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A perturbation method is used to obtain equations for the dynamic distortion of the target
atom in low-energy electron and positron scattering. In an approximation which is adequately

simple for application to heavier systems, the equations for hydrogen are reduced to a form

analogous to the perturbation equations of the method of polarized orbitals. After expressing the

interaction of the incident particle with an atomic electron in terms of a multipole expansion,

the equations are solved for the multipole components of the polarization potential, where the

equations governing the distortion are dependent on the energy of the incident particle. Phase-

shift results for electron and positron scattering on hydrogen are compared with adiabatic

results and with results obtained by other nonadiabatic and variational methods.

I. INTRODUCTION

An important question in the theoretical treat-
ment of low-energy electron or positron scattering
from atomic and molecular systems concerns
dynamic effects in the distortion of the target sys-
tem by the incident charged particle. ' ' If the
external charge were completely stationary, then
the distortion of the target orbitals could be deter-
mined by a perturbation method such as that of
Sternheimer, ' where the polarization of the target
is expressed in terms of the induced multipole mo-
ments of the target atom. Thus, if the perturbing
charge is sufficiently "exterior" to the atom, the
interaction potential between the particle and the
atom has a leading term -nd/r~, where nd is the
atomic dipole polarizability, followed by a quad-
rupole term —o.&/r', where o.

&
is the quadrupole

polarizability, a,nd so on for higher-order induced
moments.

If the perturbing charge is at a distance of the
order of the atomic size, the potential function as
represented by its multipole components is altered
from its asymptotic form (and an added monopole
term becomes significant since the perturbing
charge is partially inside the charge distribution
of the atomic cloud) but is, in any case, still cal-
culable. However, the situation in a real scatter-
ing event is more complicated. The distortion of
the atomic orbitals does not result from a station-
ary charge at a fixed distance but from a moving
projectile whose coordinates change at a rate de-
pendent on its initial energy and on the attractive
polarization force between projectile and target.
If one persists in the description of the scattering
event through a perturbation technique and de-
scribes the atomic distortion by the free projectile
at rf through a perturbation term, then the per-
turbation will depend in some way on the energy
of the projectile. Intuitively one can argue that
the perturbation r(rq rf) induced ln an atomic or-
bital by a moving charge at r p will be reduced as
compared to that due to a stationary charge at the
same distance, since the orbital electrons require
a finite time to rearrange themselves in the elec-
tric field produced by the projectile (we neglect
any relativistic effect which would result from

the use of a retarded potential). Thus one would
predict that within the perturbation framework,
the distortion y of the atomic orbital becomes a
function of the coordinate and velocity of the in-
cident particle and that this distortion becomes
smaller and the resultant polarization potential
becomes weaker with more rapidly moving pro-
jectiles.

For electron scattering there is an added com-
plication from the effect of exchange on the target
distortion. These exchange polarization effects
are expected to be small as compared to the direct
and nonadiabatic polarization terms~ and wiQ be
neglected in the present investigation.

In Sec. II the equations for the dynamic polariza-
tion of atomic hydrogen are derived and the scat-
tering of positrons and electrons are treated in
Secs. IIandIII. The objective here is not to obtain
very accurate scattering cross sections for hydro-
gen atoms„but rather, it is to investigate the impor-
tance of the dynamic effect on target distortion
utilizing a method which can be adapted to more
complicated scattering systems.

H. TARGET DISTORTION; POSITRON-
HYDROGEN SCATTERING

%e proceed in a manner analogous to the meth-
od of polarized orbitals'~ "and consider the scat-
tering of positrons from atomic hydrogen. The
stationary scattering problem is described by the

Schr Ringer equation:

(e +e + w) e=ze,

where, in rydberg units,

Ho = —VP —2/r, ,

H =- V '+2/z

Here r, is the coordinate of the bound electron,
r~ is that of the incident particle, and W is the
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H, y, (F,) = z,y, (F,), (3a)

Coulomb interaction between the electron and the
incident particle. The total energy E =E,+ k,',
where 0,' is the kinetic energy of the free particle,
and E, is the hydrogen ground-state energy defined
by

with the perturbation of the target. This is the
polarization potential Vp(x ).

