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TABLE Il. (r2)p under the assumption of
a t-channel 0-exchange 7f.7r interaction.

650 900

—0.0008 0.0004 —0.0004

stituting our expression into Eq. (4) results in an
integral which converges and can be evaluated exactly.
(The coupling constant g, is deternuned from the
decay 0.—+ mx under the assumption of a decay width
of 100 MeV. )

The continuum contribution to the pion radius is
tabulated in F' for three possible values of the 0 mass

m, to give an idea of the variation of the continuum
contribution as a function of the o mass. (See Table II).
Continuum contributions to the pion radius are negli-

gible in this case and not inconsistent with zero when
one considers the accuracy of this calculation.
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Decay Rate of x+ ~ p+q from Unsubtracted Dispersion Relations*
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Assuming unsubtracted dispersion relations, we set up integral representations for the weak photonic
amplitudes Ii I and F2. The integrals involve the magnetic and electric dipole amplitudes MI and E0+ of the
photo-pion production and the pion-nucleon scattering phase shifts of the states PII, P3I, SII, and S3I. The
integrals were carried out on a computer and the relative decay rate of &+~ p7 to its total rate was found
to be 0.71)&10 ', which is comparable with the latest experimental value (1.9&0.4) X10 3.

I. INTRODUCTION

HE present investigation is based on the hypothe-
sis of unsubtracted dispersion relations. This

hypothesis was first thought of and applied by Gold-
berger and Treiman' in their investigation of the form
factors a and b in P decay and p capture. They assumed
a once-subtracted dispersion relation for the form factor
a and an unsubtracted one for the form factor b.
Nishijima and co-workers extended the no-subtraction
hypothesis to all weak amplitudes involved in a weak
process. By means of unsubtracted dispersion relations,
Goldberger and Treiman, who were the first to apply
the dispersion theory to weak interactions, calculated
the m-p decay and reproduced the experimental lifetime
of the charged pion. Nishijima and co-workers succeeded
in giving a dynamical derivation of the selection rule

~
AI

~

=-', for the nonleptonic decays of strange particles.
They also combined the assumption of unsubtracted
dispersion relations with unitary symmetry to offer a
unified interpretation of the Goldberger-Treiman rela-
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' M. I,. Goldberger and S. B. Treiman, Phys. Rev. 11G, 1178
(1958); 111,354 (1958); Nuovo Cimento 9, 451 (1958).
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tion, Gell-Mann —Okubo, and Coleman-Glashow mass
formulas, and the Cabibbo theory of semileptonic
interactions.

The investigation of the present problem was initi-
ated by Kawaguchi and Nishijima' and by Iso and
Kawaguchi. 4 They analyzed the photon mode of the
hyperon decay by use of the unitarity of the 5 matrix.
Behrends' also investigated the same problem. He
constructed on invariance grounds the general matrix
element of the photon mode of decay of the hyperon
and wrote the lifetime and angular distributions of the
decay products in terms of the three physical parame-
ters of the problem. In addition, he gave an estimate
of these parameters and of the branching ratios (photon
mode to neutral pion mode) by use of perturbation
theory. On the basis of these estimates he suggested
the possibility of detecting the mode experimentally.
Indeed, this turned out to be the case. More recently
the same problem was investigated by Iwao. ' He made
use of the Suzuki-Sugawara Hamiltonian of the weak
hadronic decay and obtained for the relative decay
rate of Z+ —+ py to its total rate 2.7X10 4 which was
in good agreement with the old experimental value
(3.7ao.g)X10 .

M. Kawaguchi and K. Nishijima, Progr. Theoret. Phys.
(Kyoto) 15, 182 (1956).

4 G. Iso and M. Kawaguchi, Progr. Theoret. Phys. (Kyoto)
16, 177 (1956).

~ R. E. Behrends, Phys. Rev. 111, 1691 (1958),' S. Iwao, Helv. Phys. Acta 40, 239 (1967).
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The motive for reinvestigating the same problem

arose from the difference in the value of the branching
ratio E((Z+ ~ py) jZ+~,~) between the old experiments

of Carrara et al. and of Burnstein et al. and the new

ones by Bazin et al 9a.nd by Quareni et al."The new

value of the branching ratio is (1.9&0.4)X10 ', as
given by Rosenfeld et al."

