hadrons, the F must change the parity

i.e., must be pseudoscalars and therefore Jq '= G(I'q, F )
be axial vectors.

Since the transitions E ~mtv, m ~xlv are 0 —+0
for the hadrons, the operator that performs this tran-
sition should be a scalar. As mentioned above, the
transition matrix element for this process has a contribu-
tion coming from E and a contribution coming from
the F matrix elements. Since we already have found
that F changes the parity, we conclude that the F
matrix element must be zero, i.e., that b=0 and E is a
scalar IIE II '=E . Only for the representations with
b= 0 do the compact and noncompact terms have
definite parity properties, one of them generating the
vector transitions and the other the axial vector
transitions for leptonic decays of hadrons.

Having found b=0, we determine the value of a from.
the ratio of the experimental values of I'(n. ++~"lv)

and I'(~+~ pv). Comparing (3.15b) with Eq. (17) of
Ref. 1.3, we obtain

m. (1+m. /nsrr. )
5)3= = 0.183,

mrs (1+m.o/m )
(4.11)

(4.12)

as compared with the experimental value" "of 0.21.

"G. E. Kalmus and A. Kernan, University of California Radia-
tion Laboratory Report No. UCRL-183351, 1967 (unpublished);
E.Berlotti, E. Fiorini, and A. Pullia, in Proceedings of the Heidel-
berg International Conference on Elementary Particles, edited by H.
Filthuth (Interscience Publishers, Inc. , New York, 1968); J. W.
Cronin, in Proceedings of the International Conference on Particles
and Fields, Rochester, 1N7 (Interscience Publishers, Inc. , New York,
1967), p. 3; W. Willis, in Proceedings of the Heidelberg Internationid
Conference on Llernentary Particles, edited by H. Filthuth (Inter-
science Publishers, Inc. , New York, 1968)."R. %. Garland, Kosta Tsipis, S. Devons, J. Rosen, D. Tycko,
I.. G. Poudrom, and S. L. Meyer, Phys. Rev. 167, 1225 (1968).

~ f ~

= (+1.92X10 ')m„&5'Po. (4.13)

'8 For earlier attempts of a theoretical explanation of the
Cabibbo suppression, cf. M. Gell-Mann, Phys. Rev. 125, 1067
(1962); R. Oehme, Ann. Phys. (N. Y.) 33, 108 (1965);T. Pradhan
and M. Patnaik, Saha Institute (Calculta, India) Report, 1967
(unpublished); K. C. G. Sudarshan, Syracuse University Report
No. SU-137 (unpublished).

where the value of the weak coupling constant G is
given in (4.6) and f is determined from the experimental
value of I'(~+~ pv) to be
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I''rom (4.5b) we obtain

1 1 G fC'= — m ', (4.14)

phenomenological Cabibbo angle determined from
(E20~2res) which is 0.20.

APPENDIX A

Ke define

f21/22rs/2 2

(4.15)

%e describe here the calculation of the matrix ele-
ments of the noncompact generators of SL(3,e) in the
degenerate series representation (ms=0, /23= &2b).12

The degenerate series representations

(ms, ps) (ms ——integer, —00 (i/33(+ 00)
which gives, with the numerical values (4.7) and (4.13),

r = 27.0&(30%) .

Then from (4.12) and (4.14) we obtain

IC01 I'

a'
I
C»+1/v3

I

2 8 a'

where we have used (A13) and (A16) with b=0. With
the above numerical value for r we obtain

as= 1/72~30%.

From either (4.12) or (4.14) we can then calculate the
value of the constant G. From (4.12) we obtain

Ga= 1.316X10 '&5%

G=0.155X10 '&20%.

