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High-Energy Behavior of Scattering due to Massless (Neutrino) Exchange*
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We devise a method of calculating the high-energy behavior of some processes where massless particles
are being exchanged and the normal theorems such as the Froissart bound cannot be directly applied. The
processes are v-v and v-v scattering, with a long-range potential due to the exchange of neutrinos. lt is
shown that as the energy I' tends to infinity, (i) the v-v and v-v total cross sections behave as constants, (ii)
the v-v and v-v cross sections approach each other (a Pomeranchuk theorem), and (iii) the long-range two-
neutrino exchange force is of the form E/r'. The calculation is made with the assumption that the amplitudes
obey the Mandelstam representation, but we do not restrict ourselves to any specific order in the weak
coupling constant 6, or to any specific form of the Hamiltonian. The high-energy behavior is deduced by
constructing a consistency condition to it. Using analyticity and unitarity, the potential due to the massless
neutrino exchange is shown to depend on the high-energy behavior of the v-v and v-v processes. Since, in
turn, the high-energy cross sections of these processes are themselves dependent on the potential, a con-
sistency requirement is available on the former, leading to the results mentioned above.

1. INTRODUCTION
' 'T is well known that in strong-interaction physics
- ~ one can derive, from analyticity and unitarity,
bounds on high-energy cross sections. ' ' The Froissart
bound, for instance, forbids the total cross sections from
increasing faster than log's. However, these bounds
require for their proof a finite ellipse with foci at & 1 in
the cos8 plane, in which the scattering amplitude is
analytic, which in turn requires a finite region of ana-
lyticity around the origin in the t plane. This condition
is more than satisfied by the Mandelstam representation
for strong interactions, since all hadrons are massive
and the singularities in the t plane begin at the square
of the pion mass or beyond.

However, in weak interactions, with the possibility
of massless neutrino exchanges the above proof cannot
be directly applied, and the question of high-energy
weak cross sections remains open. Of course, the same
problem of long-range forces exists in electrodynamics.
However, there is a renormalizable theory of quantum
electrodynamics, whereas there is no equally acceptable
theory for weak interactions. Thus, while the strong
interactions have no satisfactory theory, but at least
massive particles, and electrodynamics has massless
photons but a satisfactory theory„weak interactions
have both dif5culties.

There is recently a renewed interest in the problems
that beset the theory of weak interactions. ' ' The well-
known current-current Hamiltonian, while very useful
in dealing with low-energy weak processes if used in
first order, leads, nevertheless, to a nonrenormalizable
theory. It further violates unitarity beyond a certain
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energy. It is therefore felt, with reason, that beyond a
certain cutoff, the current-current form may have to be
modified, and there has even been speculation that
beyond a certain energy, weak processes may become
"strong. "

Therefore, the high-energy behavior of weak processes
is of considerable interest theoretically, even though the
experimental situation regarding weak scattering
processes is still bleak.

We have attempted to devise a method in this work,
whereby high-energy bounds can be obtained for some
processes mediated by neutrino-exchange forces, where
the Froissart bound cannot be applied. We will consider
the scattering of neutrinos by neutrinos and by anti-
neutrinos, where the "potential" Lor the kernel for the
Bethe-Salpeter (BS) equation) corresponds to the
exchange of a neutrino-antineutrino pair (Fig. 1). The
shaded "blobs" in Fig. 1 correspond to full v-v (and v-v)

scattering amplitudes, not restricted to any particular
order in any specific Hamiltonian. Therefore our calcu-
lation will be free from the limitations of the current-
current Hamiltonian and perturbation expansions. The
potential due to the diagram in Fig. 1. is essentially the
discontinuity across the positive I, real axis of the ampli-
tude for the diagram, i.e., Ap""(s,t). Here As" (s,t) is
the Born amplitude represented by Fig. 1, which will
have to be iterated to give the full scattering amplitude.
We evaluate AP" (s, t) by using elastic unitarity in the
t channel and Mandelstam analyticity for the ampli-
tudes. We show that lim, OA, " (s,t), which is the
"longest-range" potential, depends on the high-energy
parameters of the v-v and v-v scattering cross sections,
which are fed in as inputs. This is done in Sec. 3. The
potential obtained is then iterated in Sec. 4 by using a

FIG. 1. Diagram representing the
general two-neutrino exchange po-
tential. The shaded loops are meant to
indicate the full scattering amplitude
to all orders in the Hamiltonian.
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FIc. 2. Kinematics of the v-v

scat tering process.

