178 MODELS FOR K

In most applications of the current algebra, o terms
have been neglected. We found, for K — 3, that it was
necessary to include such terms to obtain conformity
with the low-energy constraints and reasonable agree-
ment with experiment.

A model based on 9-pole dominance was introduced
to explain deviations from the AI=3 rule in both
K — 27 and K — 3 decays, and gave good agreement
with experiment.

In studying #n— 3= decays, we found that meson-
pole models gave a good account of the energy spectrum,
provided that the Weinberg amplitude was used for the
low-energy 7 scattering, whereas the vector-exchange
model gave results significantly different from experi-
ment. Thus the n — 37 analysis lends weight to what our
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study of K decays suggests, namely, that the Wein-
berg scattering amplitude is preferable to the amplitude
based on p exchange.

The most remarkable feature that our work demon-
strates is the consistency of current algebra and phenom-
enological Lagrangian methods in describing strong,
weak, and electromagnetic interactions, with strong-
interaction vertices taken from phenomenological La-
grangians enforcing the low-energy theorems for weak
decays, and giving good agreement with experiment.
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Baryon Supermultiplets of SU(6) X O(3) in a Quark-Diquark Model*
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A model in which a baryon is a bound state of a quark and diquark is used to obtain a classification of
baryon resonances according to a broken SU (6) X0 (3) scheme. If the interaction between quark and diquark
has an appreciable space-exchange contribution, a level ordering is obtained which is consistent with the
present experimental information. The results are compared to those obtained with other models.

1. INTRODUCTION

T has been suggested that a quark-diquark model be
used in calculating strong!? and electromagnetic®*
properties of baryons. In this model, the diquark,
although formed as a bound state of two quarks, is
regarded as essentially elementary in its interaction
with a quark to form a baryon. The practical advantage
of using this model is that if a baryon is composed of
two particles, calculations are simpler than if the baryon
is composed of three particles, as in the usual quark
model. A disadvantage is that some of the symmetry
and conceptual simplicity of the quark model is lost.
In two previous papers,** properties of baryons have
been calculated assuming that the relevant symmetry
of the problem is that of the group SU(6). The quark
was assumed as usual to belong to a six-dimensional
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representation of SU(6), while the diquark was assumed
to belong to a 21-dimensional representation of the
group. This implies that the diquark consists of an
SU(3) sextet of spin one and an SU(3) triplet (be-
longing to the 3 representation) of spin zero. The
groups SU(6) and SU(3) were broken in the model by
mass splittings within the quark and diquark multiplets
and by symmetry-breaking interactions.

Mesons have been treated only perfunctorily'—*
because it is simpler to treat them as a quark-antiquark
pair rather than as a diquark-antidiquark pair. If a
meson multiplet belonging to a 27-dimensional repre-
sentation of SU(3) is found, such a multiplet can be
interpreted as a bound state of a diquark and anti-
diquark. In this paper we shall not consider mesons.

The results of the previous papers on the quark-
diquark model incorporating broken SU(6) were con-
fined to consideration of the ground-state 56-dimensional
multiplet consisting of the baryon octet and decuplet of
SU(3). In this paper we consider the baryon excited
states classified according to the group SU(6)XO0(3).
We compare the qualitative predictions of the model
with those of a quark shell model with harmonic
oscillator potential. This model was introduced by
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Greenberg® and amplified and summarized by Dalitz.®
We also compare with the work of Mitra’ who uses a
quark model with separable s-wave potentials.

A number of properties of the diquark have been
stated in Refs. 2 and 4. In particular, values of the
quantum numbers and mass-splitting parameters have
been given. Here, we shall define only those properties
which are most necessary for present applications, and
refer the reader to Refs. 2 and 4 for further details.
Briefly, the additive quantum numbers of the diquark
are those obtained from a two-quark system, but
dynamical properties, such as mass splittings, are
regarded as free parameters not to be calculated from
the corresponding properties of the quark.

In the usual quark model, best agreement with ex-
periment has been obtained under the assumption that
quarks obey effective Bose statistics.”” This symmetry
could follow from the assumption that quarks are
parafermions or order three as suggested by Green-
berg,’ or have internal degrees of freedom as suggested
by a number of authors.

However, the assumptions of the existence of para-
quarks or quarks with other degrees of freedom are not
by themselves sufficient to require that t}}ree-quark
systems have symmetric wave functions, since wave
functions of mixed symmetry and antisymmetric wave
functions can also occur within these schemes. Dalitz®
simply postulates that three-quark systems which are
antisymmetric or have mixed symmetry lie much higher
in energy (e.g.~10 GeV) than the symmetric states.