Ke shall now investigate whether the assumption
that there is only a 6nite number of meson resonances
with the same spin can be correct. For that purpose we
assume that we have a finite multiplet or that not
SL(3,c) but SFV3 ——SU(3)XSU(3) is the noninvariance
group. Then we must replace in the foregoing the non-
compact generators G; and F+ with iG; and iF+ .
Because of the physical interpretation, again the repre-
sentations must be unitary, i.e. , (iG,)+=iG; and (iF+ )+
=iFp . Therefore b must be real and have one of the
values

I
b

I

= 3, 5, 7, , 233+3. As noted before this is
not possible if E is to be a scalar and F a pseudoscalar.
So we see that parity considerations rule out the possi-
bility that 5$'3 is the spectrum generating group and
the multiplets are Rnite.

It is clear that the previous calculations can immedi-
ately be carried over to K, E', and K decay. The only
change is in the Clebsch-G-ordan coefficients. So our
model also gives the value of I'(E20-+srtv), or the
suppression of the strangeness-changing K decay:

m.—(1+m -/mx')
,,o =0.180.

mac' (1+m '/m -)

)We have here used the experimental values of the
masses and not the predictions of our mass formula,
therefore, this value differs slightly from (4.11).j This
is to be compared with the experimental value of the

contain every representation (v, /3) of its maximal com-
pact subgroup SU(3) at most once; only the represen-
tations (ms ——0, ps) contain an octet, and their reduction
with respect to SU(3) is'2

(o/3) - (~=0 / =0)(1, 1)@(2»). . . (A1)

Because of this reduction property the usual SU(3)
eigenstates II,I3Y; 3&, 3 =0, 1, 2, , form a basis of
the representation space of (O,ps).

For the calculation of the matrix elements of the non-
compact generators, we use the results on these repre-
sentations given in Ref. 20 and the tabulation of the
Clebsch-Gordan coeKcients of SU(3) in Ref. 21. In
analogy to (2.6) of Ref. 21, we introduce the notation
Eq, q, , y for the noncompact generators:

+1,+1,0 ~Foal) Q x y) y1—F+21 +$2+$2+1

A 1,0,0 G1 ll 0,0,0 G2 ~ (A2)

/LF, G;, S', and 8;have the same SL(3,c) properties as
the generators of the associative algebra F, G;, E, and
II;; however, they act on the SL(3,c) quantum numbers
only and do not change the mass. J

Using the fact that E&,1, z are properly normalized
octet operators of SU(3), their matrix elements can be
expressed in the form

&v', Y',Is',I' I 7' r, rs, r I &A, Y&3'&

= Q C(v, l,v',y,I,I3, Y; I,I3,Y; I',Is', Y')
sr=i

X &~'I IX If~&„(A3)

where the reduced matrix elements &p'IIXII3&2 depend
upon the representation of SL(3,c) (i.e., upon b) only.

C(v, 1,3 ', y; I,I3, Y; I,I3,Y; I', Is', Y')
=e(III', I3I3Is') U(v, 1,v", y, I,Y; I,Y; I'Y') (A4)

are the Clebsch-Gordan coefficients of SU(3); the rele-
vant SU(2) Clebsch-Gordan coefficients e(III'; I3I3I3')
are tabulated in Tables I.1 and I.2 of Ref. 22, and the

' I. M. Gelfand and M. A. Neimark, Unitare Darstellurigee der
klassischen Gruppen (Berlin, Akademie Verlag, 1957)."S. K. Bose, Phys. Rev. 150, 1231 (1966);S. K. Bose and E. C.
G. Sudarshan, i'. 162, 1396 (1967)."J. G. Kuriyan, D. Lurie, and A. J. Macfarlane, J.Math. Phys.
6, 722 (1965).
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isoscalar factors U( ) are tabulated in Table II of
Ref. 21.

