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Asymptotic Foi~ of the Wave Function for Three-Particle Scattering
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The asymptotic form of the wave function for scattering from an initial state of one-particle incident on a
bound pair at energies above the breakup threshold is given. Unknow& corrections are rigorously square
integrable. The discussion is valid only for short-range forces.

INTRODUCTIOÃ
' 'N spite of considerable progress in recent years, the
- - solution of the three-body problem at energies high
enough to allow a anal state of three free particles is
still not easy. The,propagator singularities in the Fad-
deev equations must be dealt with carefully. An alter-
native procedure is to work in coordinate space and use
Schrodinger's partial differential equation along with
suitable boundary conditions.

This paper gives the asymptotic form of the wave
function for scattering from an initial state of one-
particle incident on a bound pair with enough energy
to break up the bound pair. All corrections to the form
we give are rigorously square integrable. The discussion
is limited to suitably well-behaved short-range
potentials.

DEMVATION

The basic outline of the method we use to find the
asymptotic form was set out by Nuttall. ' We study the
same problem, three different particles of equal mass
(m= sr) and use the same notation as I.s It is only when

two of the particles may be relatively close together
with the third one i far distant that any di8iculty arises.
To study this situation it is most convenient to use the
exact representation of the wave function lt+(p) given

by Eq. I(4)

(t) l E—P,'—Q; "+sej-',
(ii) (0' 0&"'+—seg (4b)

where 0 ",Q "areinternalmomentatobeintegrated

deined by I(5), i.e.,

(It;lT;+lx)=(yo, -,p, l(1+V'(E a—+se) 'jv'lx)
= (E';

l L1+V;(X'—P;+ '
)
—'g

Xt1+V'(E—H+ie) 'jV'lx). (3)

The asymptotic form of i/+(p) for large P is deter-
mined by the location and nature of the singularities of
(E',

l
T;+

l x) near real E;.We note 'that this T matrix is
not the same off the energy shell as the solution of the
Faddeev equations, although it can be related to the
Faddeev T. On the energy shell they are identical.

A diagrammatic analysis of (K',
l
T;+lX) shows that

two types of diagram contribute:
(i) those in which the last interaction before the

6nal state of (3) involves particle s;
(ii) those in which particle i is not involved. It may

be shown by standard Landau-diagram techniques' that
the only propagators that can be involved in pinches
giving rise to singularities of (K; l

T;+
l x) are those to the

left of the point marked by a wiggly line in Figs. 1(a)
and (b), which show examples of the two types of
diagram. Such propagators have the form

lt+(0') =X(p')+4" (p"')+ (2w) '(s)"' 2 dp'X-'(Y')
a, g

Xexp(iX; P~)(E+E,'—Ps+se) '

X«.',P, IT(E)lx), (1)
where

P, (p,)= (2w) '3 '" dX'yPo; (Y;)

I ~
l (k)Po Q.j ~p j

l ) i (k)——P+ —gFs

(a)

Xexp(sX,'P~) (E—X'+se) t(It;l T;+l x). (2)

This involves the two-body scattering wave functions

fo,.-(Y~) and the off-energy-shell T matrix (X;l Tr+lx) Jp. g,L ~(k)
A'~~

F&o. 1{a).A diagram contributing to (lteig' I*) in which par-
ticle i is involved in the last interaction. (b). A diagram contrib-A
uting to (I:;[I;+is) in which particle s is not involved in the last
interaction.

~ Supported in part by the U. S. Air Force OEEce of Scientihc
Research, OfBce of Aerospace Research, under Grant No. AF
918-67.

f National Science Foundation Trainee, 1967—8.
' J. Nuttall, Phys. Rev. Letters 19, 473 (1967), hereafter

referred to as I.
~ Note that a misprint appears in Eq. (3) of L The factor

should read ($) ' ~.
(3)'» i M. Rubin, R. Sugar, and G. Tiktopoulos, Phys. Rev. 146, 1130

(1966).
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The form (9) is a natural one to use if we are looking
for a solution of Schrodinger's equation in a region
where two of the particles may be close enough for their
potential to be important, but in which the third one
i is far away and moving freely. It has been given
previously by Peterkop. ' However, it is still rather
complicated for use in numerical calculations, and the
main purpose of this paper is to simplify it by keeping
only the most important terms.