If we now utilize the usual perturbation method,
wherein the term W is considered as a perturbing
potential with resultant perturbation y, and sub-
stitute Eq. (9) into ('I), we get the first-order
equation

with &y„&f&,& =1 . (3b)

e(Fl, r )=g(r )[yO(rl)+X(rl, r )],

Without loss of generality the total wave function
4'=—4 (r 1, rp) can be written in the form

q(F )(ao-zo- v )x(F,, F )

= 2 V X (r 1, r ) ' V q(F )

+q(F )(&yo, wyo& - w) y (F, ) . (lo)

with the boundary conditions

&e., x& =o

X(t ,It ) 0, as glor
t'1'p ' 1 p

The term X(r 1, rp} will later be considered as
the perturbation of the ground-state hydrogen
wave function P, (F,), due to the scattered particle
whose wave function asymptotically is $(Fp).

The functions g and X are to be obtained by solv-
ing the appropriate differential equations. To this
end we substitute (4} into (1) and get

(a +w)(yo+x)q+a (yo+x)q=z(yo+x)q. (s)

In order to proceed in the usual perturbation man-
ner, we obtain an expression for E by performing
a scalar multiplication from the left on (I) by
(*Q,* and integrating over rl and r p. Utilizing
(3a), (3b), and (5), this yields

(z-zo)&~, C& =&&, ffps& «, Row~ol&&

&C, [~.,wx] ~&

From the stationary behavior of E this leads to

zy(r )=zoq(~ )

+ H + r r dx''lp ''
+ 0~ r1 ~r1'r dw& x, 9

1p

In this expression we recognize the energyterms
as E„ the ground state energy of hydrogen, and
Ilp, the kinetic energy and interaction with the
nucleus of the scattered particle. The first inte-
gral is just the interaction energy of the positron
with the unperturbed target, and the second integral
is the interaction energy of the scattered particle

This equation determines the correlation or
distortion term X(F1, r p) through the static- and
kinetic-energy contributions from the incident
particle. An analogous equation was given by
Obedkov" for the electron-hydrogen problem
neglecting exchange. Of course the equation is
not complete without the scattering equation for
the determination of $(Fp).

Returning to the Schrodinger equation (V) for
the scattering, we now perform a scalar multipli-
cation from the left on (7) with 4*(r1, r p) and
integrate over the electron coordinate r &.

J 4*(Fp) [eo*(F1) + x* (FI, Fp}]

x[11 (FI)-v 2+2/~ +w(rl, r )-z]

x q (r )[go(F I)+ x (r I, r )] dry
—0 .

With the use of Eqs. (3a), (3b), (5), and some
algebra, Eq. (11)becomes

—(1+&x x&) & '(+(1+&x x&}
p

x(2/~ +(P, WPO&-k ')(

+&x, wx&4-&x, x&& 4. w4. &4+&4. wx&4

+&x, w4o&4+&x Hox&4 4&x &p'-x&

-2&x, ~ x «&=z,&x, x&~.7 p p 0 (12)

Again we will consider the distortion terms as a
perturbation in this equation. However, in Eq. (12)
we retain all second-order terms and ignore third-
order expressions, e. g. , (X, X&(P„WQ,&(. If we
define

v (r )=(yo, wyo&

v (~ )=(yo, wx&,

divide through by (1+(X,X), and drop third-order
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terms, Eq. (12) becomes

—V '((F )+ +V (r )+V (r )-ao') t)(f )
p p xp c p p p 0

=- q{)(, ~e —V '-E ~y)+2{~V 1 ~ V y)0 p 0 p p

(15)

Now we note that the terms on the right-hand side of
Eq. (15) are identically equal with those obtained from
a scalar multiplication of Eq. (10) by y. Thus with the
use of (10) the right side of (15) is zero. We are then
left with

—v 'q(r )+[2/~ +V (~p)

v ( )-ko']q( )=c', (16)

This suggests that (1/y)Vpy ~ko over an important
part of the range of values of xp. If we write the
set of continuum functions as

l( )="''
in Eq. (16), the implication is that the wave pack-
et in rp centers about 0,. Our approximation is to
replace the amplitude function a&(k) by a narrow
packet centered about k, which we write as a delta
function, i.e. , a (k)=a&5(k —ko). Thus, for the
purposes of trea/ing the dynamic part of the corre-
lation, we write

ik ~ r
y(r, , r )= J Z a.5(k-ko)e &y. (r, )dk. (19)

p . ij 0 j 1

If this approximation is made for y in the dynamic
term on the right-hand side of Eq. (10) and the
asymptotic approximation (1'7) is made for g(rp),
the first term on the right hand side of Eq. (10)
becomes

which is the desired scattering equation.
The term Vp(rf, ) in (16) is the nonadiabatic po-

larization potential defined by (14) and the solution
to Eq. (10). Thus, Eqs. (10) and (16) define the
nonadiabatic scattering problem.

