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Following recent attempts to explore possible connections between current algebra, dispersion relations,
and Regge pole theory, we consider p-vr and A&-~ scattering amplitudes, and calculate them both from the
hard-pion current algebra for four-point functions and dispersion relations v ith saturation by single-particle
intermediate states. The two are found to lead to mutually consistent results provided we introduce a sub-
traction in certain amplitudes. However, from Regge pole theory, many of these are found to require no
subtractions. Thus, whereas the current algebra and the pole-dominated dispersion relations understandably
give similar results, the Regge pole theory appears to give distinctly different results.

I. INTRODUCTION

IXCE the famous Adler-Weisberger' calculation of

~

~

~

~

~

the g~/gy ratio, the algebra of vector and axial-
vector currents has been widely used to investigate
strong, weak, and electromagnetic interactions of ele-
mentary particles and resonances. ' Gradually, the
techniques employed have been perfected and many
discrepancies arising in earlier current-algebra calcu-
lations have been removed in recent applications. For
instance, we recall that in most of the earlier current-
algebra applications, one worked with soft mesons (i.e.,
one worked in the limit of the four-momenta of the
pseudoscalar meson involved going to zero). Thus, in
these calculations (of decay and scattering processes),
the "gradient coupling" term was missing. This approxi-
mation led to many wrong current-algebra predictions
for a large number of processes. ' I.ater, it was pointed
out' that, within a current-algebra framework, it is
sufhcient to work. with zero-mass pseudoscalar mesons
(i.e., their four-momenta square going to zero) instead
of having them soft as well. Thus, in a most straight-
forward manner, the "gradient coupling" term (term of
first order in meson momenta) came to be incorporated
in the current-algebra calculations. This scheme has
led to much better current-algebra predictions. 5

~ Research supported in part by the National Science Founda-
tion under the University Science Development Program.' S. L. Adler, Phys. Rev. Letters 14, 1051 (1965); Phys. Rev.
140, B736 {1965);W. I. Weisberger, Phys. Rev. Letters 14, 1047
(1965); Phys. Rev. 143, 1302 (1966).

~See, for example, the works listed in B. Renner, Current
Algebra and Their Applications {Pergamon Press, Inc. , London,
1968); S. Adler and R. Dashen, Current Algebras and A pplications
to Particle Physics {W. A. Benjamin, Inc. , New York, 1968).

3 Here we quote the example of a soft-pion current-algebra
calculation for the decay A &

~p~, such a calculation gives the A &

width =800 MeV, whereas the experimental value is close to
100 MeV; see, e.g. , B. Renner, Phys. Letters 21, 143 {1966).

4 S. Okubo, R. E. Marshak, and V. S. Mathur, Phys. Rev.
Letters 19, 407 (1967); see also S. Okubo, in Proceedings of the
International Conference on Particles and Fields, Rochester, 1967
(Wiley-Interscience Publishers, Inc. , New York, 1967); S. G.
Brown and G. B. West, Phys. Rev. I.etters 19, 812 (1967).' See papers quoted in Refs. 4 and 6.

This modified current-algebra scheme has been
developed following two different approaches. In the
first approach, ' attempts are made to combine soft-
meson current algebra with dispersion relations, and in
the second approach, one writes generalized Ward-
Takahashi identities assuming the lowest-order momen-
tum dependence. However, both the approaches are
essentially the same in that in both, in addition to the
equal-time commutator terms, one evaluates and retains
the pole contributions. Here, we would like to mention
that recently, a number of chiral Lagrangian models'
have also been proposed and these, too, lead to much
improved and similar current-algebra results.

our object in this paper is to study meson-meson
scattering (in particular p-ir and Ai-n. scattering) in the
context of hard-pion SU(2) &&SU(2) chiral algebra and
fixed-3 or -s dispersion relations. Recently, we considered.
virtual photon-pion scattering in a similar framework. '
There, we showed that the hard-pion current-algebra
results for a four-point function are reproducible from
dispersion relations (with one subtraction) and the
current-algebra results for a three-point function. Now,
we extend similar considerations to p-m and A1-m scat-
tering amplitudes. From a purely dispersion-theoretic
viewpoint, one can write either unsubtracted or sub-
tracted dispersion relations in the kinematical variables
for the invariant amplitudes of the problem. So far as
the dispersion integral is concerned, it may be deter-
mined by calculating the absorptive parts in a simple

' See S.Okubo et al. , Ref. 4; T. Das, V. S. Mathur, and S.Okubo,
Phys. Rev. I etters 19, 1067 (1967); H. T. Nieh, ibid. 21, 116
(1968).' H. J. Schnitzer and S. Weinberg, Phys. Rev. 164, 1828 (1967);I. S. Gerstein and H. J. Schnitzer, ibid. 170, 1638 (1968); see also
K. C. Gupta and J. S. Vaishya, ibid. 170, 1530 (1968); I. S.
Gerstein, H. J. Schnitzer, and S. Weinberg, ibkg. 175, 1873 (1968).

s An account of the chiral Lagrangian models is given in K.
Kawarabayashi, talk given at the Eleventh Boulder Conference,
1968 (unpublished); see also D. A. Germen and S. Gasiorowicz,
Argonne National Laboratory Report, 1968 (unpublished).'K. C. Gupta and J. S. Vaishya {to be published); see also
R. Chanda, R. N. Mohapatra, and S. Okubo, Phys. Rev. 170,
1344 (1968).
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FIG. 1. Kinematics of p-qi

scat tering.

saturation scheme of retaining only one-particle
intermediate-state contributions. However, the main
di6iculty in such an approach has always been the
question of subtractions: (a) whether to introduce a
subtraction or not in a particular amplitude, and (b)
how to know the subtraction constant. In recent years,
Regge pole theory has been developed to provide an
answer to (a) in that it gives the high-energy behavior
of the invariant amplitude and thus, perhaps, serves
the purpose of a reliable criterion for the convergence of
the dispersion relation. According to Regge theory, the
energy dependence of a strong-interaction scattering
amplitude is essentially determined by its t-channel
quantum numbers, i.e., by the Regge pole trajectory
enchanged in the t channel. In such an approach, Regge
cuts have not been accounted for so far and, further,
one has to make plausible and perhaps justifiable
assumptions" about the trajectories that represent the
dynamical information of the pole model.