To do this we need to pick out from the on-shell
scattering amplitude the 8-wave part (with respect to
Q), to(Q, X„),writing (omitting the subscript i),

&~(O')x.,012' 1.&=4(Q,x.)+i(O,x.). (10)
We must further analyze to(Q, X ) as

to(Q,X„)=fp(Q, X )+Qt(X ),

over. These give rise to singularities at

(i) I' Pp=—0, (3a)

(ii) QP=O.

In addition to the above, there may also be two-body
bound-state poles at

PP=E+E ', j&i (6)

(4~)1t2

4o (Y)= Z gi(Q, F)FP(Q»)
(2~)'» i-0

p) where

=0
dQ o-o

(12)
we know that g&(Q, F) is analytic in Q and behaves like
Q' near Q=O.' Similarly, if In addition, it is convenient to write

Bound-state poles in the i channel will not occur near
real it.

It is only the singularity at QP=O that concerns us
and the type of singularity there is the same as that
encountered at zero-energy two-particle scattering. If
we expands (Y) as

OO

&&, I
&'+I &)= (4~)'» 2 2 i~-(Q, P')F~™(Q) (g) wherel~ m—l

g (Q F)=»nQF/QF+d(Q F), (13)

we expect that (& (Q,P~) will be analytic in Q and near
Q=O behaves like Q'.

Our main concern in this paper is with the second
term of (1),f (p;), whose asymptotic part describes an
outgoing wave in which no pair of particles is bound,
although they may still interact. Ke study the asymp-
totic part of fo(p;) for large X; by determining first the
leading part of the integral over P; for each value of Q;.
The result is familiar from the two-body case and is, as
in I(9)

P (p) —3-~'(AX,)—' doggo, (Y,)

~(Q F), f(Q)

f(Q)= —~—ia'Q+ ",
where V2a is the scattering length. Thus

P(0, I') —a/F,

y'(0, F)= ia(1—u/F) .
dQ Y~co

Using these formulas, we may write P, (p) as

(16)

Xexp[iX;(E—QP)'"]

X&(E—Op)'»X;. ,0;i r+i x).

Errors introduced by the approximation (9) are of order
X; 'P, which we shall see means O(p r»). Thus that
part of f,(p) which differs from (9) will be square
integrable over the six-dimensional p space, even if the
integral over p is carried out 6rst. This is what we mean
by rigorously square integrable.

Provided that we do not have a situation correspond-
ing to F; not large, jWi, the singularities of &Z;i 1';ix)
will not impede the contour distortions necessary to
derive (9).

The third term of (1) can be treated in a similar
manner to obtain the well-known asymptotic part of
P+(p) corresponding to bound states in the i channel,
correct to any required order in X; '.

'L. S. Rodberg and R. M. Thaler, The Quantize Theory of
Scattering {Academic Press Inc., New York, 1967).

4"(p) = —3 "'(4 ) '& ' E fa(P),

f,(p) = (2w)
—'" dQ (sinQF/QF)to(Q, X„)

Xexp[iX(E—Q')'"j
f (P)=(2m) 32r(X ) dQ (sinQF/QF)Q

Xexp[iX(E—Q')'»j

f (p)=(2 ) '" dQ4(Q, F)i,(Q,X„)

Xexp[ix(E —Q')'i'1

N~(P) = (2~)-'"r(X.) dQ y(Q, F)Q e~[iX(E—Q2)ii2)

fg(p) = d(}fo (Y)t (Q,X„)exp[i&(E Q2)ii2$ —(19)

~ R. K. Peterkop, Bull. Acad. Sci. USSR, Phys. Ser. 27, 987
{1963).
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i/2 00

P, (P) t (0 X )e'Kx Q2dQ e
—$»K Q

Each integral will be approximated by the method of obtain
stationary phase. Thus for t/t, (p) we have

The phase of exp[&iQY+ix(E —Q')'"] is stationary
at Q= &Qp, where

Qp=K(Y/p), K =E'". (21)

This point lies outside the range of integration for the
second term of (20), and so for large Y we take only the
first term, in which we expand the phase about Qo to
second order, and replace to(Q, X„) by to(Qo, X~),
obtaining

2 '
I/1(p) — (2iY) e' Ptp(Qp, X ) QdQ e—i&(Q—Qo)o

XKolzei~/4p 5/2eiKpt —
(Q X ) (22)

where X= 2p'X 'E '. A closer investigation shows that
this result is valid to O(p 2/2) even for small Y because
a power series expansion of tp(Q, X ) contains no Q term.

