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experimental values are also listed for comparison. The
disagreement between the predicted and experimental
values is so large that we cannot possibly attribute the
discrepancy to inaccuracies of the Glauber corrections.
VVe feel that the disagreement stems from incompati-
bility of Kim's results with FESR.
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Dispersion relations in which the real part of an amplitude appears in a finite range of the dispersion
integral are studied, particularly for forward Pp scattering. Lindenbaum's measurement of n —=ReC»(v)/
ImC»(v) is tested.

N'OWIXG the analytic property and the high-
energy behavior of a scattering amplitude, several

extensions of ordinary dispersion relations have been
possible. One is the 6nite-energy sum rule, in which the
high-energy behavior is assumed to be exactly given by
the Regge-pole model. The other is a new superconver-
gent dispersion relation, ' in which both the real and the
imaginary parts appear in the same dispersion integral.
The distinction between a finite-energy sum rule and a
superconvergent dispersion sum rule is that, whereas
the former will break down if the Regge behavior is
invalid at the cutofI' energy, the latter uses the asymp-
totic Regge behavior only as a guide (other bounds are
also possible), but, will not, however, be able to de-
termine the Regge parameters in the ordinary sense,
because the high-energy tail of the dispersion integral
is too small to render such information.

In this paper a third kind of extension is studied. '
The real part of the amplitude appears only in a finite
range of the dispersion integral, which is more plausible
to deal with experimentally. This bears the name
broad-area subtraction method. ' The sum rule is not

*Work supported in part by the U. S. Atomic Energy Com-
mission.

'A. Logunov, L. D. Soloviev, and A. N. Tavkhelidze, Phys.
I.etters 24B, 181 (1967); K. Igi and S. Matsuda, Phys. Rev.
Letters 18, 625 (1967); R. Dolen, D. Horn, and C. Schmid, Phys.
Rev. 166, 1768 (1968).' Yu-Chien Liu and S. Okubo, Phys. Rev. Letters 19, 190
(1967}.

3 In the course of a more general survey {to appear elsewhere),
the author came across the following papers in which the real part
also appears only in a finite region of the dispersion integral: S. L.
Adler, Phys. Rev. 137, B1022 (1965); A. D. Martin and F. Poole,
Phys. Letters 2SB, 343 (1967); C. H. Chan and F. T. Meiere,
Phys. Rev. Letters 20, 568 (1968).The derivation of the sum rule
itself is very simple. It is how to extract physics from the sum rule
that is important, e.g. , the particular combinations of Fq. (2).

4 S. L. Adler, Ref. 3. The author wishes to thank X. Xovko for
bringing his attention to this paper and to the name "broad-area
subtraction dispersion relation, "

superconvergent, but relies on the Pomeranchuk
theorem. ' The unknown parameters, e.g. , subtraction
constants, are also minimal.

We consider forward proton-proton elastic scattering
as a specific example. Other cases like E+p scattering
can be done in a similar way.

Following the notation of Goldberger, Nambu, and
Oehme, ' the forward, unpolarized, pp scattering ampli-
tude is given by

C„„(v)=Gi(v) —2vGg(v)+ v'G3(v),

with ImC»(v)=(1/2m)(v —m')' '0. „(v). In this ex-
pression v is the laboratory energy of the incident
proton, and m is the proton rest mass. The amplitude
C»(v) has a pion pole at v, = —v„=m Ii'/2m—(p= pion
mass), a right-hand cut starting from m to ~, a crossing
cut from —m to —~, and an unphysical cut from v.
= —v(2p) =m —2p'/m to —~. The crossing relation is
C»(—v) =C„-„*(v). The ordinary (unsubtracted) dis-
persion relation7 is of the form

g. ' ii' 1 1 ~ ImCvv(v')
ReC„,(v) =— +— dv'

2m Sm'v v 7l —y2& v +v

1 " ImC»(v') ImC„-„(v')+- &', (1)
7r m v' —v V +V

where g '/4ir= 14.6.

I. Ya. Pomeranchuk, Zh. Eksperim. i Teor. 1'iz. 34, 725
(1958) LEnglish transl. : Soviet Phys. —JETP 7, 499 (1958)j.'M. L. Goldberger, Y. Nambu, and R. Oehme, Ann. Phys.
(N. Y.) 2, 226 (1957).