In the quark-diquark model, on the other hand, since
the diquark is treated as an elementary particle quite
distinct from the quark, it is most natural to assume
that symmetry considerations play no role. If the
quark-diquark wave functions have to be symmetrized
under the interchange of a quark and either of the quark
constituents of the diquark, then the calculational sim-
plicity of the quark-diquark model is lost. In other
words, either the diquark must be considered as ele-
mentary or any interference terms arising from any sym-
metrization of the wave functions must be negligible.

If a diquark is to be considered as elementary for
the purposes of calculation, then any excited levels in
it must lie quite high in energy. This means that the
low-lying baryon excited states will arise from radial
and orbital excitations of the two-particle quark-
diquark system. On the other hand, in the usual three-
quark model, there may be excitations between the
first and second quarks, in addition to excitations be-
tween the third quark and the c.m. of the first and
second. Therefore, in general many more low-lying
levels occur in the three-quark model than in the

5 0. W. Greenberg, Phys. Rev. Letters 13, 598 (1964).

6 R. H. Dalitz, Topical Conference on #N Scattering at Irvine,
California, 1967 (to be published). Other references on the three-
quark model are contained in this work. )

7 A. N. Mitra, Ann. Phys. (N. Y.) 43, 126 (1967); A. N. Mitra
and D. L. Katyal, Nucl. Phys. B5, 308 (1968); A. N. Mitra,
Nuovo Cimento A56, 1164 (1968).

LICHTENBERG

178

quark-diquark model. This is in contrast to the results
for the lowest 56-dimensional multiplet, where we
found** that the results for the quark-diquark and
three-quark models were very similar.

The differences in the excited states are particularly
striking between the quark-diquark model and the
three-quark model with harmonic-oscillator potential
discussed by Greenberg® and Dalitz.® On the other
hand, the model of Mitra’? gives somewhat similar
predictions to those of the quark-diquark model. This
is because in Mitra’s model, the potential between two
quarks is effective only in s states, and thus, many of
the excitations expected in the usual quark model are
eliminated. It is not too surprising that the forces in a
quark model can be chosen in such a way that the re-
sults are similar to those for a quark-diquark model.
In fact, if this were not so, the quark-diquark model
would not make sense as a dynamical approximation to
a three-quark model.

Although, as we have remarked, our results differ
quite strikingly from those of Dalitz,% the experimental
evidence is still insufficient to distinguish between the
two models. This is because at present only a few
baryon supermultiplets of SU(6)XO(3) are reasonably
well established.

2. ORDERING OF THE SUPERMULTIPLET
ENERGY LEVELS

We assume that the largest term of the quark-
diquark interaction is invariant under the group
SU(6)XO0(3). This means that there will exist baryonic
supermultiplets which can be classified according to
this group. We denote one of these supermultiplets by
(N,Lw), where N is the multiplicity of the SU(6)
representation, L is the orbital angular momentum of
the quark-diquark system, and = is the parity.

This same classification has been given by Green-
berg® in the three-quark model, using a shell model
with harmonic-oscillator potential, where L and =
represent the total orbital angular momentum and
parity of the three-quark system. Subsequently, Karl
and Obryk® have classified the allowed harmonic-
oscillator shell-model states. We use this latter classi-
fication for comparison with the predictions of the
quark-diquark model.

Because the quark belongs to the six-dimensional
representation of SU(6) and the diquark to a 21, we
have the SU(6) numerology

6X21=56+70. %)

Therefore, we immediately have the following rule:
Rule I. All low-lying baryon multiplets belong either
to a 56- or 70-dimensional representation of SU(6).
In order to obtain a baryon belonging to a 20 of
SU(6), a diquark would have to be excited from a 21

8 G. Karl and E. Obryk (unpublished). Quoted in Ref. 6.
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to a 15. If this were easy to do, then treating the diquark
as elementary would not be a good approximation.

Another feature of the quark-diquark model con-
cerns the relation between L and w. If we define the
relative parity of the quark and diquark as 4+, we
immediately have the following prediction:

Rule II. The orbital angular momentum and parity
of all low-lying levels are related by

r=(—1)~L. (2)

According to Dalitz, the supermultiplets which are
best established experimentally are

(56, 04), (70, 1—), (56, 0+), (56, 2+). (3)

It is seen that these representations agree with rules I
and II of the quark-diquark model.