Our method of investigating the problem is diR'erent

from the methods used by the authors above. It is, of
course, based on the unitarity of the S matrix which

was used by the authors of Refs. 3 and 4, but the
general method of resolving and analyzing the problem
is diferent. We have arrived at our theoretical result,
which is comparable with the experimental one, by
using a model depending to a good extent upon experi-
ment. The representations that we have derived relate
the photonic weak decay amplitudes to integrals over
known quantities; thus an accurate numerical evalua-

tion of these integrals can be carried out. The physical
processes upon which our model depends are the non-

leptonic weak decay of Z+ and the pion photoproduction
process. Both of them played a key role in our investiga-
tion and have been investigated experimentally. Finally,
the general arguments valid for all invariant amplitudes
treated by means of dispersion relations hold for ours
as well. The arguments are that they vanish for very
large values of energy and have the proper analytic
properties, so that the dispersion relations they satisfy
exist. A word about the order of presentation of our
topics is given. In Sec. II we write down the dispersion
relations for the photonic amplitudes Fi and F~. In
Sec. III we evaluate the absorptive parts of Fi and F2
and set up their integral representations. In Sec. IV
we write down the formula for the decay rate of Z+

and give its numerical evaluation. In the same section
we also present some concluding remarks.

II. DISPERSION RELATIONS

where we have assumed explicitly that J is considered
to be a function of s for Gxed k~=0. Application of the
Lehmann-Symanzik-Zuzunermann (LSZ)" reduction
formula to Eq. (2) yields, after neglecting an equal-
tirne commutator,

p 1/2

ups+(s)u~ ——i
m

d4x e "*e„'"'(k)

x(p I r(j„(x)j:(o))I o&u, , (s)

where T( ) denotes the Wick product, ~„~"&(k) is the
polarization vector of the photon of helicity X and
energy-momentum k, and j„ is the nucleon electro-
magnetic current. By making use of the expression

T(j„(x)jz+(0))= I j„(x),j&+(0)j8(x)+ j&+(0)j„(x) (6)

and observing that the second term makes no con-
tribution to the matrix element of the physical Z+

decay, we may write Eq. (5) in the form of the retarded
commutator:

where s= —pz& is the square of the c.m. energy, po is

the final-state proton energy, k is the fina1.-state photon
energy, and m is the proton mass. jz+ is the source of
the Z+ Geld and is defined by

(3)

Here M is the mass of Z+; u~ and u~+ are the Dirac spinor
functions describing the proton and hyperon and they
are invariantly normalized according to N~u~=uz+uz+
= 1. They satisfy the Dirac equations (ip p+m)u~=0
and (iy P+M)uz+=0 We. have chosen throughout
for the Dirac y matrices the Pauli representation. We
write Pal, =ipse (k=1, 2, 3), 48=y4, and y„y„+y„y„=28„„.
Finally, our metric is such that p'= y' —p02.

Now from the general invariance arguments, i.e.,
I.orentz and gauge invariances, J must have the form'

J„+(s)= LF,(s)+iygF, (s)]y ky e, (4)

The decay of the hyperon Z+ into a proton and a
photon,

pp
1/s

ugz (s)uz =il-
&n

d4x e "*8(x)

is assumed to be described by the amplitude"

u~ Jz+(s)us+= (po/m)'~ (2k)'~ (pkout I gz+(0)
I
0)us+, (2)
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Y. Chang, Phys. Rev. Letters 14, 154 (1965).
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X(p IL..j„(x),i:(0)jl 0)u, (7)

Here 8(x) is the step function (which vanishes for
xo(0 and is unity for xo)0) and we have simply
written e„ instead of e„&"&(k). The remainder of our
discussion is based on Eq. (7). We shall use Eq. (7)
to investigate the invariant amplitudes F~ and F2. We
shall write down the unsubtracted dispersion relations
for these invariant functions without proof.

1 " ImFg, g(s')
Fy, 2(s) =— ds (8)

X (srs+p) ~ S S Z6

Ke should emphasize, however, that the properties of
F& and F& which are required by Eq. (8) are that F&

"H. Lehmann, K. Symanzik, and W. Zimmerxnann, Xuovo
Cimento 2, 425 (1955).
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and F2 be analytic everywhere in the complex s plane
with a branch cut along the positive real axis from
s= (»&+@)' to at&. We also require that F& and F& vanish
for large values of s. One might also expect that a
reality condition Fr &(s)=LF»(s*)j* would hold for
these invariant functions which satisfy dispersion rela-
tions of the type given by Eq. (8).