BS equation and various wave equations like the
Klein-Gordon (KG) equation. A high-energy (eikonal)
approximation is used to solve the BSand KG equations.
It is shown that these various methods of getting the
full amplitude from the potential or Born term give the
same result in the eikonal approximation. This result,
which once again gives high-energy cross sections for
v-v and v-v scattering in terms of the potential, there-
fore reproduces the high-energy parameters as output.
By requiring the output and input values of the high-
energy parameters to be the same, we evaluate them.
Some very nice results come out, such as:

(i) The v-v and v-v total cross sections approach
constant values at high energies, despite the zero-mass-
exchange or long-range forces.

(ii) The v-v and v-v cross sections approach each
other —a Pomeranchuk theorem for our case. Both
these results are very reminiscent of the exchange of a
Pomeranchukon.

(iii) The only consistent long-range potential pos-
sible behaves as E/r', where E is the c.m. energy.

It should be mentioned here that the last result,
viz. , the 1/rz dependence, was obtained by Feinberg
and Sucher' for the neutrino-exchange potential. At the
end of Sec. 5 we give a brief discussion of the relative
independence of the shape 1/r' on models. In any case,
the main purpose of our work is to get the asymptotic
behavior of the cross sections.

It should also be noted that in our potential in Fig. 1,
although only a neutrino-antineutrino pair is present
in the t channel, as far as the s channel is concerned, the
two blobs could contain anything. Thus, all irreducible
diagrams in the s channel are included as long as only
two neutrinos are exchanged. The question of what
happens when potentials due to four or more neutrino
exchanges are considered is also discussed briefly at the
end of the paper.

2. KINEMATICAL PRELIMINAMES

Consider the scattering amplitude as shown in Fig. 2,
which corresponds to v-v scattering in the s channel.
As usual, s= (Pz+Pz) t (P$ P3)', and (u= (Pz —P3)'.
Clearly, for the case of neutrinos, helicity and spinor
amplitudes are the same. In order to avoid spurious
singularities due to the zero mass of the external
neutrino lines, we will normalize the spinor by

u(p) u(p) = —v(p) v(p) =m= 0
' G. Feinberg and J. Sucher, Phys. Rev. 166, 1638 (1968).

A'(P P
'

P P )=2u(p )7"u(p )u(P )v.u(p )M(st u)

and

A "(p, p. ; p, -p-)=-»(p)v"u(p)
Xv(—P2)(y„v(—P4) M( st, u). (3)

The minus sign in the second equation is due to the
crossing of two fermion lines. It can now be easily
verified, by directly using the spinors in the c.m. frame,
that

u(pz) v "u(pz)u(p3) v.u(pz) = zs
and

u(pzh'u(p, )v( —p, )q„r(—p4) = —-', s,

with the normalization of Fq. (1).Thus one can see that

(P3P4plp2) A (P3) p2 j ply P4)
A ( P2~P4t PRpz)

=A(s, t,u)
=sM(s, t,u). (4)

Let us now suppose that

ImA (s+33, t, u) - Xs .
I

(5a)

This is a perfectly general assumption and corresponds
to a hiqh-energy vv total cross section which behaves

V+X83
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Fj:G. 3. The c.m. frames of the s- and the
I-channel processes, respectively.

instead of the usual Nl= i. In our normalization the
S matrix is given by

S= 1—Zb(pz+ pz —pz —pz)

(2zr)4
A(pzp4, pzpz). (2)

(E3E2E3E3)& &2

Since each neutrino has only one helicity, the problem
has only one independent amplitude. The situation
would be analogous to the case of scalar particles, except
for questions of kinematical zeros and relative minus
signs arising from crossing fermions. Thus, in the
u-channel (vv —+ vv) process, considered in its c.m. frame
t Fig. 3(b)j, the amplitude A(P3, —Pz,