The reduced matrix elements can be calculated, using
the results of Ref. 20, to bc

(A5)
v(v+ 2)

—1/2

(vile/ll &.= = —pib
(2v+ 1)(2v+ 3)

and from (A5) one obtains

(v = OliA/liv= 1)= —-', 1'(9—b') '",
so that one obtains

(9 b2)1/2/6v2

In the same way, one obtains

Cpi —— (9—b'—)"2/6v2

(A11)

(A12)

(A13)

(2v+ 1)'—b'
(v+ 1)2/2 (A7)

+12 v(v+ 1)(2v+ 1)

and with

one calculates

("= IIIA'llv= 1&= ib/3—V'5 (A14)

Cpp ——(v=O, I=O, I,=O, Y=OlF,
X lI= '„ Ip ———,', Y=-1, v=1),
I2=0, Y=OiF 1

X l
I= 1, Y=0, v= 1),

Ip ——0, Y=OlF 2

X lI= '„ I,= '„Y=1,-v= 1), -
I,=O, Y=oiF,
X iI=1, I2=1, Y=o, v=1&.

Cpi= (v= 0, I=0,

C12——(v= 1, I= 1,

C„=(v=1,I=1,

For example, for C02 one calculates

(A10)

Cp2 ——c(-, -„0; 2)

X U(v= 1,

——',, 0)
1, v = 0, I= 2, Y= 1, —',,

—1, 0, 0)

X(.= Ol[&iiv=1&.

From Table I.1 of Ref. 21 and Table II, part 3, of Ref.
22 one obtains

&v+ lily'llv) = — (v+1)'"
12

(2v+3)2 b2 1/

X (AS)
(v+ 1)(v+ 2) (2v+ 3)

The number b characterizes the representation (2222
——0,

pp= &2b) of SL(3,c) and has for unitary representations
the values —~ (ib(+ ~. For an arbitrary linear rep-
resentation of SL(3,c) with the SU(3) contents (A1), b

can be any number, e.g. , for 6= 2n+3, e= 0, 1, 2, 3,
the representation is finite-dimensional.

Summarizing, the matrix elements of the noncompact
generators 1Vr, r, , r of the SL(3,c) representation (O,b) are

(v', Y',Ip ~I I'iIr, r, , r lI,I2, Y,v)

=c(II I'; jq, Ip, jp')U(v, 1,v', (y= 2); I, Y I, Y I'Y')
X &v'ilA'ilv) (A9)

where the SU(2) Clebsch-Gordan coeflicients c( ) and
the isoscalar factors are taken from the tables and the
reduced matrix elements are given in (A6)-(AS).

With the aid of (A9) one easily calculates the required
matrix elements

C12——ib/15& 3,
C11= 2ib—/15v3

APPENDIX B

(A15)

(A16)

Usually the generalized eigenvectors

I p*,~&

La is an abbreviation for the set (I,I2, Y,h, ~ ~ )] are
"normalized" in the following way:

(p, ', I,p;) = b.- 2~-(p) b'(p- p'),

(p) (222 2+ p2)1/2
(B1)

As long as the mass is an invariant, the "norm" given

by (81) is independent of the states. However, in the
cases where an irreducible representation space contains
different masses, the norms (B1)are different, and if one
wants to compare expectation values of an operator be-
tween these generalized states with diferent masses,
one must always divide the matrix element by the norm.
Therefore, it is advantageous to use a normalization of
these generalized eigenvectors which is the same for any
basis vector in the whole irreducible representation
space.

To introduce this normalization we restrict ourselves
to the case where the mass-changing operator F
(=F,F,G;) fulfills the following relation $Eq. (13) of
II:

(B2)[p„/bI, r]=O.

For the two states
l p, ,a& and

l p; 12& we have

&12 p; l p 12'& = 8 c2(222 .2+)p'2" '(b' pp) (—B3)

(~p, ip, ~)=b-.—. 2(c~-+p)' b'(p' —p) (B4)

where the normalization constants c must be deter-
mined such that the norm does not depend upon the
mass. Because of (B2) we have p/222 =p/222-, so that

(/2 p; l
p'n'& = c (2/2 /2/2 )2(m-.2+p2)-'/2bp(p' p) (85)—

where we have used

'2 M. E. Rose, E/emerftary Theory of ANguIar Momentum Qohn
Wiley & Sons, Inc. , New York, 1957).