In order to calculate the absorptive parts of F~ and
Fz we go back to Eq. (7); we write in the usual way
u„Jz+u~+=—M=D+iA and identify A, the absorptive
part, with the contribution from the term —,

' in the
expression of 8(xo) =-', +-,'e(xo). We then obtain

p
A (z) =- — d'* a *"*(P

~ I.~„j,(*),jz'(0)j ~
0)lz, (9)

2 tn

which we And from time-reversal invariance may be
written

A(s)=u„LImF&(s)+ay&; ImFz(s)jy ky euz+ (10.)

If we insert in Eq. (9) a complete set of intermediate
states, use translational invariance, and carry out the
space-time integrations, we obtain

p )&/2

A(z)=- —
(

(2~)'2 &Pl~,j,(0)l~)
2 ns) n

x&~ I j'(o) lo)N's'(p' —p. ) (11)

where p„ is the energy momentum of the intermediate
physical state ~n).

Equation (11) shows that the imaginary parts of F&

and F2 appear as a sum of contributions from a complete
set of states ~n) which may be conveniently chosen a.s
"in" or "out" states.

In addition, Eq. (11) is a relativistically invariant
one holding in an arbitrary Lorentz frame, a, fact which
allows us to carry out our dynamical computations in
any desired frame of reference. Later we shall state
explicitly the Lorentz frame in which we evaluate the
absorptive amplitude A (s).

We also notice that in order to ensure reality of
A (s) in all stages of the approximation, use is made of
the Goldberger-Treiman trick by writing the sum over
the complete set of sta, tes ~n) as half the sum over
out plus in states.

We realize the difhculties which we are to be con-
fronted with in an attempt to evaluate the contribu-
tions to the imaginary parts of F~ and F2 coming from
all intermediate states allo~ed by a group of selection
rules. We must make use of physical arguments to
single out the important and physically tractable inter-
mediate states. We need consider only states of positive
unit charge and unit baryon number.

We shall therefore proceed on the assumption that
only the intermediate state ~cd) need be considered.
We believe that the pion-nucleon intermediate state, at
low energies at least, is the most important contributor
to the amplitudes F~ and F2. In addition, retaining

Observa. tion of Eq. (12) reveals that we have suc-
ceeded in expressing the absorptive parts of F~ and F2
as a product of two experimentally known matrix
elements.

One is the matrix element corresponding to the non-
leptonic weak decay of the hyperon 2+ and the other
is the matrix element of the inverse photoproduction
process. We may therefore take them over directly
from experiment.

The weak-process matrix element has, on general
invariance grounds, the representation

& v (p'v')l j='(0)I o) ='
= (I/po'2qp')'"u» (A+y:B)uz, (13)

where A is the parity-violating P-wave amplitude and
8 is the parity-conserving P-wave amplitude. Both of
them are energy- and isotopic-spin-dependent and
satisfy unsubtracted dispersion relations of the form

1 " ImA u& (s')
A (r&(s) ds

and
(tn+u) ' S —S—Ze

1
8&'& (s) =-

(zn+V)

ImB &I& (s')
ds'

s —s—se

Here Idenotes the total isotopic spin of the pion-nucleon
system and takes the values 2 and ~. As will be analyzed
below, the total isotopic spin eigenamplitudes A (I' and
8( ) will be given in terms of the amplitudes A (+ ) and
8(+ 0), which for zero values of the energy s are known
experimentally. The superscripts (+) and (0) refer to
the decay of Z+ into a neutron and a x+ and into a
proton and a x, respectively.

just this state provides us with a dehnite model which
can be evaluated and compared with experiment. The
intermediate state of a nucleon and a photon ~&Vy)

could also be considered but its contribution's being
smaller by a factor of 1/137 (second order in the
electromagnetic coupling) than that of the pion-nucleon
intermediate state allows us to neglect it. We omitted
single-ba. ryon intermediate states since they do not
contribute to F; when the initial hyperon is on the
mass shell. '-' We have also excluded intermediate states
consisting of a nucleon and two pions and a strange
particle and a pion.