Recently, it has been shown" that, in the case of
charged photon-pion scattering, the current algebra
and Regge pole theory lead to contradictory results and
in order to conciliate the two, one has to introduce fixed
J-plane singularities. Further, the present authors have
shown in an aforementioned paper' that the current-
algebra results for the virtual photon-pion scattering
can be reproduced from a dispersion-theoretic approach
only if one introduces a subtraction in two of the four
invariant amplitudes and determines the subtraction
constant from current algebra. Further, it was pointed
out that the Regge pole theory would lead to the
requirement of no subtractions in these form factors.
Thus, current algebra was, again, found to disagree
with the Regge pole theory. It is important to point out
that these conclusions are subject to the assumed
validity of the saturation scheme (of including only

"Generally, one takes nl '(t=O) =1 u~ '(t=0) (1, and
u~ '(t =0) (0.Of these, the last is certainly open to criticism. Also,
more complications set in, in case Regge cuts are important, since
these may lie above o. '(t =0) =0. For the cuts see, e.g. , R. J. N.
Phillips, Phys. Letters 24B, 342 (1967); I. J. Muzinich, Phys.
Rev. Letters 18, 381 (1967). For p-~ scattering alone, see V.
de Alfaro, S. Fubini, G. Furlan, and C. Rossetti, Phys. Letters 21,
576 (1966), and also Ref. 23."J.B. Bronzan, I. S. Gerstein, B. W. Lee, and F. E. Low,
Phys. Rev. Letters 18, 32 (1967); V. Singh, ibid. 18, 36 (1967).

1+, 1, and 0 states) adopted in the previous and the

present calculations. Next, we briefly outline oui

approach to the problem under consideration.
In order to obtain the hard-pion current algebra

results for the p-~ and A~-m scattering amplitudes, we

make use of the recently developed four-point functions
of Gerstein and Schnitzer. " Also, we write dispersion
relations (with and without subtractions) for the
invariant amplitudes and saturate the dispersion inte-

grals by 3&, x, and p meson states only as these belong
to a representation of the underlying SU(2) group. The
consequences of including other possible 1 states, e.g. ,
co and p, in the theory are also discussed. Throughout
our analysis, we ignore the existence of the scalar meson
in the vrx system and, also, the so-called "'0- terms. ""
In Sec. II, we fix our notations and definitions. In
Sec. III, for the sake of completeness, we give some of
the essential steps of the four-point functions analysis
and derive the hard-pion current-algebra, results for the
invariant amplitudes occurring in p-m and A~-x scat-
tering. In Sec. IV, we derive the absorptive parts of the
amplitudes to be used later on in the dispersion rela-
tions. In Sec. V, we carry out the main analysis and
show the analogy between current algebra and once
subtracted dispersion relations with the subtraction
constants taken from current algebra. Finally, in
Sec. VI, we discuss our results and the questions arising
therein.

II. DEFINITIONS

T=P A, (s,t,u) I„„'e(qo)e"(q4) . (2 2)

Here, the e's are the polarization vectors for the two-
vector mesons and A;(s, t,u) are the invariant ampli-
tudes, and are functions of the variables s, t, and N.

These kinematical variables are defined below:

s (q 1+go)
u= (qg —q4)',
t = (g,—g,)'.

(2.3)

"For details see the paper by I. S. Gerstein and H. J. Schnitzer,
Ref. 7. We follow the notation, etc. , of this paper.

"The so-called scalar terms are assumed to be of little im-
portance; the good results obtained in almost all of the current-
algebra calculations justify this a priori assumption; also see
Ref. 7.

The scattering amplitude for the process m'+p'
—+ x'+p" is defined by

&t'(q), ~'(q)lslt'(q), (q~))
= 1+o(2m)'(16qioqooqooq4o) ' '

X 8'(qj+qo qo g4) T, (2—.1)—
where T is the reaction matrix and the various channels,
isospin, and momenta are as shown in Fig. 1. From
invariance arguments alone, we can write the following
decomposition for T:
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Also,
s+t+u= 2(mv'+m. '),

4v= (s—u). (2.4)

The Lorentz covariants I„„'are given below

I„„'=P„P„, I„„'=2(P„Q„+Q„P„),
I..'=Q.Q. ,

where
(2.5)

~=l(q —
q ). (2.6b)

Thus,

s=(P+Q)', u=(P —Q)', t=46', v=P Q. (2..6c)

Next, let us fix the isospin decomposition. From charge
independence, we can write

A abed(s t) —Algabt'&cd+A2t'&acgbd+AH(adgbc (2 7)

The amplitudes for definite isotopic spins I= 0, 1, 2 in
the t channel are readily obtained:

A & & =—A &
=

& (s,t) = (3.4 '+ A '-+ A '),
A&'&=—A&'='&(s, t) = (A' —A ),
A &'&—=A &'='&(s, t) = (A-'+A') .