' Pz, —P4) can be
expanded in terms of dq„s(cos8„), where X=tz= I. As is
well known, this has a zero in the form of cosz(28„)
which is proportional to s and has to be factored out.
There are no kinematical zeros in t, since the s-channel
process involves dpps(cosg, ); the factorization of this
zero in s easily accomplished by writing
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as s ' asymptotically. Similarly, let

ImA (s, t, u+ie): liua, P6

P5

Ps

'el6

which gives a high-energy vv cross section behaving as
u '. Here P and ) are constants and have the same sign
because both total cross sections are obviously positive.
This relative sign, which corresponds in strong-inter-
action physics to the signature of the leading Regge
trajectory, will be of importance in our subsequent
discussion. Clearly, the corresponding asymptotic
behavior of ImM(s, t,u) is

ImM(s+ie, t, u), = l~sa '

-P5

(a) {b)

We start with elastic unitarity in the 3 channel, which
states in the c.m. frame of the t channel that

A P(s, t) = ImA (s,t)

FIG. 4. (a) The "Born term" corresponding to the two-neu-
trino exchange potential and (b) the momenta in the c.m. frame
of the t channel.

IniM(s, t, u+ie);- (1/s)t u = —l~u '. (6) A'(p4, -p~; p6, -pa)

The main purpose of this work is to find a consistency
condition on the parameters e, o., P, and), assuming the
scattering to be mediated by the two-neutrino exchange
force. Ke now show in Sec. 3 that this force has a range
and energy dependence which themselves are functions
of P, ), n, anda.

3. LONG-RANGE TWO-NEUTRINO
EXCHANGE POTENTIAL

Consider the diagram in Fig. 4, where the shaded
blobs represent full scattering amplitudes, not restrk ted
to any given order of the Perturbation Let A.a" (s,t)—=Aa(s, t) represent the amplitude for this diagram. We
will be considering vv and vv high-energy scattering
process as being due to the iteration of this "Born term"
or "potential. "The precise procedure for iteration will
be discussed in Sec. 4, but first we have to calculate this
potential. In coordinate space, the potential V(r) is
related to the discontinuity A P(s, t) of the Born ampli-
tude across the positive real axis in the t plane by the
familiar formula

s2=

(h, 0,0,h), »e=(Pe Pi), «6=(P4 Pa), s=(Pi p4)

4h' u= (pi —p4)'= —2h'(1 —a) = ——,'t(1 —s),
Lpi —(—p~)]'= ——:-t(1+a), (9)

', t(1+—si—6), ui ———-', t(1—si6),
—-', t(1+s46), ug ————,'t(1—a„).

The reader may find it convenient to note that all the
s variables are defined to be the (mass)' of vv systems,
while the u variables are the (mass)' of vv systems. In
terms of these variables,

ImAa(s, t) =K dQ& A(sq, t)A*(s2, t)

XA(p&, —p5, pi, —p&)dQe, (g)

where (i) the A's in the integral are the full vv scattering
amplitudes in the t channels as represented by the
shaded blobs, (ii) f16 ——(0&,pe) is the direction of pa as
compared to pi Lace Fig. 4(b)], and (iii) K is a numerical
factor.

I.et us define, in the c.m. frame in the t channel,

=X dQe sis2M(sit)M*(sa, t) . (10)

In particular, the "longest-range" force is due to the
threshold value of AP(s, t) as t~ 0. Needless to say,
the use of a coordinate-space potential is only a con-
venient mnemonic which is helpful in visualizing the
problem in coordinate space. As will be seen in Sec. 4,
one can directly calculate the full scattering amplitude
from this Born amplitude Aa(s, t) in a high-energy
approximation, which yields the same result as using the
corresponding V(r) and a suitable Schrodinger equation.
With these introductory remarks, let us proceed to
calculate the discontinuity AP(s, t) of the diagram in
Fig. 4.

We have ignored inelastic intermediate states in the t
channel, which would correspond to either massive-
particle exchanges and four or more neutrino exchanges
in the s-channel potential. As mentioned in the Intro-
duction, we are dealing only with the longest-ranged
(two-neutrino exchange) force.