Consequently, keeping just the pion-nucleon inter-
mediate state we easily pass from Eq. (11) to

p
1j2 d3p~ d3q~

A (~) =—— (2x)' 2
2 m (2&r)' (2z )'

x &P I ~.j.(0) I
ivy(p', v'; o'))

X(&V~(P',q'; o')
~ j +(0) ~0)N 8'(P'+q' —Fz ), (12)

where P ~ refers to the sum over the discrete quantum
numbers (spin and isotopic spin) of the physical ~1Vz.)
system, whose corresponding four-momenta are p' and
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The absorptive parts of A( ) and B&" are again ob-
tained by use of unitarity which allows these ampli-
tudes to be again expressed in terms of the pion-nucleon
scattering amplitudes and the nonleptonic weak ampli-
tudes, both of which are known experimentally. Con-
sequently, applying unitarity and considering again
just the pion-nucleon intermediate state we obtain

ImA &'&(s) =qf&&'&(s)A &'&(s), (16)

Im8 & & (s)= qf~
& & (s)8 & & (s) . (17)

Here I stands for the total isotopic spin and takes the
values 2 and ~, and q is the c.m. momentum. Finally,
the c.m. amplitudes f& and f2 are given by

where
Ree' ' sin82I, 2~

tan/&2r, mg ($)=
1—Imt, s&2r. 2z Sin@I,2.r

(25)

S /&2r, 2J (r )
A "r&(s)=A&«r&(0) e&&p

— ds', (26)
7I &~&&~ S (S —S—1«)

We can now substitute the pion-nucleon state con-
tribution into the dispersion relations (14) and (15)
and, treating these as integral equations, solve for A
and B.The solutions are readily obtained if we use the
Omnes" method. We obtain

f&= 2 f&+I'&+&'(*) 2 f&~—&-&'(*),
lM l=2

(18)

with an identical solution for B.
We now return to the other factor

(p I «„j„(0)I
/~&(p'q'. n')),

f2= Z (f&-f&')r &'(*)
l=l

(19)

where f&~ is the scattering amplitude in the state of
parity —(—1)' and total angular momentum j=/~2'.
I'&'(x) is the first derivative of the conventionally
normalized I.egendre polynomials and

f&+= («*'"»»&+)/q, (20)

which is the matrix element for the inverse photo-
production process and which from invariance prin-
ciples again may be written as"

(p I «j.(0) I/q~(p'q')) = (~'/p. po'2qo')'"~. (p~)
XLM&A &+M2A2+MsA «+M«A 4]N» (p's'), (27)

where the fundamental forms of M~, . , M4 are those of
Chew-Goldberger-Low-Nambu (CGLN) ":

where bl~ is the phase shift in the state l&. Here bl~
is a function of the c.m. variable s, and is slightly
complex but will be taken to be real.

Since only /=0 and /=1 (S and I') amplitudes con-
tribute, Kqs. (16) and (17) with the help of Eqs.
(18)—(20) give

Mi ——zy5y. ey k

M«=~&«L(p+p')'q' k (p+p') kq—"],
M3 ——y [y«. q'«k ykq' «], —

M4 ——y,Ly «(p+p') k p. k(p+p') —« ««&&y
—ey k].

(28)

(29)

(30)

ImA (2I) gs82r, 2z Sin)2I A (2I)

ImB (2I) gi52r ' syn$2I B(2I )

(21)

(22)

where J is the total angular momentum taking only
the value —,', and in addition we have slightly changed
the notation.

The fact that we are considering just the pion-
nucleon intermediate-state contribution allows us to
write

LImA &2r&]&~ &

=
&&Imf21,«J ImA ' r&+Ref2r, 2z ReA " &]

X/&I s—(m+&)2], (23)

with an identical equation for B.
In Kq. (23) the left-hand side denotes the pion-

nucleon contribution to ImA, whereas the right-hand
side involves the true coefFicient A. The step function
is inserted to remind us that the pion-nucleon state
contributes only for values of the energy s correspond-
ing to physical scattering s) («&&+p)'.

Since we are considering just the pion-nucleon con-
tribution we can write LimA]~»& &——ImA, and there-
fore Eq. (23) reduces to

ImA &"& (s) = tan/&«r, m~(s) ReA &"&
(s)&I&I s—(m+&«)'), (24)

A;")=A,'+'+2A;( ',
A .(3) —A .(+) A .(—)

(33)

(34)

"R.Omnes, Nuovo Cimento 8, 316 (1958)."Here the matrix element corresponding to the inverse photo-
pion-production is the time-reversed matrix element of the direct
process. Ke shall not deal explicitly with the time-reversal
operation. Its over-all efFect is, when we evaluate the real and
imaginary parts of the amplitudes I'I and F& via the representa-
tions (59)-(62) and Eq. (24), to change i into —i and that is all.
This is so because we consider the time-reversal operation to be
equivalent to the complex conjugation."G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1345 (1957).