(2.8)

Further, we notice that the s- to n-channel crossing
symmetry leads to the following constraints:

A r(s,u, t)=( )rA r(u, s,t), i=1, 3, 4

Ab (s,u, t)=(—) +'A2 (u, s, t). (2.&&)

Now, the kinematics and notations for K + r4 y'~ m~+A&" are self-evident. For the sake of clarity, we
shall use the letter 8 in place of A in the case of A~-x
scattering, i.e., now,

T=p B;(s,t,u)I„,*dv(qb) e(q4), (2.10)

the ~'s being the polarization vectors for the two AI
mesons. (Throughout the text, A meson or Ai meson
stands for the 1+ meson of mass 1070 Mev. )

P= 2(qi+q~) Q=2(qb+qb) (2 6a)

Also, it is convenient to define another variable 6,

Takahashi identities7 approach. The former has been
developed as a powerful technique to calculate a large
number of processes involving pions with a nonlinear
realization of the pion field. The other approach leads
to similar results though the techniques used are
different. The two approaches are identical in that in
both one sums up the tree diagrams only. In this
section, we will calculate the invariant amplitudes
earlier defined for both p-vr and A~-x scattering using
the four-point functions developed by Gerstein and
Schnitzer, following the Ward-Takahashi identities
approach. For the sake of completeness, we first mention
the essential features of this paper. The main assump-
tions involved are

(1) local chiral SU(2) XSU(2) algebra of vector and
axial-vector currents,

(2) PCAC hypothesis relating the pion field to the
divergence of the axial-vector current,

(3) dominance of the 1, 1+, and 0 channels created
by the currents from vacuum by the p, A ~, and x mesons
only (thus the currents are used as interpola. ting fields),

(4) crossing symmetry requirements, and

(5) smooth momentum dependence of the primitive
functions (this and saturation by one-particle states
implies that one is summing up the tree diagrams only,
to lowest order in perturbation theory).

The technique consists in setting up Ward identities
for the proper functions (i.e., functions obtained after
extracting the &r, p, and Ai pole structures) obeying the
chiral algebra and the PCAC relation. These are then
solved under the assumptions listed above and also
under the further assumptions of (a) no I=1 part in
the so-called Schwinger terms, and (b) nonexistence
of 0 mesons. Since the calculations do not involve any
limit for the pion four-momenta, the solutions contain
the "gradient coupling" terms and so lead to hard-pion
current-algebra results.

Now we consider the p-m case in details and then it is
easy to repeat the steps for the 3 t-x case. We define

7'"'(qi, qi, qb)&,."'-

d Zd yd4Z g
—iq1 ~ x+ig2 y—i&I3 z

III. HARD-PION CURRENT-ALGEBRA
CALCULATION OF p-m AND A y-m

SCATTERING aIld
X(T(8„A„(x),B„A„b(y),Vb'(a), V."(0)))&& (3.1)

Recently, a number of authors'4 have investigated
four-point functions in general, and m-m scattering in
particular, using the chiral SU(2)XSU(2) algebra of
currents and the hypothesis of partially conserved
axial-vector current (PCAC). As a result, two elegant
approa, ches have emerged: (i) the phenomenological
chiral Lagrangian approach, ' and (ii) the Ward-

"I'or an interesting four-point current-algebra, calculation of
gi--~ scattering, see R. Arnovvitt, M. H. Friedman, P. Xath, and
R. Suitor, Phys. Rev. Letters 20, 475 (1968), and papers in
Refs. 7 and 8.

Ab, ——(m
" gi')(m -'—qi')(m, '—qb')(m, '—

q ')i —
Xf. 'm. 4gv 'bb(qb) -b.(qi-)

—(3.2).
Thus, from these definitions and Eq. (2.1),

7'= 7'"&(qi, —
q~, qb)b dA&,'

Here, we have used the P(;AC relation'""

&7„A„(s)= f.m. '@ (x)

(3 3)

(3.4)

"M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960);
Y. Nambu, Phys. Rev, Letters 4, 380 (1960).
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and the field-current identity"

&,'(x) =g. 'V, (*), (3.5)

e&& (x) and p(x) being the pion and p-meson fields. Clearly,

g, is the coupling constant arising when the current
U„(x) connects one p-meson state to vacuum. V„(x)
and A„(x) are the vector and axial-vector currents,
respectively, satisfying the usual equal-time current
commutation relations and thus generating the
SU(2) XSU(2) algebra of currents. Following Ref. 12,

we can write

T"'(gi, —
g2, gb)b.""

= —i(m. ' —g&2) '(m. ' —g22) 'f.'m. '
XD» (gb)h... (g4)ill"'(gi, —ge gb)l '"', (3.6)

where the A~'s are the vector propagators and
is the reduced diagonalized four-point

function with two vector currents (for details see
Ref. 12). The result obtained for M is

m 'f 4M&2&(g —
g g )

2q q ~ &2i(g q q ) &
abed 22(badebbce+bbdebace)f&& V(g )

—l Pgy( q )
—l

+24 2 F (gbv gl g2)bae~ (gl g2) aa' LCA glvg2vF (glv g2)vva'+ 2 (gl+g2) a')
y {'2 '4- [[ cq,„F—&'&(q,yq„—q).„.y ~ (—q,)-l..(~A(q, yq, )...
XLcdgi, F"'(—g2 —g, gi)-.b+~'(gb) '. b3 —PA'g2. (g +gb).F"'(—g2, gi+gb)...
+,'( g-l —q, —gb),—+(CA 2CV—)(gi+g2+gb)a~ ( g4) —'«$f» 'trna' (qi+gb)—'P'
X LCA'gi„(g +g ).F"'(gl, —g2