We are really interested in the limit of Im Aa(s, t) as
t —+ 0 and s ~~, but we cannot immediately substitute
t=0 in the right-hand side of Eq. (10). It is clear from
Eq. (9) that if t=0, then any finite si, s, , or s would
correspond to infinite values of s'i6, s64, and s' and render
the angular integration over dDa in Eq. (10) undefined.
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4 as before, and 8 is the usual step function.

Combining all this in orrn

SimilarlS'~'1 kee t nonzero in certain crup
r the angular integra ion

dM(, )b di1 d. We obtain M(s~, t) and s, ,
' '

rpete .
e ion i.e.,t eph hysical s-channel reg'

"9(s', t) 1 "b u', t
ds'+ — u,

u —Qip S —Sz 7r o

E
A,z(s, t) =—

~2

/Ids'ds" a(s', t)a(s, t)
si $2

dog
/I

$ Si $ $2

+— du'du" b(u', t)b(u", t) dQ, —

7r2

Sy $2
— - 4m. $'s/I

t~p

" dl tt(f X)

't'—
I (0 -~) (1 t )]'—"

// tds'du" a(s', t)b(u, t) dne
$2 Let u= —-'t(1 —1). Then

/Ids "du' b(«', t) u(s, t

—' "—Dz"—1)(z"'—1)]'"

+1 +1 +1

Sy $2

ding

/I$ —Sy S —$2

moment ]ust eth angular integration in
uation in the limit of t ~ 0. Wethe first term of this equation in e

have

zt(f —X) =u —s'+s"

4s'" 4s" (4s" 4s'—
( *, +

"
i,"+—" '",

+2 1+ 1+— 1+—
t

=$ $ dQg-
t'(z' z)6) (z —z6~)-—

s
dQg

-',

t(zing

—z')
+4z-, (13)

,' t(zg4 z")——
"=—-'t 1 z/I . Now,where s'= —-,'t(1+z') and s

Similarly, —,'t(f —u) ~ u. Thug,

Sy$2
dog

(s sy) (s —$2)

/ Il$$~u —4 as t~ 0.

2$' 4~$' 1—z' —4xs' $'+ t -. 4m- s's//
t~p (u —u) zt$u(u 4s's "/t))'"-—n

I

e
' . L. Goldberger and K. M.M. Watson,

$
S for nstance, M.ee,

n Wile R Sons, nc. ,~ P. Collision Theory {John
'

y S~—4m as t~ . oi '



1.78

s. QJe then get

EXCHpUE TO vATTERH)GH- GY SC 22~&

12) becomes, as, ast —+0,Thus, t e rh first term of Eq. (

4m A.
ds'ds" a(s', 0)a(s",0)

X(,;-
du 8(u 4s's"—/t)

u u—) ,'t[u(—st 4s's—"/t) ]'"

r. VVe know from hq. 6)re now in order. eTwo remarks are
that

s' 0 =X(s')

s, =t, =R —-- ds'ds" X'-(s's")

a(s', 0) —ImM(

resently t ah t the integrals

use o E. 14) wi no
ract at the point u= =

In other words, the rst er

~st-(00)=A, s,t

where

' ~atesE( )t us X lV((1)t us

—1) sinn-(u —1)sin~ n—

IV( ~il'+"'-

)+2M — su'
sin-,'n. (a+n—

8(1—4xy)

(1—4x )'"iY(n, o() =

d both the range an
1 f h

Fo
of th ot t' 1' Ethe first term oone consi ers

t sat ast ten s oz s
dTh---.pon ..-tends to infinity. is

8(it 4s's "/t)—
u(u-u —,) -'t[u(u —4s's"/t)]'"

const
e—-(~~) t.dt

+first term of A,s 0,0)