The quantities A&—A4 are invariant functions of the
energy and isotopic spin and the last dependence is
made explicit by writing

A;=A, &+&/& 3+A, & &-Ir~~, r«]+A;&«&r,

(i=1, , 4) (32)

where the v 's are the Pauli spin matrices and n is the
isotopic spin index of the pion.

The isovector transition amplitudes A;(+ ) may be
expressed in terms of the amplitudes A;("' correspond-
ing to the values 2 and —,'of the total isotopic spin I in
the final state.
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Ke should also keep in mind that the isoscalar transi- Consequently, in order to use the c.m. dependence
tion amplitudes A;(0) always lead to final states with of thephotoproductionprocess, weintroduceaquantity
isotopic spin —,'. 7 by means of the relation

III. EVALUATION OF ABSORPTIVE
AMPLITUDE

Before substituting Eqs. (13) and (27) into (12) in
order to eRect its evaluation, it is appropriate to discuss
the sum over the spins and isospins of the pion-nucleon
system. The spin summation is easily carried out,
giving

z&z —z'r ' p
P u3&(p's')u3&(p's') =

The isotopic spin summation is also carried out easily
if we take into consideration the fact that the initial
and 6nal states have positive unit charge; consequently,
from charge conservation the intermediate physical
states entering are the

~
pz&o} and

~
zzz&+) states. In what

follows we shall not specify the charges, but instead
shall proceed with our calculations by making use of
the isotopic spin variables in our sum over states. In
other words, what we shall do is to express, by using
the Clebsch-Gordan coefFicients, the nonleptonic weak
amplitudes A and 8 in terms of eigenamplitudes of
total isotopic spin through the relations

5'
u(Ps) Q A;M;u(P's') =4zr—Xf(s)SX(s'), (40)

where 5' is the c.m. energy and the matrix P is de6ned
from Eq. (40) to be

&r &7'&3 (k)&e) z&r kq' e
5'= z&s eS&+ Fz+

q'k kq'

te Q Q
~ a

+ r3, (41)
qt2

where P1, . , 54 are functions of energy and angle in
the c.m. system and q' and k are the pion and photon
three-dimensional momenta.

The angular dependence of $1, . 5'4 may be made
explicit by means of an expansion involving derivatives
of I.egendre polynomials.

Pz ——Q &&/M&++E&+]P&+3'(x)
0

+L(l+1)M& +8& ]P& 3'(x), (42)

A &+) (Z+ —& ZZ+zr+) =-'(A &3)+2A &'&)

A &o) (Z+ ~ P+zro) 33V2(
—A &3)1A &'&)

(36) Sz——P )(1+1)M&~+M& ]P&'(x),

(37)

(43)

with identical relations for 8.
Ke can do the same for the invariant amplitudes

orresponding to these particular photoproduction pro-
cesses to obtain

A&(p+v ~ zz+~+) =v2(A, &o&+A, &-&) (3g)

A&(p+& ~p+~') = (Az")+A)'+'), (39)

with similar relations for the rest of the amplitudes A~,
A3, and A4.

Since we wish ultimately to evaluate the right-hand
side of Eq. (12) in the c.m. system of the photoproduc-
tion process which is also the rest frame of Z+, it is
necessary that we reduce Eq. (12) to such a form which
explicitly exhibits the dependence of the photoproduc-
tion process on the c.m. parameters, such as the c.m.
amplitudes and the c.m. angle specifying the direction
of the intermediate meson. In addition, in order to
eRect this reduction we must pass from the Dirac
matrices and spinors to the Pauli matrices and two-
component spinors de6.ned by

1 8+m
u(ps) = X(s),

L2m(E+m)]'&3 &r p

where X(s) represents the Pauli spinors which have the
s axis as the quantization axis.