A similar technique is applied to ti)2(p), but this time
we must keep the factor Q inside the integral. While the
phase of exp[ —iQY+iX(E—Qz)'/2] is stationary out-
side the region of integration at Q= —

Qp, this point
nears Q=o as Y/p ~ 0, so that, to obtain a form valid
for all I' we shall include a contribution from both parts
of the sine function. We 6nd

i/2 00

)t 2(P)- — (»Y) 'r(X-)e' ' Q'dQ

X[e—45(Q—Qo) 3
e
—i&(Q+Qo) o]

42rx(22r) '"—r(X„)e' pp 5/2(zr'/'K'I'p '

X (KY iX'p 'Y ')[—G+ (-,'i)'"]
+K'p '"Xe 'p} (23)

where
(Xp) 1&2YX

G=zw '/' e )it2dt (1—i) I /2 (24)

p= XQoo. (25)

Corrections to this expression will be O(p '").
To expand )to(p), we first assume that Y has some

value smaller than the range of the potential, so that the
phase of tt (Q, Y) does not oscillate rapidly with varying
Q. The phase of the exponent is stationary at Q=o, so
that we expand ttt(Q, Y) and tp(Q, X„)about this point to

1/2 K

P (p)= — (2iY) ' QdQ(e' " e—Q")t,(Q,X„)
7r 0

Xexp[iX(E—Q')'"]. (20)

X [y(0,Y)+Qy'(0, Y)]
42ix—(22r) 'I'to(O, X~)X '"e'K»

X( orl (2'i)'—»Kolztt)(0 Y)+2K2X-1/zest(O, Y)},
X~ F fixed.

Corrections from higher terms in the expansion of
to(Q, X~), tt(Q, Y), and (E—Q')'" will be O(X '")

On the other hand, if I' is outside the range of the
potential, we may use the asymptotic form of ttt(Q, Y)
in (14) to obtain again to order p

'"
i/3(p)~ —42 X(22r) tp(Qp, x~)e(KPp

X (a[or'"K"p '(X'Y '+iKpY)G
+iK'p 'I'X-e *p]-
+a'[zr'I K I p (KY 3zp 'X)—G

+K p I (KXY 2zp 'X Y—')e 'p]}. (27)

It is possible to construct from (26) and (27) a func-
tion which represents )t 3(p) to 0(p '") for all values of
Y. This will be given in the final formula for t/t, (p).

The same method must be applied to t//4(p), except
that again the factor Q is to be kept inside the integral.

We obtain an adequate approximation to $5(p) by
replacing |t Q (Y) by (22r) 3/ze'Q'r and using for t(Q,X )
its value at the point Q=QpY where the phase of
exp[iQ Y+iX(E—Qo)'/2] is stationary. Thus

1/5 (p) 42rx(42r)—'Kol'e'~ "t—(QpY„,X )p 'I'e'K p— (28)

Again it may be shown that corrections to this formula
are of order p '", even near V= 0. It remains to collect
together the several terms into the 6nal result, which is

(P) ~ (2») 3/23 3/2p 5/2—eiKP— —
p ~00

X (to(Qp, X-)[(2»)'"K'"e' "
X(1+ pX2t(20(Y)+a-p-2X2Y-1)

+2K p ' X'e 'p(tt)'(0, Y) ia)—
+a(zrl/2K3/zp 2X2Y IG+Zzrl/2K5/2p 1

Ytz (Y)G

+iK p 3/'Xe 'p)]+r-(X„)[-2Kop 'lzy(O, Y)-
+or" K" p '(KY ip 'X2Y ')(G+( 'i)»2—)—
+K2p—3/2Xe—ip]+ (1~)1 2 /i(ex 4) /K2o/

xt(Q Y.,X„)}, (29)

where h(Y) is a smooth function which approaches zero
for small F and unity for large I'. Any corrections to
this result fall off faster than p ' for large p. Ke stress
that this result is valid even if the pair of particles
distance 42V apart should be close together, but does
not hold if the other two pairs interact or if X is not
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large. Forms to cover these cases can be obtained by
using the above result for another pair of particles.