Equation (16) is easily solved by partial-wave
analysis if Vp is known. However, Eq. (10) pre-
sents more of a problem. The presence of the
operators Vp and Vp', representing the dynamic
effects of the incident particle, seriously com-
plicates the equation for y. The ordinary adia-
batic approximation to y would obtain if these two
terms were dropped in Eq. (10). Thus the de-
scription of nonadiabatic effects requires that
these terms be retained in some form, though
considerable simplification of Eq. (10) must be
achieved if solutions are to be found.

First, consider the dynamic term 2V~y (rl, r~)
~ V~)t)(x ) of Eq. (10). From Eq. (16) we note
that as mptotically wp satisfies

v 'y(r )=ko'q(r ),
p p 0

(17)

with solutions ((w&) -exp(+ iko ~ r&). We then note
that it is possible to write the correlation func-
tion y (rl, rp) in terms of a double sum over the
complete set of continuum functions for the in-
cident particle, denoted by g „(r~), and the com-
plete set of hydrogen atom wave functions (1) (rl).
That is, we could write the expansion

y(rl, r ) = fQ a. ( )kl(kr. )Q. (rl)dk.
p j 1 (16)

[From Eq. (5) the j = 0 term vanishes: a,(k)=0. ]
Thus the correlation function can be formed
from a wave packet in r~ space and a set of hy-
drogen solutions P&(rl) m rl coordinates (including
continuum).

Now in order to represent the effect of Vp on y
we make the observation that over the range of
&p comparable to the atomic radius the dynamic
effect due to the transient charged particle should
be approximately proportional to the velocity
with which it moves through the target system.

( —Vl' —2/ri —Eo+Sko') y(rl, r )17 p

= ({y,Wy ) - W) y (r, ), (2o)

with boundary conditions (5) and (6).
This equation is of the same form as that of the

method of polarized orbitals, with the important
difference that the distortion function g depends on
the energy of the incident particle through the
term 3k,' on the left-hand side. Thus, for a given
kinetic energy k, ', Eq. (20) may be solved by the
usual procedure of decomposition into multipole
components. "~" Thus we write

W = —2/r
1p

2r A.

4v
A. + 1 2K+1~r,

+m~ m
(~)F (~),

where r is the lesser and x& the greater of x,
and xp. We then write

yO(rl)=Pl (rl)/~le'4x (22)

—2k 'y(r, r )y(r ).,p"
Having made the approximation (19) for y in the
dynamic term on the right, we do the same in the
term —V~'y which appears on the left side of
(10). Thzs leaves Eq. (10) as

y(r )(FI —& +k ')g(r, r )
p 0 0 0

= —2k 'y(r, r )y(r )01'pp
+ q(r )((y, Wy ) —~)yo(r, ). (1O')

p
After cancelling the common factor P(rp) in (10'),
the determining equation for the perturbed X(rl, tp)
is reduced to



RIll
v, (r, , r )

)((Fl, ~P) = Z
E, m 1

xy (f )1' (W )~4v/(2f+1).
1 l P

(22)

Substitution of (21), (22), and (22) into Eq. (20)
leads to the following sets of radial equations for
the multipole components U~ of the distortion term

Monopole:

dx, ' x, 0

= [- fs, (r, )(2/r, )p (r, )dr,

+2/r ]P (r ); (24)

dipole, quadrupole,

etc�.

, (f= 1, 2, ~ ~ ):

, -—+, -Z +sf V, (r, , r )(
d' 2 l(l+ 1) 2

0

=(2r /r,
'

)~ (r ); (25)

where each of the above are tmo equations; one for
and another for x1& xp. These must be

matched in each case at rl = rp and must satisfy
Uf(rl, rp)=0 at rl =0; also Uf (rl, rf, )-0 as
rl -~. The equations (24) and (25) are obviously
nonadiabatic extensions of the polarized-orbital
equations " Note that the radial equations are
independent of the magnetic quantum number m,
which has been suppressed in (25). The non-
adiabatic polarization potential is given by

V (r ) = — C (r ) — )((r, r )dr
p p 0 1~ 1'p 1

looping at Eqs. (24) and (25) we note that,
since E, & 0, the term Sk ' appears in the form of
extra binding in the equation for X(rl, rp) .Thus
as k ' increases, the magnitude of UE, and thus g,
decreases though the exact dependence of this de-
crease with increasing incident energy is not ob-
vious from the equations. '4 We note that the ap-
proximation (19)which was used in treating the
dynamic part of the correlation function precludes
an accurate description of the nonadiabatic con-
tribution to the polarization potential in the limit
rp- ~, since the asymptotic form of (19) in rf,
coordinates is incorrect. However, since the
potential is very weak in this region, this inac-
curacy is not necessarily serious.

