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Finite-energy sum rules are used to test the consistency of Kim's multichannel effective-range analysis
of low-energy KE data with high-energy total cross sections.

FINITE-ENERGY sum rules (FESR) have been
proposed by a number of authors' ' recently to

relate low-energy data to the Regge-pole parameters
describing high-energy cross-section data. These sum
rules are statements of consistency that follow from
dispersion relations and the assumed high-energy be-
havior of a given amplitude. In earlier applications' they
were used to check whether the Regge parameters
describing high-energy data were also consistent with
low-energy data. On the other hand, if one has a fairly
accurate knowledge of the high-energy region, one can
use the FESR to check the consistency of a parametri-
zation of low-energy data with high-energy data. We
propose to use FESR to test the low-energy multi-
channel effective-range analysis of EX scattering re-
ported by Kim4 recently. One of the remarkable results
of Kim's analysis is the calculation of EAp and EZp
coupling constants, in excellent agreement with pure
SU(3) for the meson-baryon-baryon vertex. The con-
tribution from the region below the KX threshold to the
dispersion relation used to calculate these coupling
constants is very important. Thus extrapolation of the
low-energy data to this region is of crucial importance,
as emphasised by Kim4 and others. ' In view of this
situation, we consider it worthwhile to exploit FESR as
further constraints on the data in question. We find
that Kim's parametrization does not satisfy these
constraints.

We consider the amplitude f& defined by

At high energy, fi is dominated by the P and P'
Regge poles and is given by

fp r=Pp(E/Ii) (i cot-,—'sop)
+p (E/p) (i cot ',—~np )-, (2)

where P, and a; are the residue and trajectory functions
of the P and P' trajectories and E and p, are lab energy
and mass of the E.We take n& ——1, as is usually assumed,
and 0,& ——0.64 from our recent analysis" of x+p scatter-
ing using sum rules. We have two free parameters, Py
and P&., whose numerical values we shall need shortly
in order to examine Kim's low-energy analysis. These
two parameters can be determined directly by fitting
the total cross-section data. A more accurate deter-
mination of Pp and PI may be made, however, by
making use of a superconvergence sum rule to constrain
these parameters. The amplitude f'= fi fp"r satis—fies
the superconvergence relation

I m (fr fp"")EdE= 0—.

Substituting Eq. (2) and explicitly integrating Efp"r,
we obtain

f~=f(K p)+f(K+p)+f(K n)+f(K+n)

where fp is normalized by the optical theorem,

= 27r Q E,(R„'+R„')+ E lmfp(E)dE, (3)

Imfp= (k/4rr)sp= —(k/4ir)[o(K p)+o(K+p)
+o (K n)+o(K+n) j, (1)

where o (KE) are the KS total cross sections and k is
the laboratory momentum of the E meson.

*Supported in part by the National Research Council of
Canada.' K. Igi, Phys. Rev. 130, 820 (1963).

~ L. Sertorio and M. Toiler, Phys. Letters 18, 191 (1965); A. A.
Logunov et a/. , i'. 24B, 181 (1967};K. Igi and S. Matsuda,
Phys. Rev. Letters 18, 625 (1967).' M. S. K. Razmi and V. Ueda, Phys. Rev. 162, 1738 (1967);
Nuovo Cimento 52B, 948 (1967).

4 J. K. Kim, Phys. Rev. Letters 19, 1074 (1967); 19, 1079
(1967).

'i M. Lusignoli et al. , Phys. Letters 21, 229 (1966); N. Zovko,
ibjd. 23, 143 (1966); H. P. C. Rood, Nuovo Cimento 50A, 493
(1967).
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where Ã is an asymptotic energy such that (2) is valid
and is taken to be 4 BeV in our calculations7, and

E,= (M' M,~ p')/2M, — —
Ro'= (gxzo'/4 )X(~), R '= (gx~ '/4 )X(A)
R„~=2E~~, R„~=0,

X(j ) = L(M, —M)' —p'$/SM' (4)

and M is the nucleon mass. EA denotes the Am.

threshold.

'R. K. Logan and M. S. K. Razmi, Phys. Rev. 169, 1167
(1968); Nuovo Cimento 55A, 577 (1968). We have checked that
our conclusions are independent of this particular choice for n~ .