03 2 N&+ M&+]P&+3 (+)

ytP. ~yM& ]Pz 3"(oo), (44)

rz ——P fM)~ E&+ M,=Z—
& ]P—z"(oo).

k =1
(45)

Here x is the cosine of the polarization angle which,
together with the aximuthal, specifies completely the
direction of the three-momentum of the intermediate
pion, given by

q'= &7'(sin8 cos3o, sin8 sinoo, cos8) .
The energy-dependent amplitudes M&~ and E&+ refer
to transitions initiated by magnetic and electric radia-
tion, respectively, leading to final states of orbital
angular momentum / and total angular momentum
&!&-3'. Superscripts (&, 0) may be added to each quan-
tity in formulas (41)—(45) in order to designate the
isotopic spin character of the transition.

Finally, from conservation of the total angular mo-
mentum and the selection rule

~
rU

~

=-', , the states we
expect to be allowed for the pion-nucleon system are
the ones characterized by I=-,', 7= ~ and I= ~, J=~.

In other words, the states in question are the E»,
E31 and 511, S31 states. Having thus outlined the
general procedure, we come back to Eq. (12), which,
after we substitute into it Eqs. (13) and (27) and carry
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out the isotopic spin summation of the pion-nucleon system, becomes

&2m
A(s)= — p d'p'd'q'8(po')8(qo')b(p"+m')g(q"+p')g'(p'+q' P—r, +)

3(2)r)o "
X (u(Ps)[(A)&+'Ma+A o&+)Ms+As&+)Mo+A4'+&M4)+ (A&&o&M&+As(o)Ms+A o&o)Mo+A4&')M4)]

Xu(P's')u(P's') [(A &"+yoB &")—(A &'&+poB &o')]us+

+u(Ps)[(A&& &M&+Ao& &Mo+Ao& )Mo+A4& &M,)+(A,&"&M,+A, &'&M,+A, &o&M.,yA4&o&M, )]
X u(p's')u(p's') [2 (A &'&+yoB&")+(A &'&+y B"&)Jul+) ) (46)

where we have added two one-dir»ensional mass-shell 6 functions in order to pass from the three-dimensional in-
tegrations to four dimensions, and

8(po) =1 (po) 0)
=0 (po(0) .

Using Eq. (40) and effecting the spin summation and the 8-function integrations by going to the rest frame of
the Z+ particle, we obtain

A(s)=
12)r[m (E+m)]'"

dQ(q'))(t(s)[(E+m)(F&+'+2&& &+3P&o&)A&» —(P&+&+2/& &+3P&o))B«)(g. q~

—(E+m)(S+ && )A—& &+—(p'+' &' &)B—('&&r q'])c(s„.). (47)

Since only l =0 and l = 1 (S and F) amplitudes contribute, Eq. (47) can be further reduced, if use is made of Fqs.
(41)—(45), to

A (s) = ((E+m) q'/3[m(E+m)]'") [(E~'+'+2E~'-'+3E~"))A "'xt(s)ze ex(sr+)
—(Eo++ Eo+ —')A 'Xt(s)ie ex(ss+)]—(q'o/3k[m(E+m)]&/o)[(M, (+&+2M, &

—)+3M, &o&)B«&]

Xxt(s)'&r (kXe)x(s .)—(M& &+& —M, &
—))B&"xf(s)i&r. (kXe))&(s,,) (48)

In order now to obtain explicit representations for the imaginary parts of the photonic decay amplitudes I;
and Fo, we come back to Eq. (10), reduce it to a representation involving the pauli matrices and spinors, carry
out the isotopic spin analysis, and then compare it with Fq. (48). ~e obtain

ImF (')(s)= —[q/k(m+s')o)]B«&(s)(M, o)(s)+3M) (o))8[s (m+u)2]

ImF && ) (s) = —[q /k(m js"o)]B& ) (s)M) & & (s)g[s—(m+u)o]

ImF "'(s)= [(E+m)—q/k(m+s"')]A &'& (s)(E& «) (s)+3E~(o) (s))g[s (m+u)2]

ImFo "& (s) = —[(E+m)q/k(m+s'&')]A &'& (s)E~&'& (s)g[s—(m+u)o]

(5o)

(51)

(52)

where E, is the total energy of the decay proton and we have written q instead of q'. In obtaining Eqs. (49)—(52
use has been made of the relations

(53)

(54)