In the quark harmonic-oscillator model classification,
the observed (70, 1—) level, (one quantum excitation)
lies lower in energy than the unobserved (70,04 )
which corresponds to two excitations. The reason that
the (70, 0+) does not lie below the (70, 1—) is the
requirement that the quarks obey effective Bose
statistics. Since in the quark-diquark model we do not
have this symmetry requirement, we must obtain a
similar result by a property of the quark-diquark
interaction. The simplest interaction which gives the
desired result is a space-exchange potential which is
attractive in even-parity states for the 56 and attractive
for odd-parity states in the 70. (This space-exchange
interaction could result from the exchange of a quark
between the quark and diquark). We therefore write
the quark-diquark interaction V as

V=U~U'Py(Pss—Pr0)+v, 4)

where U is a term which acts equally in the 56 and 70
representations, U’ is a term which acts differently in
the two representations, and v contains all terms which
break SU(6)X0(3). Here P,q is a quark-diquark space-
exchange operator and Pgg and Py are SU(6) projection
operators for the 56 and 70, respectively. We assume
that U, and U’, and v satisfy the inequalities

[UI> T[> o]

We shall now neglect the symmetry-breaking term v
and concentrate on the SU(6)XO0(3) invariant terms
U and U’. It can be seen that if U’'<0, not only does
U'Pyy(Pss—Pr0) lower the energies of the super
multiplets (70, 1—), (70, 3—)- - - relative to (70, 0+),
(70, 2+4)- - - but it raises the supermultiplets (56, 1—),
(56, 3—)- - - relative to (56, 0+), (56, 2+)---. From
(3) we see that this scheme is consistent with the
available experimental evidence. In fact, for large
enough exchange potentials we have the following rule:

Rule IT1. All low-lying SU(6) multiplets of even parity
belong to the 56-dimensional representation, and all
low-lying multiplets of odd parity belong to the 70.

The problem exists as to what functional form to
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take for the interactions U and U’. One assumption
is to take a harmonic-oscillator potential and to interpret
the energy levels as squares of baryon masses. This
leads to equal spacing of levels in mass squared, for
which there is some evidence. However, we want to
obtain features of the spectrum which are insensitive
to the exact functional form of the potential. Therefore,
we shall consider the problem for a square-well po-
tential in addition to a harmonic oscillator, to see which
features of the spectrum are common to both.

The energy spectra for harmonic oscillator and
square-well potentials are, of course, well known. In
the square-well case, in the limit of a large exchange
potential, we have the usual square-well level ordering,
with the additional requirement that rule III is satisfied.
The level ordering is

(56; 0+)7 (70> 1_)J (567 2+)7 (56: 0+)) (70: 3_))
(70: 1_); (567 4+)7 Tt (5)

On the other hand, as we decrease the strength of the
exchange potential, we intersperse even-parity 70
multiplets and odd-parity 56 multiplets within the
level ordering given in Eq. (5). We give two examples,
corresponding to different strengths of U”. One possible
level ordering is

(56; 0+)) (707 1—)7 (56; 2+)> (56: 0+);
(70; 3—)J (70, 0+): (70: 1'—)1
(56) 1—")) (56) 4+>7 (70; 2+)) Tt (6)

For still weaker U’ we obtain

(56) O+)y (70) 1_)) (70) 0+)a (56) 2+)) (567 0+))
(56: 1_)7 (707 3—'): (70) 2+)7 . (7)

We cannot make the exchange potential appreciably
weaker than that which gives the level ordering of
Eq. (7), or the unobserved level (70, 0+) would lie
below the observed (70, 1—) level.

In the harmonic-oscillator case, in the limit of a large
exchange potential, we have the level ordering

(56) O+): (709 1_):

{(56) 0+)1 (56; 2+)) (56) 4+)}y Tt (8)
where degenerate levels are enclosed in curly brackets
This level ordering conforms to rule III.

For smaller exchange potentials, we again get levels
violating rule IIT which become interspersed into the
level ordering of Eq. (8). However, if we require that
the (70, 1—) level lie below the (70, 0+) level, we find
that there is only one low-lying level violating rule II1,
namely, the (70, 0+) level. One possible level ordering is
(56: O+); (70: 1—)) (70: 0+);

{(56, 0+), (56, 2+), (56, 4+)},
(56,1=), . (9)
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This is the level ordering with the smallest exchange
potential consistent with the (70, 1—) lying lower than
the (70,0+). For a somewhat larger exchange po-
tential [to raise the energy of the (70, 0+) level],
the (56, 1—) level is raised considerably. A character-
istic feature of both square-well and harmonic-oscil-
lator potentials of the structure (4) is embodied in the
following rule:

Rule IV. If rule III is broken, the lowest energy
level to do so is a (70, 0+).