The set of Eqs. (24) and (25) have been solved for
the monopole, dipole, and quadrupole contribution
to the nonadiabatic polarization potential for a
number of incident energies. The method of solu-
tion has been described in Ref. 13. Results for
three different incident energies are shown in
Fig. 1 where the three multipole components as
well as their sum Vp(rp) are plotted. As expected,
the interaction potential obviously decreases with
increasing incident energy.

Having obtained the polarization potential Vp for
a given energy k,', the scattering equation for
positrons (Eq. 16) is easily solved by partial-
mave analysis. Results for 8- and P-wave phase
shifts are given in Table I. From the table a
comparison can be made bebveen the results ob-
tained from the adiabatic approximation [obtained
by ignoring the ko term in Eqs. (24) and (25)~ see
Ref. 12] and those obtained from the nonadiabatic
method of Callaway et al. , ' the variational method
of Schmartz, "~ '6 and the present nonadiabatic
method.

The variationally obtained phase shifts"~" are
the results of elaborate calculations and can be
assumed to be accurate. Thus me note that the
effect of the nonadiabatic terms in the potential

(25)

1 (r )= —[2/(2f+1)] fV, (r, , r )

x(r /r, )Pl (rl)«1. (2V)

—V 08I

OIPOLE POLARIZATION

POTENTIAL -v at—2
P

OUADRUPOLE POLARIZATION

POTENTIAL

0 E~0,25 RY

As ko 0,

V o(r ) -0 exponentially, as r-
p p p

V '(r )--n/r', (0.=4.5a '),
p p

POTENTIAL

! I

l

5 RY

TOTAL POLARIZATION

„POTENTIAL

V '(r )-- n /r', (n =15a '),
P P a' '

q
0

0 I 2
r (ao)

4 5
0

0 2 3 4 5
r (oo)

where a and n& are the dipole and quadrupole
polarizabilities of hydrogen. We mill neglect
multipole components higher than quadrupole in

I'IG. 1. The multipole components Vp and total
nonadiabatic polarization potential for three incident
energies (potential in rydbergs) .
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Adiabatic
Vp= Vp

0

+pp +pp

Extended
polari-
z ation

Present
non-

adiabatic Variational

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

(-2.540)
0.160
0.208
0.196
0.158
Q.ill
0.0624
0.0163

—0.0261

(-0.783)
0.0360
0.0137

—0.0352
—0.0939
—0.1539
—0.2112
—0.2638
—0.3036

(-2.15)
0.150
0.162
0.106
0.0292

—0.0520
—0.120
—0.182

~ I

(-2.10)'
0.151
0.188
0.168
0.120
0.062
0.007

—0.054

Variational

TABLE I. Positron-hydrogen phase shifts as a func-
tion of wave vector ko (Energy E=ko in rydbergs; p~

in radians) .

function is to reduce the phase shifts from values
which are greater than the actual phases to values
which are somewhat smaller than the accurate
values. The latter behavior is not unexpected,
however, since the effects of virtual positronium
formation have been neglected herein. " This
omission causes the phase shifts to lie below the
actual values, the discrepancy becoming some-
what greater with increasing incident energy up to
the threshold for actual positronium formation.

0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.0086
0.030
0.057
0.082
0.101
0.112
0.113

0.0072
0.0226
0.0370
0.0458
0.0468
0.0408
0.0290

0.0083
0.0261
0.0421
0.0489
0.0456
0.0359
0.0209

0.009
0.033
0.065
0.102
0.132
0.156
0.178

The ko= 0 values are scattering lengths.