(56)

s —s—te

(58)

with identical ones for the E~~&" and E~~ ') amplitudes.
The representations (49)—(52) are consistent with regard to the superscript (0) since the so-called isoscaiar

amplitudes M~~(0) and E~~") always lead to final states with isotopic spin -,'.
The explicit representations (49)—(52) allow us to write the dispersion relations (8) as follows:

1 " Ar(s')B"&(s')[M) "&(s')+3M& & &(s')]8[s'—(m+s&)']
F,&'& (s)=— ds' (55)

(~v)' S —S—le

1 " Az(s')B' (s')M( "'(s')8[s'—(m+s&)']
F,&'& (s) =— ds'

f ~

(m+p) s —s—ze

~o(s')A "'(s')[E~"'(s')+3E~"'(s')]8[s'—(m+u)']F,'" (s) =— ds' (57)
(sss+a) '

1 " Ao(s')A "'(s')Eo+&"8[s'—(m+s&)']
Fo&') (s) =— ds'

(sss+V) ' S —S—Ze
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Here we have set
(8+m)(I

A, (s) =—,A2(s) =-
k(m+s"') k (m+s"')

We recall once again that the representations (55)—(58) are uncoupled in the total isotopic spin and the total
angular momentum, and that the A and 8 nonleptonic weak decay amplitudes are the S- and P-wave amplitudes,
respectively. Both of them, as mentioned previously, satisfy dispersion relations with no subtraction and are
given through unitarity in terms of the pion-nucleon scattering amplitudes. The form of their solution was given
in Sec. II.

Consequently, making use of the solutions of A and B, Eq. (26), we can cast the representations (55)—(58)
into the following ones:

B"'(o)
F1&'&(s)=

B(2& (0)
F1(2)(s) =

A "'(0)
F &'&(s)=

A &'& (0)
F2(2) (s)—

& (1") )&2'-"'(1')+&~ -"'(*')]
ds'A1(s') exp — ds"

(~&&2 S (S S 22) S —S—Z6

~

s' " i)21(s") )]V& "& (s')

(~p& ~ S (S S —22)) S —S—22

& (*") )&2~"'(*')+32~"'(~')]
ds'A2(s') exp — ds"

~ 1) (m+2&2 S (S S 22) S S—Z6

(
s' " 821(s") E()+ ' (s')

ds'A2(s') exp — ds"

(60)

(61)

(62)

These are the basic representations of the photonic
decay amplitudes; they will be evaluated at s=Mz&,
which is relevant to the decay of Z+.

The phase shifts Sl~ and 83~ in the representations
(59) and (60) are those of the P11 and P21 states and
the rest are those of the S» and 5» states. They are
the pion-nucleon phase shifts, and will be taken over
from experiment. The representations (59)—(62) relate
the photonic decay amplitudes to integrals over known
quantities; consequently, we can make an accurate
numerical evaluation of the right-hand sides of (59)-(62).

The numerical evaluation was done on a computer
and the results are shown in Table I.

The values of the amplitudes B&"(0), B&'& (0), A &'& (0),
and A &2& (0) which appear in front of the integrals were
taken over from experiment. '~ This reference gives the
values of A'+'(0), B'+'(0), A&" (0), and B"'(0) corre-
sponding to the nonleptonic decays of Z+ into a neutron
and a x+ and into a proton and a x, respectively. In
passing from the A (+), 8(+), A ( ), and 8( ) amplitudes
to the total isotopic spin eigenamplitudes A"', 8"',
A &'&, and B&",use has been made of the relations (36)
and (37). The experimental values for the A &+', B&+),
A( ', and 8( ' amplitudes are listed in Table II. For
the pion-nucleon scattering S- and P-wave phase shifts
and the electric and magnetic dipole amplitudes Eo+
and M», we used the results of Berends, Donnachie,
and Weaver. ' They have listed the real part of the

' N. P. Samios, in Proceedings of the Argonne International
Conference on Weak Interactions, )Argonne National Laboratory
Report No. ANL-7130 (unpublished) g."F.A. Berends, A. Donnachie, and D. Weaver, Nucl. Phys.
B4, 1 (1967); B4, 55 (1967).

electric and magnetic multipole transition amplitudes
and their phases; consequently, one easily determines
the imaginary part by means of Eq. (24). We should
also recall that the phase of the amplitudes E~+ and
M&+ leading to a final pion-nucleon state is, by Watson's
theorem, equal to the scattering phase shift of that
pion-nucleon state. The authors of Ref. 18 have given
the real part of the multipole transition amplitudes up
to a photon laboratory energy of 500 MeV. Conse-
quently, in evaluating the integrals (59)—(62) the cutoff
which was introduced as upper limit was 1.824 BeV'.
This cutoG value corresponds to a photon laboratory
energy of 0.5 BeV and was chosen at this value in
order to utilize the results of Ref. 18.