8KX2 " du

0 u(u u)—
s 00),(xy rsfirst t rm of A, (,

(1—4xy) ' '
'=( t, '"x and s"=(ut)(t'-'y. Letwhere s'= ut x a

Then,

CV(n) = 8(1—4xy)
dsdp

(1—4xy

SKX2
R=ut 6 t t rmofA, s(0,0)u +first term oX(u) 6 t t rmo

p u u —Q

= 8&&'iV((n)t first term o P, 1&

where

1 "du(u) ' (—u)
—'

n- n —1) sinn-((n —1)

sa—1

as t~o.
n 0 u —u s (sin

b rs ri ht-b first term on the ng t-i ution of the rs
t can be

This is the contri
lo ous treatmentd q. 12). An ana ogo

12 usingto the other three term
k p gb(u, o) = —Xu an

sa—1/2

)(const.
2a+3

bs
'

ross section obtained y

th

F 4(p

', , ) ' }It}1 t, 1 t. ootential as 11

l q mtanh t now u refers to the to
h the rig — aIn genera,

'
ls thev-v an v-v o

'
eives o p

the roles of s aand u are i
b -f, n.lude this section y jWe conc u e

db th i high-d s" are dominate yrais over s' an s
use the asympto icand that we can use

s'Th th it
in Kq. 14) will

u(~+0) /&t(~+i)) I&]t +P 2'ui't&+2P gÃ2u(E-[X,nu. t.

ow if n))8, then at higi hin abbreviate
t term will domi

behaviort th hi h-



2216 R. RAJARAMAX

of a(s, 0), since

a(0rs) yJS
—lyy2ss —J - Xgs

—'.
g ~00

ing amplitude in the eikonal approximation

f(k, 4) = ik—
It is therefore clear that in evaluating the integrals in

Eqs. (12) and (14), for the high-energy potential

(~s~, ~N~ ~oo), one can use the asymptotic forms for
a(s', 0), b(u', 0), etc.

We will now proceed to iterate the long-range po-
tential in Eq. (16) to obtain the high-energy cross
sections.

4. EIKONAL METHOD

In order to evaluate the high-energy scattering ampli-
tude from the Born term or "potential, " we will use
the eikonal approximation. The pros and cons of using
this approximation have been discussed in literature, "
and we will not go into them here. Qualitatively, the
eikonal method is likely to work when the energy is
large compared to the potential and the wavelength is
small compared to the range of the force. With our long-

range weak-interaction force, these conditions are
satisfied for high-energy scattering.

There are several ways available for using the eikonal

principle to iterate the potential. ' One could use the
Born term as a kernel in a BS equation and solve the
latter in the high-energy approximation. Alternatively,
one could use the potential translated into coordinate
space, in some relativistic Schrodinger equation, and
once again solve the latter in the eikonal approximation.
In this alternative, there are once again several candi-
dates for the wave equation. Altogether, we considered

(i) the BS equation with AB(s, t) as the kernel, (ii)
(E'—P')O'= VP (KG equation with a world-scalar
potential), (iii) L(E—V)' —p'1'= 0 (KG equation with
a time-component potential), and (iv) (~ p~+ I' )/=ED

It is encouraging that the BS equation, as well as
these several wave equations, yields the same high-

energy eikonal result for the scattering amplitude in
terms of the two-neutrino exchange potential. We will

now demonstrate this briefly for cases (i) and (ii) before
using the result to evaluate n, u, X, and X. Cases (iii) and
(iv) are trivially related to case (ii) and give the same
result.

Let us start with the KG equation with the world-
scalar potential, which, in time-independent form, is

E
—~'+ V(r)34(r) =EV(r) (lg)

l1
exp V((b'+z') U2)dz

~

—1, (19)
2~k )

where A is the momentum transfer. We note that the
k in Eq. (19) corresponds in the KG equation (18) to
k=E=+s and that the invariant amplitude A(s, t)
= (Qs) f(E,4). Therefore,

A(s, t) = is—bdb Jp(b4)

oo

exp
2igs

is the eikonal approximation for the scattering ampli-
tude for the KG equation with a scalar potential.

A completely analogous result comes from using the
BS equation. To see this, it is best to first note what the
eikonal approximation in Eq. (19) for the Schrodinger
equation corresponds to in momentum space. We have,
in momentum space,

which is just the I ippmann-Schwinger equation, with

1
fB(4)—fBorn(4) —

Z
—r'6 r V(r)d3y

4~

Now, in high-energy scattering under "eikonal con-
ditions, " we expect the momentum transfer 4, to be
small compared to k. Further, by energy conservation,
(k+4)'~k'+2k 4=k', so that we also expectk 4~0.
In other words, if k is along the z axis, then 6, 0 and
4J ——(4„4rr) is small. We may also expect the same ap-
proximation to be valid for the intermediate-state
momentum k+q in the integral in Eq. (21). Thus, let
us set g ~0, with qJ being small, so that Eq. (21)
becomes

f(k,4)=f (4)+ f (4-q)
2X2

1
X f(k,q) d'q, (21)

(k+q) ' k' ie— —

This is identical in form to the nonrelativistic
Schrodinger equation f(k, 4 J) =fz(4 J)+