DISCUSSION

Our result should be useful in coordinate-space calcu-
lations of three-particle scattering above the two-body

breakup threshold, using methods such as the Kohn
variational method or its modifications. It is interesting
to note that such a calculation can proceed without the
prior need to solve the complete two-body problem.

Only bound-state and zero-energy scattering properties
are required.
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It is shown that the usual formulations of current-current theories are not dynamically consistent, because
of the occurrence of Schwinger terms. On the basis of the Poincard-group algebra, an alternative and con-
sistent formulation is constructed and generalized to allow for parity and isospin violation. It is found that,
with the appropriate normalization of currents and the corresponding definitions of coupling constants, the
chiral algebra of currents for time components is always satisfied in four-dimensional theories of the current-
current type. In the two-dimensional case, this statement needs modification, but it is essentially valid there
as well. The algebra involving spatial components is highly sensitive to the dynamics, and consequently is not
identical to the free-quark-field case. In certain cases of parity violation, the usual currents which couple in
the field equations do not transform as four-vectors even though the theory itself is covariant. This is some-
what analogous to radiation-gauge electrodynamics. It is found, however, that it is possible to construct
new covariant currents as linear combinations of the components of the old currents which have the property
that they couple covariantly into the field equation. Because of these complications, the spatial components
of the covariant currents do not have a definite parity and do not transform as vectors in isospin.

I. INTRODUCTION

'T is well known that in theories involving fermion
~ - fields f a strictly local current definition of the form
j&(x)=-,'p(x)py&yp(x) cannot be valid because it leads
to the result that Ljo(x),j"(y)j o „o=0, which is not
consistent with Lorentz invariance and positive-
definiteness. (Note that in this paper we use Hermitian
fields f and the matrices py&=n& are real synunetric
while p is imaginary antisymmetric. ) In the free-field
case it is easy to establish that the definition

rotation properties. In the case of interactions with the
electromagnetic field and many other elementary boson
fields it is known that merely separating the points as
above is not adequate and that an extrapolating ex-
ponential involving the boson field must be included as
well. ~ In particular, for an electromagnetic interaction
of the form ej&A„a correct gauge-invariant current
definition is

j~($)= liril i[i($+e)Q~g
e~o

j~(x) = lim-,'P(x—e)Py&g(x+ e), Xexp —icy dP~. (h) k(~—e) (1 2)

with a pure spatial and the limit a —+ 0 measuring the
limit of the spatially symmetric average of the direction
of a, is consistent with a nonvanishing Schwinger term'
while also having the proper translation and Lorentz

*Research supported in part by the U. S. Atomic Energy
Commission and U. S. Air Force Ofhce of Scientific Research,
Grant No. AF-AFOSR 1296-67.

t Alfred P. Sloan Foundation Fellow. %'ork supported in
part by the U. S. Atomic Energy Commission {Report No.
NYO-2262TA-187).

' J. Schwinger, Phys. Rev. Letters 3, 296 (19S9).

It thus should not be surprising that in Sec. II we
demonstrate in the case of the interaction 2ikj&(z) j„(x)
that the mere separation of Fermi field points does not
yield a consistent theory. Indeed, in the soluble case of
the two-dimensional Thirring modeP it has been shown

' See, for example, D. G. Boulware and S. Deser, Phys. Rev.
151, 1278 (1966).' W. Thirring. Ann. Phys. (N. Y.) 3, 91 (1958).

4 K. Johnson, Nuovo Cimento 20, 773 (1961); C. Sommerfield,
Ann. Phys. (N. Y.) 26, 1 (1964).