~ We have checked that our results are independent of the
particular choice of E as long as E is chosen greater than 3 BeV.
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Contribution
(mb BeV) Method of calculation aTerm

——,'x Re fp(p)

4 dEE
pImf(K+p)+Imf(K+) g

~2

6.594

Numerical integration using the optical theorem
and the experimental values of Refs. 8—12.10.396

4 dEE
Same as directly above.t Im f(K-p)+Im(K-~) g

gp E —p
15.351

Numerical integration using the values of
Imf from Kim's multichannel analysis.

Ep dEE
$Imf(X p)+Imf(K n)j —6.488

From Kim's values for the coupling constants
in Ref. 4.

I'', (R~&'+R„&)
2m. 0.096

25.948

a See Ref. 11. b See Ref. 4.

The right-hand side of (3) was evaluated using
the experimental data' " on total cross sections
wherever possible. This includes K+E in the region
IJ,&E&E and E E in the region Eo&E&A', where
Eo L(0.53 BeV) +——pmj'~ . The remainder including the
Born terms and the E E contribution in the region
E& &E(EO comes from Kirn's analysis. ' Rim's terms
contribute less than 0.1%%u& of the total and hence do not
appreciably eGect the determination of the P;.

The sum rule described above reduces the number of
free parameters in Eq. (2) to one. This one parameter
was determined by a fit to data of Galbraith e/ ul."
shown in Fig. 1(a). The best fit was obtained with
/=2. 65~0.06 mb BeV and P'=1.21~0.09 rnb BeV,
yielding a X2 of 1.9.

Turning to our central problem, we now consider a
particular FESR, namely, an Igi-type sum rule for EX
scattering, which is more sensitive to the low-energy
data and, therefore, may be used to check the validity
of Kim's analysis. The sum rule reads

Inspection of (5) shows that this sum rule emphasizes
the importance of the low-energy region much more
than sum rule (3).That is to say, the contribution of the
low-energy region in (5) is far from being negligible
compared to the contribution of the rnediurn-energy
region. Therefore, we believe that sum rule (5) may be
regarded as a sound check on any given parametrization
of low-energy data. We evaluated the left-hand side of
(5) using the values above, and it turns out to be 28.6
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8 J. D. Davies et a/. , Phys. Rev. Letters 18, 62 (1967).
9 R. L. Cool et a/. , Phys. Rev. Letters 16, 1228 (1966); 17, 102

(1966).
'P R. Good and N. Xuong, Phys. Rev. Letters 14, 191 (1965)."S. Goldhaber et a/. , Phys. Rev. Letters 9, 135 (1962)."V.J. Stenger et a/. , Phys. Rev. 134, 81111 (1964).
'~ W. Galbraith et a/. , Phys. Rev. 138, 8913 (1965).
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FIG. 1. {a).Fit to Sj,. (b). Fit to 20 (K p) +2o (K+p).
{c).IiQ to 2o(K p) —2o(K+p).

TAsLE I. Evaluation of the right-hand side of Eq. (5). Ep ——
t (0.53 BeV)'+p2)'"=0.73 BeV.
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TAm. E II. Comparison of experimental values of 0 (E+n)
with predictions of E+p sum rules.

+lab
(SeV)

cr(E+n)
cr(E+n) from A. +p (E—

n)
experimental sum rule experimental

{mb) (mb) (mb)

a (E-n}
from E+p
sum rule

(mb)

6
8

10
12
14
16
18

17.5&0.4
17.6a0.4
17.5&0.4
17.6&0.4
17.5&0.4
17.4m 0.4
17.6&0.4

26.6%2.7
25.1&2.6
24.0m 2.5
23.3&2.4
22.7+2.3
22.2+2.3
21.8+2.2

21.9a0.4
19.7a0.4
20.6a0.4
20.2&0.4
20.1+0.4
20.3+0.6
20.3~1.1

25.4a2, 7
24.0a2.6
23.0~2.5
22.3+2.4
21.8m 2.3
21,3+2.3
21.0~2.2

"It is hard to estimate the error in evaluating the right-hand
side because one knows only the statistical error, which is very
much smaller than the systematic error. According to most
estimates, the systematic error in measuring the total cross sec-
tions is 1 jp, which would give the right-hand side an error of ~0.3.

» A more dramatic presentation of this discrepancy is obtained
by pursuing the following line of thought. Sum rules (3) and (5)
are used to determine p~ and p~ with the result that pP is nega-
tive. This is in clear contradiction with the data on SP, which show
Sp approaching its asymptotic limit from above, not below.