—
g ), b+ l (gi+g +g )b+ (CA —-', cy) (—gi —g

—
g )A'(gb) '.lj]

+ (gl 4-b —g2, «4 4-4 V, &2 ~ b) ) . (3.7)

=;,-b Z„„,v(„)~„„,v(q, )~», y)F„,„., & i(q„q2) (3.8)

with k= (gl —g,). F„,b& &(gl,q2) is a similar three-point
function with one vector and two axial-vector currents,

d4xd4y e '24 -42'(T(A (x)-A '(y) V&, (0))),

=id' '6„„"(ql)&„„."(q2)&». (k) F„„b&'i(ql, q2), (3.9a)

where
A„'(x)= A„'(x)+ig„m 8.A2„(x) . (3.9b)

Further, the axial-vector and the vector propagators are

qaqv
~""(q)=

&a '—4')k a ')

with

c~p2 qpgv
~"'(q) =

&a, '—4') a, ')
(3.10)

In writing the above expression, we have dropped the
scalar term assuming it to be small. Further,
F»i&bi(ql, g2), the proper three-point function is defined
as

2—=CA —Cv,

m 2=2m 2+1 p )

(3.15)

(3.16)

Thus,
gA' ——g,2=2m, 'f '. (3.17)

proper vertices, so far as the current algebra is con-
cerned, do not have any poles and so can be so approxi-
mated as to be smooth functions of momenta. The
results for these are

F'"(gl, g2),b.
= CV ma Lgvb(g2 gl)e

gb (gl+ 2g2),+g.,(2gl+@2)$j, (3.12)
F"'(ql q~)'.

CV CA mA [gvb(g2 gl)e

gbe(gl+ 2g2) v+gcv(2gl+ g2)X

+&(g..(gl+g2)b gb (gl+g..).)j, (3.13)

&2i(gl g2 g3) 6 abed

= 2CV CA mA L 4 2 (2+ &2) (g bg&vgbeaegve)

(4 debb ea+ bbcdebace)

X(lg e"+la.bg- —r"~')3 (3.14)

Here, 8 is a parameter" related to the anomalous mag-
netic moment of the A & meson. Throughout our analysis,
we will use the sum rules's

cA
———gA2/mA2, cy ———g,2/m, 2. (3.11) Cg —2Cy= 0. (3.18)

By definition, M, &2&(gl, g2,gb)b, 'd is the proper four-
point function and it does not contain any (2r,p, Al)
poles. This is generally called the "contact term. "The

"See, for example, N. M. Kroll, T. D. Lee, and B. Zumino,
Phys. Rev. 157, 1376 (1967); J. J. Sakurai, Report No. EFINS
67-64 (unpublished).

"The parametrization 6= —I leads to good results for the
p ~ 71-7r, A 1

—+ p7f, E*—+ Em, Q —+ pE, Q ~ A.*m-, and @—+ EK
decay widths, see Ref. 7; also then &=0 I see Eq. (5.15)j and it
agrees with the conclusions of Ref. 14."S. Weinberg, Phys. Rev. Letters 18, 507 (1967); K.
Kawarabayashi and M. Suzuki, ibid. 16, 255 (1966); Riazuddin
and Fayyazuddin, Phys. Rev. 147, 1071 (1966); J. J. Sakurai,
Phys. Rev. Letters 19, 803 (1967).
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Using Eqs. (3.1)—(3.18), it is a straightforward though tedious algebra to calculate T and hence the in11ariant

amplitudes 3; dehned earlier. Our results are

(3—h)'m " (1+b)'mc' —2b(2+b)m "-+b't
Ai(S t) —(4f 2)—1 &ace&bde + +(a4-bb, s4-bu)

2(m ' —s) 2(2m '—s)
(3.19)

A,, (S t) —(4f 2)—1 babebcde
32m 2t 1—(1+b)t(4m, ')—']—(8+8h+ 2b'-)

(m, '—t)

(2m '—s)

(3—h)-"m, 2 (1+h)2m, 2 2—b2m. 2yh2t
+ bac'bbd' + —( a~b, s~u), (3.20)

(m. '—s)

(3—h)'m, '-

A2(s, t) = (4f ") ' 2 "bb"e —2b(2+b)+
2(m '—s)

(1+b)-'mc2+2b(2+ h) m ' —4h-'m 2+ b2t

+ +(a 4-b b, s 4-b u), (3.21)
2(2m, '—s)

A4(S t) —(4f 2)—1 ibabebcde(u S)
-16m 2L1 —(1+h)t(4m 2)-')

—(2+b)'
(m, '—t)

t (2+h)mc2 —hm 'j-'
+ ba-2'd' (1+h)m '—-'h(4+h)t+-,'h-'(m ' —m ') — +(a4—bb, s4-bu) . (3.22)

4(2mc2 —s)

Also, using Eqs. (2.7), (2.8), and (3.13)—(3.22), it is easy to obtain the t-channel amplitudes with definite isotopic
spins. Here, we write these in such a form so as to display clearly the structure in the variables v and 6;
A (vd)= —iA; i(vd) 2=1 2 3 4

(3—b)'m ' (1+b)2m ' —2b(2+h)m 2+4h'62
A &"(v Li2)=(4f ') ' +

4(v.—v) 4(vg —v)