27r2
d JfJ der f (4J qJ)—

5"+k'—V(y)3(r) =0,
which has the well-known expression" for the scatter-

9 A detailed study of the eikonal approximation for the Schro-
dinger and BS equations is available in L. H. Domash, Ph. D.
thesis, Princeton University, 1967 {unpublished). 4 e acknowledge
borrowing some wisdom from this work.

Z7r

=f (4.)+
4x'k

f(k,q,) (22)
2k', —ie

d'C f'(4' —qJ)f(»qJ).

This equation is easily solved for f(k, 4J) by going to the
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but
1

K(b) =— e's 4id'5~ —e' oi' b'a(b, s)dst'

2T 4x

FIG. 5. The BS equation.

impact-parameter representation. "Let

1
d'r' a(b', s)8(b' —b)

2

1
H(b) =— f(k, 4 i)e'b'eLdsh,

2'

K(b) = fe(cL )e'~'aids'
(2a)

Then, by Fourier-inverting Eq. (22) with respect to
4l. , we have

H(b) =K(b)+ (i/2k)K(b)H(b),
so that

K(b)
H(b) = ik(e*x&"—'" 1)'. —

1—(i/2k) K(b)

Going back to the b, ~ representation,

1
f(k ~q) — dsb eio al( jk)(eiliis) ts 1]

2~

00 iK(b)
bdb Jo(bh&) exp —1

k

«(b,s)ds,

where r'= (b', s). Thus,

00

f(k,a) o:,f—=d J,'(''s. ) e p v(b, s)ds —1,
2k

which is the result in Eq. (19).
The purpose of this digression into momentum space,

by no means original, is only intended to convince
ourselves that the eikonal approximation corresponds
in momentum space to (i) ignoring the dependence on

q, of the amplitude f(k,q) and the Born term fa(cL —q)
and (ii) ignoring terms of order q' in the propagator, in
the integral equation for f(k, rL).

We now proceed to use the BS integral equation
in full generality to iterate the Born term instead
of using a KG equation, but with analogous eikonal
approximations.

The BS equation for our problem may be written
(see Fig. 5)

A (psps, pope)
—=2u(4)y u(2)M(pips, . pope)u(3)y„u(1)

= 2u(4)you(2)Mn' (pips,.pope)u(3)y„u(1)+
(2s.)4

dpod ps u(4)y& y"u(2)u(3)y„y.u(1)
pg+ig ps+ zg

XM (psps, pops)M(pops. , pope)b'(pl+ps —ps —ps). (23)

The M amplitudes are related to the invariant amplitudes A as in Eq. (3). Let us go to the c.m. frame and
define

pg ——(k,00k), pg ——(k, 00—k). (O, A) =pg
—pg,

p =p+q=(k+qo, q*, q., k+q),
pg= ps —q= (k—

qo,
—q, —q„, —k —q.), $=4k'.

We also recollect from Sec. 2 that u(4)pt'u(2)u(3)p„u(1) =-,'s. Thus, Eq. (23) becomes

2i
sM(s, A) =sMa(s, ck)+

(2s-)4
(4)v"(p —q)v" (2) (3)v (p +q)v. (1)

(pi+q)'+ig (ps —q)'+ig

XMa(s, 6 q)M(s, q)d'q. (24—)

Thus far, everything is general. Now we proceed to use an eikonal-type approximation. Equation (24) is an
integral equation in momentum space, similar to Eq. (21) for the KG, or Schrodinger, equation, with the
difference that now there is also a time component go to be integrated over. From our experience in the momen-
tum-space eikonal approximation for Eq. (21), we drop terms of order q in the propagators. Further, we ignore
the dependence of M and M on g, and go, retaining only the q&'=g '+g„' dependence. In this limit, it can