' J. K. Kim, Phys. Rev. t.etters 14, 29 (1965); Columbia
Uni'versity Report Nevis 149, 1966 (unpublished).

&0.7 mb BeV. The right-hand side of (5) is evaluated,
as before, by using the low-energy parametrization of
Kim and the data of the authors in Refs. 8—12. The
contributions of the various terms on the right-hand
side of Eq. (5) are given in Table I. They give a total
contribution of 25.9 mb BeV,'4 which represents a
discrepancy with the left-hand side of 2.7 mb BeU.
While this discrepancy of 2.7 mb BeV may not seem
very dramatic, "it is none the less significant, especially
when one considers that the over-all contribution from
Kim's multichannel analysis is only —6.488 mb BeV.

If the discrepancy is due to an error from this con-
tribution, then Kim's determination of the coupling
constants is in difficulty. The reason for this is that
Kim's determination4 of the coupling constants from the
dispersion relations differed from the previous deter-
minations precisely because his contribution to the
dispersion integrals diGered from the others in this
energy region (Ez (E(EO 0.73 BeV). The——dis-

crepancy, however, might have its source in the other
terms. The scattering-length term, —2s Reft(u), has
the value""" 6.594 mb BeV with an error of only
&0.3 mb BeU. Estimating the error from the integrals
over the total cross sections is difficult. The statistical
error turns out to be very small because of the large
number of terms contributing. The significant error is
the systematic error which is not known exactly. The
usual estimation for total cross section on proton
targets is usually 1 to 2% which would represent an
error from the cross-section terms of only 0.25 to
0.5 mb BeV. The major source of possible error, how-
ever, in our opinion is the determination of the E+n
cross sections from the E+d data, using the Glauber
correction.

and

f~ (E)=P-(Elu)~-+P. (Elu)~,

As before, we take nI =0.64. The remaining intercepts
Q,z, n„,and n, are fairly well determined from previous
analyses of other data. We take" a&=0.32, 0.„=0.52,
and 0.,=0.58. Thus, we are left with three free param-
eters for f+ and two for f . The three parameters of f+
reduce to only one free parameter when we make use of
the superconvergent sum rule and the Igi-type sum rule
for f+. The two sum rules are readily obtained from (3)
and (5) by formally setting the %+I contributions to
zero, multiplying the E+p contributions by a factor of
2 on the right-hand side, and adding the contribution of
the R trajectory on the left-hand side. The single
remaining parameter is determined by a least-squares
Gt to 2(a(IC p)+~(IC+p) j with relation (6), which is
shown in Fig. 1(b). We obtain

Pp=2. 15&0.04mb BeV, Pp =3.74&0.10 mb BeV,

Pa= —2.21&0.05 mb BeV.

In the case of f, the two parameters are reduced to one
when we make use of the superconvergent relation' for

f, namely,

p;

s=~, S 1+n; p

=4m. T E~'+
j=Z, A

Imf (E)dE. (8)

The one free parameter is now determined by a least-
squares 6t to 2[a (E p) ~(E+p)j using—(7). This fit is
shown in Fig. 1(c).We obtain

P„=0.70&0.3 mb BeV P,=0.87&0.3 mb BeV.

Notice that the P~ and P~. , which are normalized as
before, have quite diferent values than the ones ob-
tained with fp. Furthermore, the R-pole residue is
negative.

With all the parameters determined, we are now in a
position to predict E+n high-energy cross sections.
These predictions are shown in Table II where the

"Our results are independent of this particular choice of these
intercepts.

In order to test Kim's results without considering
this possible source of error, we shall now consider a set
of sum rules which only involve K+p data. We define
f+= 2Lf(E p)&f(K+p)j. At high energies f+ is

dominated by the P, P', and R Regge poles and f by co

and p Regge poles. The asymptotic forms of f+ are
given by

f~'(E) =P~(Elu)+P~ (Elu) +Pa(E/u)" (6)
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experimental values are also listed for comparison. The
disagreement between the predicted and experimental
values is so large that we cannot possibly attribute the
discrepancy to inaccuracies of the Glauber corrections.
VVe feel that the disagreement stems from incompati-
bility of Kim's results with FESR.
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Dispersion relations in which the real part of an amplitude appears in a finite range of the dispersion
integral are studied, particularly for forward Pp scattering. Lindenbaum's measurement of n —=ReC»(v)/
ImC»(v) is tested.