—
(3 h)c~ 2 (1+h)2m 2 2b2m 2+4h21eb2-

A & i(v2, hb)=(24f ') ' +
(v.—v) (Peb

—V)

(3—h)'mc"-(1+b)'-m, 2 —2b(2+ h) mc'+4h262
A 1&"(P,62) = (4f ') '+

2(v.—v) 2(vd —v)
+ (v &-b —v)

V~ V

v

(3.23)

(3.24)

(3.25)

(3.26)

32mc'Ll —(1+b)m, '~'1 (3—b)'m '
A2'"(v, ~') =(4f ')-' —t.6+4b+2(1+b)'j+ +

(m, '—4D') 2(v.—v)

(1+h)2m 2—2h2m 2+4h"-~2-
+

2(vd —v)
+ (v 4-b —v), (3.27)

(3—b)'m ' (1+b)2m '+2b(2+b)m '—4b'm '+4h'6'
Ab'"(v, h2) = (4f ')—' —4b(2+ 8)+ + — + (v 4-b —v), (3.28)

2(v —v) 2(vd —v)

Ab "i(P,62) = (4f ')—' (3—h)'m ' (1+8)'m '+2b(2+b)m '—4h'm '+4b'6''+
4(v.—v) 4(vd —v)

V~ V (3.29)

P(2+h)m 2 —hm 2)2-
A4'bi(v, h'-) =(4f ') ' 2(1+b)m, 2+'2h'(m, 2 —m ') —h(4+b)h' — +(P4-+ —v)

4(vd —v)

L(2+ h) m, 2 —hm 'j-'16m, '-L1 —(1+b) mc '14'j--
A4"'(v, h2)=(4f ') '(—v) —(2+h)'+

4(p 2 P2) (m, '—4A')

(3.30)

(3.31)
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1.=-', (262 —m ') (3.32)

vd =-', (2D2+mv2 —m. ') . (3.33)

We notice a singular feature in that the amplitude A4(1) has v as an over-all multiplying factor and hence, its v

dependence is quite different from that of the other amplitudes.
Next, we give some of the steps for the A~-m scattering case. The corresponding four-point function, now, is

3f "'(g1, —g2, g2)&,."'".This is given to be"

m. 'f, 'M&" (g1, —g, , g, )&,."= cd'g&„g2~. "'(g&, —g2, g2)„,&. "
+2""""'1'&"(g,—g ) -~'(g —

g )- E—~ 'g .g'1'"(g, —
g )"-—l(g +g )- ]

+(Z"""'-(L—C~g&. f'&" (—g4, g&)"-+~"(g4) '-]~'(g2 —g2)-
&&3 g 1'"'(g, —g) -+~'(g) "-]+l2~"(g) '.1)+(g —g, ~, ~ d)) (334)

Again, M, "~ is the primitive contact term and with the smoothness assumption for this, we have

~."'(g&, —
g2, g2) "1."=2(cd 'm~ 'L —""""'2(r1g"—g.xg-)

+ (4ade4bce+ 4bde2ace)( gag g xg +g gx )] (3 35)

The parameter $, in the above expression, appears as such because there is no vector constraint for the four-point
function of axial-vector currents alone and so there is no condition to determine a scale for the primitive contact
term and thus j is an unknown coupling constant. We will show in Sec. V that $ is given in terms of the param-
eter 8, provided we have a proper combination of current algebra and dispersion relations for the scattering
amplitudes. Now we define

v =-2'(262 —m ' —m. ').
After a little algebra, the 3&-m scattering amplitudes are easily found

(1+8) 'm, '—2m '—28'6'
81& &(v,A ) = —(4f ) 2L(1+8) —4@+ +(v~ —v),

(v —v)

(1+&&)2m '—2m '—2PD2
&1&(v g2) — (4f 2)—1 -(v 4-& -v)

2(v, —1)

8'm '—m ~—28'6'

(3.36)

(3.37)

(3.38)

24&"(»') = —(2f-') '
(v, —v)

V~ V (3.39)

2(v, —v)

8(2+5)m, 2 8'm~' —m ~—28~6~
82&'&(g 6-') = —(2f~2) ' (12$—1)— t 1—(1+6)m 252]+

(m, '—462)
+(v~ —v) (3.40)

2&12m '—(1+&&)2m'' —2&&'62
fl2~o&(v 52) (4f 2) 1 2E (1+ &) +&2 42]+

(v, —v)
+(v ~ v) (3.41)

2i&2m~2 —(1+h)'m '—2PD2
&2&"(v ~') = —(4f-') '

2(v, —v)
p +-+ —p (3.42)

2 l4&0&(v g2) — (4f 2)—1 8$(m 2 2+2)+ (2+$) 2vd+ (2+$)L(2+6)m 2 gm 2]

t (2+ &1)m, '—bm, ']'--
+—— + (v 4-4 —v), (3.43)

4(v, —v)

8mv2$1 —(1+i&)m '6'] L(2+8)m 2—&&m 2]2
&4'"(»') = —(4f-') '(2v) —2(2+ &)2+

(mv2 —462) 8(v, '—v')
(3.44)
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IV. DISPERSION INTEGRALS

where

x& I
v."(o)I-.,q.» (q.-p -q.)

v.«(o)l u)&ul l; (o)

Xb'(p~ —qi —qp)Ai. ), (4.1)

A&,.= (mp' —qp')(m, '—qi') p), (q,) p. (q,)gp
—'. (4.2)

It is obvious that only intermediate states with G= —1
can contribute to the right-hand side in Eq. (4.1).Such

We will study the fixed-t (or 6'-') &lispersion relations.
Further, keeping in view that in the current-algebra
calculation only p, 3&, and m states were included, we
shall saturate the dispersion integrals by these states
only. Implications of including other possible 1, 1+,
or 0 states are pointed out at the end of this section
and in the next section.