In the case of the harmonic-oscillator potential, the
(70, 0+) is the only possible low-lying level to violate
rule ITI [there must be at least six levels lower than the
(56, 1—) if the (70,1—) lies below the (70, 0+)].
However, in the square-well case, there could exist
other low-lying levels, for example (56,1—) and
(70, 24).

It should be noted that the validity of rules IIT and
IV depends on the nature of the assumed interaction
between quark and diquark, and their violation would
not be as serious for the model as the violation of
rules I and II.

We now briefly remark on the symmetry-breaking
potential ». Some of the properties of » have already
been deduced? from the observed splitting of the
(56, 0+) supermultiplet. It is difficult to obtain further
properties of v for the following reasons. First, none of
the other SU(6)X0(3) multiplets is complete from the
experimental point of view. The existence of these
higher supermultiplets has been deduced® chiefly from a
knowledge of pion-nucleon resonances whose energies
may be in error by ~50 MeV. Also, there is no general
agreement about how to assign some of the resonances
within supermultiplets. Despite these difficulties, we
can say that at the very least » must contain a spin-
orbit term differing in the doublet and quartet states
of the quark-diquark system, and which also depends
on SU(3) multiplicity.

3. DISCUSSION

We have obtained the following principal results
using the quark-diquark model: First, the only low-
lying baryon states should be those that belong to the
56 and 70 representations of SU(6). Second, the orbital
angular momentum and parity of an SU(6)XO0(3)
supermultiplet should be related by == (—1)%. Third,
for the most part, low-lying states belonging to the 56
should have even parity and those belonging to the 70
should have odd parity. If there are any exceptions,
the lowest one should be a (70, 0+) supermultiplet.
None of these predictions is contradicted by the avail-
able experimental data, but the data are insufficient to
provide a severe test of the model.

These results disagree with those summarized by
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Dalitz® for the quark model with harmonic-oscillator
potential. For example, in the Greenberg-Dalitz model,
there is a (20, 14-) supermultiplet corresponding to
a two-quanta excitation, and (20, 3—) and (20, 1—)
supermultiplets in the three-quanta excitations. All
such supermultiplets belonging to the 20 are forbidden
in the quark-diquark model. The (20, 14) quark har-
monic-oscillator level is the only one with 7= (—1)LH
for excitations of up to three-quanta, so that the L—m
relation does not provide a convenient independent way
to discriminate between the two models.

It is interesting that in the quark harmonic-oscillator
model, the unobserved levels (20, 14-), (70, 24), and
(70, 0+) are predicted to be degenerate with the ob-
served levels (56, 24) and (56, 0+). More experi-
mental information will be needed to find out whether
these supermultiplets are present in the baryon spec-
trum. A crucial test which distinguishes between the
Greenberg-Dalitz shell model and the quark-diquark
model is whether there exists a low-lying (20, 1+)
supermultiplet. If it is found, the quark-diquark model
will have to be drastically altered, for example, by
including a negative-parity diquark belonging to the
15-dimensional representation of SU(6). If such a
diquark is needed, the model will become more un-
wieldy and much of its attractiveness will be lost.

On the other hand, the predictions of Mitra’ are
much closer to those of the quark-diquark model. In
fact, Mitra’s quark model with only s-wave quark-
quark forces, gives just the results embodied in rules I,
IT, and III. The principal difference is that in the quark-
diquark model, some low-lying states which violate
rule IIT, such as (70, 04-), (56, 1—), and (70, 2+), are
allowed, although they are by no means required. It
may be that a quark model with dynamics similar to
that assumed by Mitra can lead in a natural way to
a quark-diquark model as a good approximation. In
any such scheme, one will have to decide whether or
not to include effective Bose symmetry for the quarks.
Mitra’s model contains this symmetry, while the quark-
diquark model as presently formulated does not, but
instead contains exchange forces. Since the two models
give similar predictions, the question of symmetry may
be a difficult one to answer.

ACKNOWLEDGMENTS

I should like to thank Professor R. H. Dalitz and
Professor A. N. Mitra for helpful discussions. I am
very grateful for the hospitality of Professor A. Salam
and Professor P. Budini at the International Center for
Theoretical Physics at Trieste where this work was
begun, and for the hospitality of Professor R. H.
Dalitz and Dr. R. J. N. Phillips at the Rutherford High
Energy Laboratory where the work was completed.