7 The presence of the unphysical region has obscured the de-
tection of either a wrong expression or a wrong factor in the dis-
persion relation for XE (KE) scattering in much of the previous
work. The unsubtracted dispersion relation Eq. (1) helps to clarify
these aInbiguities. (Once one knows the unsubtracted dispersion
relation, one can "derive" everything. )
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Now let us consider

C.v(v)
F(v) = , (0&v&1) (2)

(v m—) (v v—.)~(v v—a)' a

where P is real, v, and vq are also real, and are chosen
such that m&v, ~& vq&(~. If we normalize (v —v )~

L(v —vq)' ~j to be real and positive as v)v +i0
(v) vq+i0) and introduce a cut for it to run from vo to
~ (v& to ~), then F(v) is an analytic function in the

complex v plane, except for poles at v=m and at v= v,
and for cuts specified above. Using the Pomeranchuk
theorem, i e., 0»(~) =ovv(OD), one arrives at the follow-

ing broad-area subtraction dispersion sum rule fo C»(v):

1 g
2 p2

z. ReC»(m)
(v, m)—~(vq m)—' & 2m 8m' (m —v )(v —v )~(vq —v )' a

ImC„„(v) cosz P ImC»(v)
dv QV

(v—m)(v, v)S—(vb v) —~,, (v m)—(v v)—~(vy v)~—S

ImC;„(v)
dv

(v+ m) (v+v. )S(v+v b)
'

sins.P ReC»(v)
dv

(v —m)(v —v.)~(vg —v)' ~

+ dv
ImC„„(v) ImCvv(v)

dv =0, (3)
(v m)—(v v.)—S(v vb)—' & „(v+m)(v+v. )~(v+vg)'

TA'BLE I. Numerical result for the broad-area subtraction sum
rule (3) tand (4)j, in units of BeV '. Low-energy parameters
used are a» =16.1 F, r0= 2.7 F, g, '/4n 14.6, g„'/kr 10,
g, /47i —0.6, g2~~/4' 2.82, gI~ /kr 1.5, and gq~'/4'. ~4.0. %hen
P=0.0 and P= 1.0, principal values have been evaluated.

1st 2nd 3rd
P term term term

0.0 78 —14 —101
0.1 85 —15 —1T4
0.2 93 —17 —130
0.3 102 —18 —148
0.4 112 —20 —171
0.5 122 —22 —20i
0.6 133 —24 —242
0.7 146 —26 —305
0.8 160 —28 —419
0.9 174 —31 —735
1.0 191 —33 —350

4th 5th 6th
term term term

—188 29 326—542 32 692—224 35 407—129 38 308—58 41 256
0 44 223

59 47 200
134 50 182
255 53 168
576 56 156
194 59 147

7th
term Sum

—131 —2—135 2—140 5—144 8—149 10—154 12—159 14—164 16—170 20—176 22—182 25

' K. J. Foley et al., Phys. Rev. Letters 19, 857 (1967).
Compare with L. I. Lapidus, Zh. Eksperim. i Teor. Fiz. 36,

(1959) t English transl. :Somet Phys. —JETP 9, 193 (1959)j.
"A. A. Carter, Nuovo Cimento 48, 15 (1967).

using the same method as in the derivation of ordinary
dispersion relation.

The numerical result for the sum rule (3) is shown in

Table I, for T =v,—m=9 BeV and Tq=v~ —m=22
BeV. Within this region the n in ReC»(v) =n ImC»(v)
is measured by Lindenbaum. Other quantities in the
sum rule are obtained as follows.

For pp: Because of our normalization

ImC, „(v)= (1/2m) (v' —m') '"(r„(v),
we have ReC»(v) = (2s/m) a», ' a» (nuclear) pp-—
scatterin length= a„„=16.1 F.' Between 0 and
20 MeV, the etIective-range theory )'4 . cotb=1/u»
+,'r 4o. .',-vo=2. 7 F, is used. From 30 to 160 MeV
the relation"

0»(T) =3360.4/T+ 0.1527T—19.18,

where T= v m, is a good param—etrization. (To compare
with the actual experimental values of these low-energy

pp total cross sections, see Ref. 11.) In the intermediate

energy range, data are taken from Ref. 12. Above 20
BeV, Lindenbaum's fit"

~vv(v) =38.151+14.16(v' —rs.") '4'

is assumed.
For Pp, experimental data are lacking for T&50

MeV. The intermediate energy data are from Ref. 14,
while above 20 BeV again Lindenbaum's fit"

v) 38 151+915(„2 nP) o 73—.

is used. The unphysical integral, unlike the E p case,
cannot be obtained from analytic continuation. A

phenomenological approach is to assume the saturation
of 0, 0, 1, ~, mesons. Then

m+50 ImC- (v)
dv

(v+m)(v+v )S(v+vq)' ~

1
(4)

~ 2m (m v;)(v v;)a—(vg v;)—' ~—
where v, =m mP/2m—(m, =mass oi the jth meson),
and R;, the residue, is given by"

' F. F. Chen et a/. , Phys. Rev. 103, 211 (1956); B. Cork et al. ,
~bid. 80, 321 (1950).

'2 F. F. Chen et al., Ref. 11; D. V. Bugg et a/. , Phys. Rev. 146,
980 (1966), and references therein; K. J. Foley et al. , Ref. 8."S. J. Lindenbaum, Brookhaven National Laboratory Report.
invited paper, Conference on ~N Scattering, December 1-2,
1967, at University of California, Irvine, California (unpublished).