"In Table II, Pt. l, of Ref. 21, the last (—) has to be replaced
with (+).
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So we see [comparing (B3) and (B5)) that if we want then the normalization constants c (B3) must be
the norms to be the same, i.e., chosen such that

c /ca=(m /m-)'. (B6)
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We estimate the electric dipole moment d of the neutron in a theory where weak interactions are mediated
by an intermediate boson and where CP violation arises from phase angles between vector and axial-vector
currents. Following the dispersion-theoretic tadpole model of Babu and Suzuki, we evaluate d in terms of
the 7f' and q photoproduction amplitudes and the strengths of the m and q tadpoles. The strengths of these
tadpoles are evaluated in the soft-pion and soft-q limits, respectively, by making use of the hypothesis of
partially conserved axial-vector current, current algebra, and Weinberg's sum rules. The result is found to
diverge logarithmically with the mass of the intermediate boson. The contribution of the g tadpole is found
to be negligible for most cases, when compared with that of the ~ tadpole. Making reasonable estimates of
the photoproduction amplitudes, the dipole moment is found to be ~d [~9ising+0 06 sin$l X10 u e cm
if the mass of the intermediate boson is 5 BeV; p and g are the phase angles associated with the strangeness-
conserving and strangeness-violating axial-vector currents, respectively.

I. INTRODUCTION

'HE observation of CP violation a number of
years ago stimulated interest in the electric

dipole moment of the neutron; CP and P violation
coupled with the CPT theorem indicates that this P-
and T-violating quantity is not necessarily zero.
Increasingly accurate experiments, however, have as
yet been unable to detect any such dipole moment. The
present upper limit that has been established for the
neutron electric dipole moment is'

l
d

l
&3)&10 ~ e cm.

There have been a number of theoretical estimates of
the electric dipole moment of the neutron based on
dimensional, perturbation-theoretic, and other grounds. '
In this paper we follow the dispersion-theoretic tadpole
model that was used by Babu and Suzuki. ' One of the
important parameters in the calculation is the strength

*Supported in part by the National Science Foundation,
Center for Theoretical Physics under Grant No. NSF GU 2061.

t Supported in part by the National Science Foundation under
Grant No. NSF GP 6036.

~ W. 3. Dress, J. K. Baird, P. D. Miller and ¹ F. Ramsey,
Phys. Rev. 170, 1200 (1968).

2 A convenient tabulation of these references can be found in
Ref. 1.' P. Babu and M. Suzuki, Phys. Rev. 162, 1359 {1967).

of the CP-violating and P-violating m' tadpole. Babu
and Suzuki estimated this by relating it through a
series of approximations to the EI,—+ 2x decay ampli-
tude. On the other hand, we evaluate the strength of
the ~ tadpole by starting from a fundamental weak
interaction involving an intermediate boson, where CP
violation is assumed to arise due to phase angles be-
tween the vector and axial-vector currents. 4 We
evaluate the strength of the s.s (and rf) tadpole by
making use of the hypothesis of partial conservation of
axial-vector current (PCAC), current algebra, and
Weinberg's sum rules. '

The calculation is found to diverge logarithmically
with the mass of the intermediate vector boson. This
situation is similar to that in the calculation of the
E&-+ 2x amplitude by Glashow, Schnitzer, and Wein-
berg'; in the present case, however, it is not necessary
to make use of the full SU(3)&(SU(3) sum rules or the
soft-kaon approximation.

' S. Glashow, Phys. Rev. Letters 14, 35 (1965). See J. C. Pati
t Phys. Rev. Letters 20, 812 (1968)j for remarks on the value of
the phase angles.

~ S. Weinberg, Phys. Rev. Letters 18, 507 (1967). S. Glashow,
H. Schnitzer, and S. Weinberg, ibid. 19, 139 {1967).

~ S. Glashow, H. Schnitzer, and S. Weinberg, Phys. Rev.
Letters 19, 205 (1967).