First, we calculate the absorptive parts for the p-x
scattering amplitude that will contribute to fixed-3
dispersion integrals. From Eqs. (3.1)—(3.3) we can write

ImT= —(qipqpp) (2w)'Q [&n-,qpl v&, '(0) lrt)

ImAp& &(s)=ImAi& &(s),

ImAi& &(s) =0.
(4.6)

(4.7)

(ii) Ai-pole contribution: We write the most general
invariant coupling

low-lying single-particle states are x, co, @, ~y, and ~2
p&)les. As nxentioned earlier, to be consistent with the
saturatinn scheme adopteR in the 5U(2)XSV(2)
current-algebra approach, we include only x and 3&
states for the present. Ke summarize the results in the
following.

(i) Pion-pole contribution: We define the coupling as

jgrsbc I"-(q')
( .,kl v„(o)I p, p&= (p+k)„, (4.3)

(4kppp)'" (m„'—q')

where q„= (p —k)„. A simple calculation gives,

ImA&'~ (s) = 41&[F '(m ')/g ')
X [p~"HAPP'$(s —m '-) —(ac-+b, s~u)), (4.4)

IniA&&~&(s) = Sir/F (m ') ~g ')
X[p~"p'"'b(s —m ')+(a~b, s~u)), (4.5)

pcbC

&Ai', p I v.'(o) l,k) = &[g.-(p' —k'&+(p+k). k-)C(q')+(g. -q'+q. k-)D(q') & p-"'(p) (4 g)
(4kppp)'" (mp' —q')

with q= (k —p). The absorptive parts obtained are

ImA '""(s,t) =~g '& p-'p'"[ ,'m '(3C+-D)' —2(4m ' —t)C' 4m 'CD—)b(s —2m ') —(a+-+b s~u)&, (4 9)

ImA '"'&(s,t) =2&rg '(p'-p'p'[ ', m '(3C+D-)' —2(2m, '-—t)C')b(s —2m, ')+(a~ b s+-+ u)&, (4.10)

ImAp&'&'&(s, t)=prg, '( 'p- p'P[pm '(3C+D)'+2C'(4m '+t 4m ')+—4m 'CD)b(s 2m ') —(a~—bs~u)}, (4.11)

ImA &"»(s,t) = —prg '(p~"pPP'[(2m, ' m')C+—m 'Dj'b(s 2m ') —(a~—b, s~. u)) . (4.12)

In the above, we have used m~, '=2m~' and, also, C and D are at the point g'=m, '. Similarly, it is straight-
forward to calculate the contributions of co and @ pole contributions. Below, we give expressions for the co pole.
To obtain the P contribution, one has to simply replace the symbol ~ by P. The coupling defined is

ib ' G„p(q')
&pr, kl v„'(0) I&p',P&= p„&&,k,P&&p "(P)

(4p,k&i)
'" (m, ' q')—

and the absorptive parts obtained are

ImA i&"&(s,t) = prg 'G '[b~'b "(-,'t m') b(s m'—)——(a ~ b, s ~u)),
ImAp&"&(s, t)= —2&rg, 'G. '[bP'b'"(m ' m' ,'t)—b(s ——m') +(a—~~b s~u)),
ImAp& &(s t)= —

&rg 'G~, '[b"b'"(m ' 2m ' —2—m '-+-,'t)b(s m„') (a&-+b s~—u)), —

(4.13)

(4.14)

(4.15)

(4.16)

ImA4'"&(s t) = —
&rg 'G '(b"b' [m 'm '—-'t(m '+m '+m ')

+ ,'pt" pi(m '+m—,' —-m—„'—pit)')b(s —m ') —(ac-+ b, s+-+ u)) . (4.17)

It is easy to calculate the expressions corresponding to a definite isospin in a particular channel.
In an identical manner, it is straightforward to calculate the absorptive parts in the case of A~-~ scattering.

Now, the only single-particle intermediate state possible is that with 6=+1, namely, the p-meson state. On
general invariance grounds, we can write

gc bc

&,k I A. '(0) I»',p) = [Jti(q')p„(p)+K, (q')(p k)„p(p) k+E, (q—')(p+k)„p(p). k), (4.18)
(4kopp)'" (m~' —q')
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where g =p —k, and the E, s are the form factors. Ke see that E& does not contribute since it gets multiplied by
q„d„"'(g) and the various contributions are

1&nfl&(v Q2) —&(4m 2f 2) ld—acedbde{m —2/E + 1
(m 2 m 2)E )2

E—'(m ' —2A') —2E1E2}b(v—v, )—(v+-+ —v, &2d—e b), (4.19)

1&nf4(v Z2) —&r(2m 2f 2)—&dacedbde{m —2LE1j 1 (m 2 m )E )2—E 2(m 2 262) }b(v—p )+ (p ~ p &rd v b) (4.20)

1m+2(v Q2) —2r(4m 2f 2)—I adce bdde{ m
—2LE +1(m 2 m 2)E )2

E'(—m ' —26') j2E&E2}b(v—v, )—(v~ —v, &&~b), (4.21)

Im81(v 6')=&r(4m 'f ') 'dac-ed"ep E&—'b(v v, )—) (v —d—& —v, &Jd-&b). (4.22)

It is worthwhile to point out that the form factors C and D defined earlier and E~, E3 defined above all charac-
terize the A~-p-m vertex and hence are related in a trivial manner,

all being at the point g =mp .