"R.Blankenbecler and M. L. Goldberger, Phys. Rev. 126, 766 (1962).
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il'+s')" +~" )
bdf
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= —zs
Q')).2s

—1~~dg exp—

bf=a, and b'= g
(1+f2)(2 +3) /2

Now, let

ga+1/Sa —112—i

1 s —'&2= dl/dg,

dl ()12s
dg=

+1 $a j(a+I)

Hence

, (26)
l /(~')(a+1)

2 a-1) 1/(a+1)- —zs XsA (s,0)
g ~QO

sumed at the very begin-"=cons .t But we assume a
s0)= s(5a), that ImA„„(,
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and hence

s( ')1(~')+'= s 7

(n —1)/(n+ 1)= n —1,

n= 1 or 0.

(27a)

(27b)

This appears to diverge as n —+ 0 or 1, unless there is

a corresponding zero in the numerator as n —+ 0 or 1.
Now, it was shown from the positivity of cross sec-

tions that A, and 'A must have the same sign. Thus, if
A=A, , the above potential reduces to

from Eq. (Sb), or

n —1= (n—1)/(n+ 1) .

Comparing with Kq. (27a), we get

We have further derived that

(28)

n=B= 0 or i.
The choice between zero and one is made as follows:

We note that for both n=n=0 and n= i=n, the po-
tential in Eq. (16) diverges due to the sine functions in
the denominator and that the dispersion integral
J&"du u /u(u —u) in Eq. (15) is not convergent. The
source of this divergence is the original unsubtracted
dispersion relation for M(s, t) in Kq. (11), where the
integrals are not individually convergent. This is clear
from the fact that a(s,0) =ImM'(s, 0) =l(s ' const as
s —+00 and n=1, which leads to an ultraviolet loga-
rithmic divergence, or if n= 0, a(s,0) =X/s, which gives
an infrared divergence. However, in each dispersion
relation in Eq. (11), there are two terms, the s and the
u integrals, which are both divergent, since n=o. .
Consequently, it is possible that if ~7(( = ~X~ and their
relative sign is the right one, then the two divergences
in the dispersion relation cancel. This is once again
clear by looking at the potential in Eq. (16), which may
be written, for n=n, as

A P(s, t) - 4IC1V(n)t Lsins. (n —1)7-'
e~oO, t~o

XL—&2sa —$ sa+2))(sae (a(a ')7

5. HIGH-ENERGY SOUNDS, A POMERANCHUK
THEOREM) AND THE TWO-NEUTRINO

POTENTIAL

Now we are ready to reap the fruits of all the pre-
ceding algebra. We derived at the end of Sec. 4 that if
n)n, then by looking at the consistency of the high-

energy behavior of v-v scattering, one can get n= 0 or 1.
However, we noted in Sec. 3 that the potential in Kq.
(16) is also valid for the v vsys-tem, where u is now the
total mass squared. Thus, the s-f potential, with n)n,
is also of the form const)&(l('taua); in other words,

V -(r) =Ql('u '/2/r'~'

Therefore, using this in Eq. (25) and following the same
steps as in the v-v case will lead to the very similar result

(u 0) ~ l(2/(a+))u (a—1) /(a+))+) —)(ua
7

—s~(a—I)—1—e
'

SE—1V(n)t l(s a
sins. (n —1)

V (r) = const&& L
—QP(+s)/r'7. (29)

We therefore conclude that n=n=i and A=A. . This
corresponds to constant and equal cross sections for v-v

and v-f at high energies. The above argument is identical
to the one invoked in strong-interaction physics about
the signature of the leading Regge pole. Our pole has
n(t=0)=1 and positive signature and is exactly like
the Pomeranchuk pole, although we are not by any
means suggesting that a Regge theory is valid for weak

processes.
There is another nice consequence of n= i=8. %'e

note that when we compare the total cross section
As ' assumed at the beginning with the cross section
implied by Eq. (26), we get

const)('A21&~»s(+ &) t'(()r+~)+ =Aso'.

This was, of course, used to get n= 1 by comparing the
power of s on both sides. But we also note that for n= i,
the powers of A automatically balance on both sides,
l.e.