IV. HUMEMCAL ESTIMATE

From the matrix element M(s) =u+x+(a)N2+, where
Jz+ is given by Eq. (4), it is easy to write down the
expression for the Z+ decay rate F. Making use of the
standard techniques, one obtains

(Ms+2 —m')'
P(~+ &+V)= (IF,I+IF2I ), (63)

8+My. +'

where, from the selection rule
~
I]I~ =-,', we may write

F1,2 2v2 ( F1,2 +F1,2 '). (64)

Hence, using the results of Table I, we find that the
relative decay rate of Z+~ pp to its total rate to be
0.71X10 ~, which is comparable with the latest experi-
mental" value (1.9&0.4)X10 '. We observe that the
results obtained by means of this physical dynamical
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TABLE I. Numerical values of the real and imaginary parts of F& and F2 in BeV " sec '".

ReFg(')

—9.2X 10

ImFl( ) ReF, (»

+1.06X 10' +8.55X 10'

ImF, (»

+2.68X10'

ReF2&'&

—4X 10'

ImF, &»

+1.64X 10'

ReF2(3&

—1.98X 104

ImF2'»

—1.36X 104

model are acceptable. The possible sources of the dis-

crepancy might be found in the noninclusion of interme-
diate states consisting of two pions and a nucleon, a
strange particle and a pion, etc. ; we neglected, as men-

tioned previously, intermediate states involving a hy-
eron and a pion in the following two cases. The first case
was the one referring to the nonleptonic decay of Z+

and the other to its photon mode of decay. Under the
assumption of keeping just the pion-nucleon state, the
nonleptonic decay of Z+ gave uncoupled integral equa-
tions in the total isotopic spin which, when solved
using the Omnes method, led to Eq. (26). The same
assumption applied to the photon mode of decay of
Z+ led to the ffnal integral representations (59)—(62).
We can judge, however, by the results that the assump-
tion of keeping only the pion-nucleon intermediate state
as the most representative of the low-mass states led
to rather acceptable results. The dispersion integrals
(59)—(62) do receive their greatest contribution from
this state and the choice of the cutoff shows, in addi-
tion, that this contribution comes from the region
which is not very far from the energy threshold corre-
sponding to a transition into the virtual intermediate
pion-nucleon state. Finally, we should emphasize that
there are several sources of uncertainty within the
context of the dynamical model that we have used.
For example, the decay constants A&+&, . , 8() are

TABLE II. Nonleptonic S- and I-wave decay amplitudes. The
values listed are to be multiplied by 3.16X10' BeV'~' sec'~.

A&+&(Z+ -+ n+x+) A«&(X+ -+ P+x') B&+&(Z+ -+ n+~+) B«&(Z+ ~p+~')

+0.158+0.004 +0.144&0.011 +1.632 &0.042 —1.443 &0.114

uncertain, as w'e see in Table II. For example, ~f "& is
uncertain by about 42.5%. The effect, however, of this
high uncertainty does not affect the numerical evalua, —

tion significantly. This is due to the fact that the main
contribution comes from the real and imaginary parts
of the amplitudes F&") and F2"), as we see in Table I.
Moreover, the amplitudes 8('& and A") entering in the
expressions of F1('& and F2") are uncertain by about
5.2 and 4.4%, respectively. The amplitude 8'" is un-
certain by about 20% but the amplitude F&"' hardly
contributes anything, as we see again in Table I. Also,
there must be some uncertainty in the determination
of the photopion amplitudes and some uncertainty
which depends upon the rate of convergence of the
integrals. We have nothing to report on these two
sources of uncertainty. The reason is that the authors
of Ref. 18 give no uncertainty associated with the
photopion amplitudes. Also, we have no data beyond
the cutoff value which would allow us to see how the
change of the cuto6' affects the results. We did, how-

ever, calculate the decay rate of Z+ by taking into con-
sideration the uncertainty in the decay constants
A'+~, , 8( &; the result differed by an insignificant
amount from the one quoted in this paper.
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