It& ——(2m ' —m ')C+m 2D)

A3 ——2C, (4.23)

V. SUBTRACTED DISPERSION RELATIONS AND CURRENT ALGEBRA

Now, we will analyze whether to write unsubtracted dispersion relations (I SDR) or once-subtracted dispersion
relations (OSDR) so as to reproduce the current-algebra results. First, let us assume USDR for the amplitude
A&&r&(v, LV) with LV fixed

1
A, &'&(v,h2) =—

+" ImA1&'&(v', 62)
dv'

(v'- v)

ImA1&'&(v', 62) 1
dv +-

p v v 7l

ImA2&1&(v', 52)
dv

(v' —v)
(5.1)

00 1 1
dv' ImA1&'&(v', 62) +(—)'

(v' —v) (v'+v)

the first integral being over the positive valence of v and the second one over the negative values. Al. o, using the
crossing symmetry property, we can write

1
A&'(v, h2) =— (5.2)

j(v~ —v),

—v~ —v .

Feeding in the x and Ay pole contributions obtained in Sec. IV, we obtain

2Fe' me'(3C+D)' 16(m, '—LV) C' —g—m, 'CD
A1&'&(v, LV) = + '

f.'m '(v.—v) 4f 2m 2(vd —v)

F ' m '(3CjD)' 16(m, ' 6')C—'—8m, 'C—D-
A1&1&(v,h2) = +

f.'m, '(v.—v) gf 2m, 2(vd —v)

(5.3)

(5.4)

Comparing these with the current-algebra results ob-
tained in Eqs. (3.24) and (3.25), we obtain

F.(m, ') =a-,'(3—b)m.,',
C(m ') =& (b/2v2) mc (5.5)

%e choose the positive sign for C and then a quadratic
equation for D gives two solutions

and
D(m, ') = L(2—b)/2~2m, (5 6)

D(me2) = D3b —2)/2~22&2c. (5.7a)

In the case where we choose negative sign for C, the
solutions for D get an over-all negative sign, too. %e
notice that the solutions (5.5) and (5.6) are the usual
three-point function results" and lead to correct

"See H. J. Schnitzer and S. steinberg, Ref. 7.

predictions for p~ mx and A&~ pm. decay widths.
Similarly, we find that in the case where we write
USDR for the amplitudes A2&" (v LV) and A "'(v 6')
we obtain identical solutions as given by Eqs. (5.5) and
(5.6), except that the second solution for L&(m, ') turns
out to be diA'erent in diferent cases, e.g., in the case
of A2&2&(v, h2), in addition to the sum rules (5.5) and
(5.6), now we get

D(m, ') = I (5bj2)/2~2m, . (5.7b)

Thus, for the sake of consistency, we discard the other
set of solutions for D(m, ') and take it to be given by
Eq. (5.6) alone. As mentioned earlier, the set

F,(m, ') =a-,'(3—b)m, ',
C(m, ') =a (b/2v2)m, ,
D(m, ') =&L(2—b)/2~2m, ,
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leads to correct predictions" for the pion form factor,
p~ mx decay width and A~ —+ per decay width.

For the other amplitudes, we notice that in the
current-algebra expressions (see Sec. III), we have, in
addition to the s and I channels, f-channel contribu-
tions. On the other hand, since we are writing axed-3
dispersion relations, the t-channel pole is missing in the
dispersion-theoretic analysis and so, accordingly, it has
to be subtracted from the current-algebra expression to
make a comparison. Thus, for a more meaningful com-
parison, it is perhaps desirable to write double dispersion
relations in both the v and 6' variables simultaneously,
and then to include only the pole contributions, thereby
neglecting the boxlike diagrams arising from many-
particle intermediate states. '0 For the present, we
assume OSDR for the amplitudes A2'", A3"), and
.44"'. We give the details for one case, say for A2(').
Writing OSDR for this amplitude,

A 2&'&(v, tI&2) —A 2&'&(vp, h2)

(v —vo)
&tv' ImA &'&(&'62)

X + . (5 9)
(v' —v) (v' —v&&) (v'+ v) (v'+ vp)

= (v —vp)

f 'm, '(v —v)(v —vo)

[m '(3C+D)' —8C2(m~2 —252)]
+—'

4f.'m, '(v~+ v) (va+ vo)

(5.10)

Xow we adopt the viewpoint that the subtraction
constant is known from the current algebra. ' Thus, the
left-hand side in the above equation is known from
Eq. (3.27), and a comparison of the two sides again
gives the sum rules of Eqs. (5.8). Hence, the whole
scheme appears consistent. A similar analysis holds good
for the amplitudes A '" A3"', and A4").

Finally, we have to consider the amplitude A4&»(v, h2).
As mentioned earlier, this amplitude is unique in that
it has v as an over-all factor. In order to remove this
singular dependence, we define a new function
A '"(v 6') =va "&(v 6') and write OSDR for a4«&(v&52),

with fixed 6'; the result obtained is

Substituting in the right-hand side of Eq. (5.9) from

Eqs. (4.3)-(4.12),

A2&»(v, h2) —A2&'&(vp &2)

[(2mv2 —m ')C+m 'D]'
a & (v,g )—a (v g )=—(2m f ) —(volvo)

V
2 V2

(5.11)

Again, comparing with the current-algebra result from Eq. (3.31), we obtain the set of solutions given in Eqs. (5.8).
To sum up, we see that for p-x scattering, current algebra and dispersion relations lead to mutually consistent
results, provided we write USDR for the amplitudes A&& ' '&(v, A'), A2& '&(v, A'), and A2&'&(v, A'-) and OSDR for the
amptitudes A2&'&(v 6'-) A, "'&(v,A') A4&''&(v, tI&') and (v) 'A, &'&(v 6').