This is a good result, since otherwise one might expect
to evaluate A. by the above method, which would be
unreasonable. Since the total cross section is A,s
when n= 1, )( has the dimensions of 1/s. Since there are
no masses in this problem, a good candidate for A is
the weak coupling constant G times a number, where G
is well known to have the dimensions of s '. Thus,
evaluation of A, would have implied bootstrapping G,
which would have been an improbable result in a theory
such as this. We are therefore relieved rather than
concerned that the A, dependence cancels out of our
consistency requirements.

Our results are therefore the following:

(i) The v-v and v-v total cross sections due to neutrino
exchange approach constant values at high energies.

(ii) The v-v and v vcross sections appro-ach each other
at high energies.

(iii) The long-range two-neutrino exchange force
can be interpreted in coordinate space as being of the

As n~ 0, this still diverges, but as n~i, it does not,
and leads to

lim AP (s,t) = —ifSEX(1)7X'st
g~o, g~ao

or
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form E/r', where E is the total energy in the c.m.
system.

%e conclude by substantiating a couple of assump-
tions made in our model. It has been assumed that the
dispersion relations in Kq. (11) are unsubtracted. This
is not really an assumption, since a subtracted disper-
sion relation would not give any constant high-energy
behavior at all in our model. Suppose we wrote once-
subtracted dispersion relations for M(s, t) instead of
Eq. (11).For n, n not integers, this is merely an analytic
continuation in a, n, and hence the rest of the calcu-
lation mould follow, once again forcing a value of
o.=a= 1.Now, if X/X, then the potential corresponding
to Eq. (15) would involve integrals of the form

8Q Q

(Q-Nr)(Q —Q)S

which will clearly involve ulogl and s logs. Such a
potential, when substituted into Eq. (25), will not
reproduce an s -dependent amplitude and will give no
consistent high-energy dependence. Therefore, only

or essentially unsubtracted dispersion rela-
tions where the most divergent term is cancelled between
the s and I integrals, will give consistency.

We have also not used four or more neutrino ex-
changes. These are still zero-mass exchanges. However,
in the t-channel unitarity relation, where these form four
or more neutron intermediate states, the phase space to
be integrated over would be much greater and likely
to involve higher powers of t. Thus, in the limit of t —+0
(longest-range forces), these would vanish in comparison
to the two-neutrino contribution. In coordinate
space, although four-neutrino exchanges, etc., mould

give 1/r"-type potentials, it is reasonable to conjecture
that n will be greater than 5. We are interested in the
longest-range forces, and have therefore taken only the
two-neutrino-exchange case, since these are the condi-
tions furthest removed from massive exchange forces,
where the well-established theorems could be used. As
mentioned in the introduction, the 1/r' dependence of
the long-range neutrino-pair potential is not unique to
our theory. Not only has it been proved by Feinberg
and Sucher with the usual current-current interaction,

but it also follows from Kq. (2.4) of their work that the
result is more general, and essentially kinematical in

origin. "A pair of neutrino propagators in the t channel,
as in Fig. 1, considered as a Feynman diagram would

give a projection operator of the form (fr/k')(k'/k").
Here k and k' are the momenta of the exchanged
neutrinos. In evaluating the imaginary part in the t

channel, this would give essentially a kk' dependence
which is proportional to t. Thus, unless the "blobs"
in Fig. 1 have zeros or singularities as t~0, the po-
tential will behave as t, when t —+ 0. These kinematical
factors are, of course, also present in our work, in the
form of the kinematical zeros s& and s2 shown in Eq.
(10).Obviously, for a given 8& both s~ and s2 go to zero
linearly as t —& 0. This may appear as a double zero in t,
but it must be remembered that the limit s ~~, t ~ 0
is a tricky one when all the masses are zero. When the
limiting process is applied carefully as in Sec. 3, only a
linear zero in t survives.

Further, given a 1/r' dependence of the potential, one
can even find the energy dependence trivially, provided

one is working to a given order of the dimensional
coupling constant G. Since we do not restrict ourselves
to any given order in perturbation in this work, the
energy dependence arises because of our dynamical
model.

Finally, it should be stressed that the principal moti-
vation and result of this work deal with high-energy
behavior of certain weak amplitudes and not the deri-
vation of the potential.
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