"U. Amaldi et a/, , Nuovo Cimento 46, 171 (1966};34, 825
(1964), and references therein; R. J. N. Phillips, Rev. Mod. Phys.
39, 681 (1967), and references therein; W. Galbraith et al. , Phys.
Rev. 138, 913 (1965).

"The method for these calculations can be found in Ref. 6.
The phenomenological Lagrangian is |,suppressing isospin)

(0 ) =~gv4v,
(0+) =zA ~,

Z(T-) =~g,P~„PV„+g,P(~„./2m)P($) (a„V,—a, V„).

The term g»'(1/32) (m, 4/m') is usually neglected.
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0: R) =gP(mP/8m'),
0+: R, =gg'( ', +—m-P /8m'),
1-: R, g=g)'(2+my/4m')+g„g„(-, 'm, '/m')

+g~ '(-,'m '/m'+ —', m, '/m4) .

The numbers shown in Table I involve q, p, and or

only, with" g„'/4~ 10, g»'/4~ 0.6, g2, '/4x 2.82,
g~„'/4w 1.5, and g~„'/4w 0. The inclusion of 0+

mesons will make the sum rule (3) worse, because it has
an opposing contribution relative to 0 and 1 poles
Li.e., the second term of Eq. (3) becomes positive].
This conclusion persists even when the PP scattering
length a» is varied from a» ——a„„(singlet) = 23.68 F"
(assumption of charge independence) down to a» ——7.7
F (presence of the Coulomb term), as long as the
effective-range parametrization between 0 and 30 MeV
is valid, since the first and the third terms both become
large or small and cancel with each other. If one

"P.Soding, Phys, Letters 8, 285 (1964)."I. L Levintov and G. M. Adelson-Velsky, Phys. Letters
13, 185 (1964).

seriously saturates with the above g, p, and co, then the
situation is that, the smaller the value of a» (smaller

than 16.1 F), the better is the sum rule (3).
When P approaches 0+, Eq. (3) is an ordinary dis-

persion relation with one subtraction at v~23 BeV.
The sum rule in all values of u» is very good around

here, as the low-energy contribution has been damped.
When P approaches 1, the subtraction point moves to
v 10BeV. It seems that this energy is not high enough

to ignore the low-energy uncertainty L6rst through

third terms of Eq. (3)$. However, the data in Table I
are satisfactory, showing the validity of our broad-area
subtracted dispersion sum rule (it is very good for the
xÃ case), or, turning the thing around, I.indenbaum's

measurement is consistent with the present method for
the treatment of pp dispersion relations.

The author is indebted to Professor S. Okubo for
guidance. He also wishes to thank I. J. Kim for partial
participation in the derivation of pole residues and in

computer programming, and to thank M. Samuel for
improving the manuscript.
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We consider the problem of the determination of currents and the oB-mass-shell extension of scattering
amplitudes within the context of analytic 5-matrix theory, keeping up to three particles inside the unitary
relations. The technique used is a straightforward application of the work by Mandelstam on the E/D
formulation of the three-body problem. It is found that anomalous thresholds do not play any role in the
problem and that two cases can be solved explicitly, namely, the extension off the mass shell of a scattering
amplitude and the computation of a form factor which tends to zero asymptotically.

1. INTRODUCTION

HE present theory of strong interactions is mainly
built upon the analyticity properties of scattering

amplitudes implemented with the properties of uni-
tarity and crossing, together with some necessary
assumptions which are not yet quite clear about asymp-
totic behavior. ' On the other hand, electrodynamics and
weak interactions are formulated in terms of currents,
a notion which is quite simple within the framework of
quantum field theory but more difIicult to handle by
S-matrix theory. However, much can be learned about
the structure of currents and their form factors by

* Postal address: Laboratoire de Physique Theorique et Hautes
Energies, BA,timent 211, Faculte des Sciences, 91-0rsay, France.

t Laboratoire associe au Centre National de la Recherche
Scientifique.' See, e.g., R. Eden, P. V. Landshoft, D. I. Olive, and J. C.
Polkinghorne, The AnaIytic S Matrix (Cambridge University
Press, New York, 1964).

using dispersion techniques, as was first observed in the
work of Frazer and Fulco' on the isovector form factors
of the nucleon.

Outstanding questions which arise in this domain are
the following:

(1) Assuming the 5-matrix for strong interactions to
be known, is it possible to derive from it the matrix
elements of some current operators)

(2) If this process is possible, will it lead to a unique
type of current or to several diferent types, or, in other
words, are the currents of electrodynamics and weak in-
teractions uniquely defined P

(3) Is there a distinction between different quantum
numbers such as, for instance, the quantum numbers
(I=0 or 1, Ia ——0, 5=0, JP=1 ) of the electric current,

'%. Frazer and J. Fulco, Phys. Rev. Letters 2, 364 (1959);
Phys. Rev. 117, 1609 (1960).