We can repeat the whole procedure for the 3&-m case. Here, the energy behavior of the amplitudes is the same
as in the case of p-m scattering. Once again, we see that current algebra and dispersion relations lead to mutually
consistent results, provided we write USDR for the amplitudes B~"' '), B2(' '), and B3(", and OSDR for the
amplitudes B2&»& Bp" ",B&" '&, and (v) 'B4"'. To illustrate, we consider the amplitude B2' (v,&h'). A USDR gives

(m 2[It&+2(m 2 m 2)leap]2 Q 2(m 2—2+2))
B2&o&(v,62) = (m, 'f, ') ' —(v +-+ —v) . (5.12)

(vv- v)

Comparing with the current-algebra result, namely,
Eq. (3.39), we obtain

or
t=-.'(I+~)' (5.15)

I,=a t&m, /v2, (5.13) Thus, for —1«1&0,

A 2 ——+ (mv/%2)[m '——,'(m ' —m, '-)8]. (5.14) O& P& O.25. (5.16)

Similar solutions are obtained from USDR for the
amplitudes B~") and B3"). However, a USDR for
B&& &(v, h2) gives in addition to Eqs. (5.13) and (5.14)
another sum rule, i.e.,

(1+8)2—4)=0
"Recently we have attempted to combine double dispersion

relations with current algebra to obtain momentum-dependent
physical axial-vector form factors for the EI4 decays, S. N.
Biswas, R. Butt, and K. G. Gupta, Ann. Phys. {N. Y.) {to be
published).

This is a very interesting sum rule, since it expresses
the parameter g in terms of b and hence, in a way,
determines (."Again, the whole analysis is carried out
with OSDR for B2'", B3('), B4' ', and v 'B4'", leading
to the aforementioned sum rules. Thus, we have clearly
demonstrated that we can obtain mutually consistent
results from dispersion relations and the algebra of
currents, provided we introduce a subtraction in some

"See also I, S. Gerstein and H. J. Schnitzer in Ref. 7.
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of the invariant amplitudes of the problem. Finally, we
see that in the above analysis we have not included the
co and p contributions, chieAy because no such contribu-
tions are present in the current-algebra part. Obviously,
if one includes these contributions in the dispersion
integrals, one gets, for the sake of consistency, g, '
=gq, '=0. However, it is not possible to deduce
anything from this unless one incorporates the cv and P
states in the chiral-algebra scheme. -"

VI. CONCLUDING REMARKS

We have calculated p-m and Ai-m. scattering ampli-
tudes both from the algebra of currents and dispersion
relations with a subtraction. We have shown that in
case the subtraction constant is taken from the current
algebra, both the calculations lead to similar results. In
addition, we have also determined the parameter $ in
terms of another inherent parameter b (Eq. 5.15). This
is an interesting sum rule and perhaps reflects the
closure property of the A&-p-m system.

Now, we would like to comment on our results in the
light of Regge pole theory. "From Regge pole theory
(without fixed poles), one expects that for fixed t
and p —+~,

and
A34r(v, f) p, y, 4;(t)v "&'&

where y;, (f) are the Regge residue functions and a;r(t)
are the Regge trajectory parameters (see Ref. 10).
Clearly, in case we take 0&n;r(0)& 1, we find contra-
diction, in most cases, with the conclusions reached in

~'Actually g„, is fairly large and one does not expect it to
result from some kind of chiral-symmetry breaking and so this
aspect is a bit puzzling; for further comments see D. A. Germen
and S. Gasiorowicz, Ref. 8.

~' So far as the Regge pole theory is concerned, p-n. and A1-~
problems are identical and a comprehensive account can be found
in F. J. Gilman and H. Harari, Phys. Rev. 165, 1803 (1968)

the paragraph following Eq. (5.11) about the subtrac-
tions needed in the dispersion relations for the ampli-

tudes A;r(v, t). For an example, let us consider the
amplitudes A,'(v, t) F.rom the high-energy behavior
given by Regge pole theory, we expect that vA&'(v, t)
and A2'(v, t) should satisfy USDR (thus A&' can satisfy
a superconvergent dispersion relation). If we do
assume such a v behavior and saturate the dispersion
integrals by x and A& states only, the results obtained
are much diferent from those given by the hard-pion
current algebra. Now, an obvious question arises,
namely: Is the saturation completely We know that the
co contribution to p-~ scattering is substantial and there

may be other higher-lying states too. So far, our view-

point has been that since in the current-algebra scheme
only x, A&, and p states have been included, we should
do likewise in the dispersion-relations calculation.
However, we notice that in the current-algebra calcu-
lation, because of the nonlinearity of the commutation
relations, a contribution comes in which, in effect, plays
the role of a subtraction constant. Also, we know that
a subtraction constant is, in general, presumed to take
care of the contributions coming from higher states.
Thus, perhaps the observed anomaly between the
current-algebra results and the Regge high-energy
behavior for the invariant amplitudes can be resolved

by including more states in the dispersion integrals,
thereby effectively absorbing the subtraction constant
in the dispersion integrals. So far as the Ai-m scattering
amplitudes B;r(v, t) are concerned, their high-energy
behavior is similar to that of A, r(p, t) and the above
arguments hold good for these also."
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