N'OWIXG the analytic property and the high-
energy behavior of a scattering amplitude, several

extensions of ordinary dispersion relations have been
possible. One is the 6nite-energy sum rule, in which the
high-energy behavior is assumed to be exactly given by
the Regge-pole model. The other is a new superconver-
gent dispersion relation, ' in which both the real and the
imaginary parts appear in the same dispersion integral.
The distinction between a finite-energy sum rule and a
superconvergent dispersion sum rule is that, whereas
the former will break down if the Regge behavior is
invalid at the cutofI' energy, the latter uses the asymp-
totic Regge behavior only as a guide (other bounds are
also possible), but, will not, however, be able to de-
termine the Regge parameters in the ordinary sense,
because the high-energy tail of the dispersion integral
is too small to render such information.

In this paper a third kind of extension is studied. '
The real part of the amplitude appears only in a finite
range of the dispersion integral, which is more plausible
to deal with experimentally. This bears the name
broad-area subtraction method. ' The sum rule is not

*Work supported in part by the U. S. Atomic Energy Com-
mission.

'A. Logunov, L. D. Soloviev, and A. N. Tavkhelidze, Phys.
I.etters 24B, 181 (1967); K. Igi and S. Matsuda, Phys. Rev.
Letters 18, 625 (1967); R. Dolen, D. Horn, and C. Schmid, Phys.
Rev. 166, 1768 (1968).' Yu-Chien Liu and S. Okubo, Phys. Rev. Letters 19, 190
(1967}.

3 In the course of a more general survey {to appear elsewhere),
the author came across the following papers in which the real part
also appears only in a finite region of the dispersion integral: S. L.
Adler, Phys. Rev. 137, B1022 (1965); A. D. Martin and F. Poole,
Phys. Letters 2SB, 343 (1967); C. H. Chan and F. T. Meiere,
Phys. Rev. Letters 20, 568 (1968).The derivation of the sum rule
itself is very simple. It is how to extract physics from the sum rule
that is important, e.g. , the particular combinations of Fq. (2).

4 S. L. Adler, Ref. 3. The author wishes to thank X. Xovko for
bringing his attention to this paper and to the name "broad-area
subtraction dispersion relation, "

superconvergent, but relies on the Pomeranchuk
theorem. ' The unknown parameters, e.g. , subtraction
constants, are also minimal.

We consider forward proton-proton elastic scattering
as a specific example. Other cases like E+p scattering
can be done in a similar way.

Following the notation of Goldberger, Nambu, and
Oehme, ' the forward, unpolarized, pp scattering ampli-
tude is given by

C„„(v)=Gi(v) —2vGg(v)+ v'G3(v),

with ImC»(v)=(1/2m)(v —m')' '0. „(v).In this ex-
pression v is the laboratory energy of the incident
proton, and m is the proton rest mass. The amplitude
C»(v) has a pion pole at v, = —v„=m Ii'/2m—(p= pion
mass), a right-hand cut starting from m to ~, a crossing
cut from —m to —~, and an unphysical cut from v.
= —v(2p) =m —2p'/m to —~. The crossing relation is
C»(—v) =C„-„*(v).The ordinary (unsubtracted) dis-
persion relation7 is of the form

g. ' ii' 1 1 ~ ImCvv(v')
ReC„,(v) =— +— dv'

2m Sm'v v 7l —y2& v +v

1 " ImC»(v') ImC„-„(v')+- &', (1)
7r m v' —v V +V

where g '/4ir= 14.6.

I. Ya. Pomeranchuk, Zh. Eksperim. i Teor. 1'iz. 34, 725
(1958) LEnglish transl. : Soviet Phys. —JETP 7, 499 (1958)j.'M. L. Goldberger, Y. Nambu, and R. Oehme, Ann. Phys.
(N. Y.) 2, 226 (1957).

7 The presence of the unphysical region has obscured the de-
tection of either a wrong expression or a wrong factor in the dis-
persion relation for XE (KE) scattering in much of the previous
work. The unsubtracted dispersion relation Eq. (1) helps to clarify
these aInbiguities. (Once one knows the unsubtracted dispersion
relation, one can "derive" everything. )