III. ELECTRON-HYDROGEN SCATTERING

For the electron-scattering problem, we can write the scattering equation in the form of Eq. (1):

[H, (r, )+Ho(r, )+ W(r„r2)]4(r„r2) = E@(r„r,), (28)

where H, is defined in (2a), and r, and r denote the coordinates of the two electrons. The term
Ii'(r„r, ) = 2/r» is opposite in sign to (2c). The total wave function is written as in (4), but is now anti-
symmetrized.

4'(r„r2) = $(r2)[go(r, )+ y(r„r2)]+ P(F, )[$0(r2)+ y(r„r2)].

The plus and minus signs refer to the singlet and triplet states of the two-electron system.
We obtain the scattering equation from the variational principle

h f@ (r„r,)(H —Z)e(r„r, )dr, dr, = 0

(29)

(30)

where H is the total Hamiltonian and E the total energy of the system. In (30) we will apply a limited
variation, that is, variation with respect to the continuum function ( of Eq. (29), considering the bound
state functions as being predetermined. After substituting (29) into (30), this operation results in the
equation

f[P, (r, )+ y (r„r,)](H- E)Q(r2)[g, (r, )+ y(r„r2)]

~q(r, )[y,(r, )+y(r„r, )]]dr, = 0. (31)

We will consider the direct and exchange terms separately in Eq. (31), these being, respectively, the
term preceding the a inside the curly bracket and the exchange term, that associated with the product
following the + in Eq. (31).

First we note that apart from the change in sign in the Coulomb terms, the direct part of (31) is identical
to Eq. (11)for the positron with x, replacing tp in that equation. Thus the treatment of the direct part
has been done previously where we retained terms through second order in the perturbation.



In Eq. (31) it is necessary to treat the exchange term in a lower approximation than that of the direct
part. First, in the exchange integrals we retain terms only through first order in the perturbation. With
the aforementioned analysis on the direct terms, the scattering equation reduces to

[-v '-2/r + v (r )+ v (r ) k—']y(F )+((z k—')fy (r )q(F )dF, y (F2)2 p 2 0

—k'[f P (r )g(F )y(F, r )dr + fy(F, r )P(F )dr g(F )]

+ fy(FI, r )(-V —2/rl)g(FI)dF p (r )+ fp (r )(-7' '-2/r )g(F )y(F, r )dr

+y (r )fy (r )W(F, r )y(F )dr ]=0.

The term Vp{r2) is the nonadiabatic polarization potential due to the incident electron. This term
arises here in the treatment of the direct terms in the scattering equation as mentioned above, and re-
sults from the solutions to Eq. (10) with r, replacing rp and with a change in sign of W. The phase of
X is changed by m as compared to the positron case; thus the polarization potential" is still attractive as
it must be.

Thus in the electron-scattering problem the exchange distortion terms are neglected in determining
y(F„F2). In order to further simplify the scattering, Eq. (32), and to be consistent with the analysis of
the target distortion, we will neglect the dynamic polarization exchange terms in Eq. (32), these being
the terms in the curly bracket which contain the perturbation y(r „r ). These are in any case small for
two reasons. At large distances the perturbation X rapidly vanishes. For small distances the second and
fourth terms almost exactly cancel, since (- V,' —2/r, )g(r, }™k'g(r,), and from (31) the first and third terms
are proportional to the monopole component of g as x-0.

Thus neglecting the exchange distortion terms, the scattering equation becomes

—v 'y(F )+ [v (r )+ v (r ) —2/r k']—q(F )

=+[(k0'-Z0) jy0(FI)y(FI)dFI- jy (FI)W({F )dr ]y (r ). (33)

Partial-wave analysis of this equation leads to the set of radial equations

.f,(r )+ —— y (r ) y (r )dF —V (r )+k ' f,(r )
2 2

+2 +2 +12 P

=+P, (r )((Z -k ')n, f f (r )P (r, )dr,

+[ 2/(2f+)I][r f f (r )Pl (r )r + dr +r + f 'ff(r )P (r )r dr

-r2 f 'ff(rl)PI (rl)rl
' dr ]),

ff(r2) ( )
where y(F )= Q P (cose ); y (r )=

r2 r2 1T

ff(r2) ™k0'sin(k0r - -,'fv+g ), as r

Equations (32) and (33) are identical jn form to the equations of the adjabatjc exchange approximation &~

with the difference that &p(r2} is no longer the adiabatic polarization potential. . Solutions to (23) were
obtained by an iterative technique described earlier. "

In Tables 11 and III the I = 0 and I= 1 phase shifts for singlet (gf+) and triplet (7jf ) scattering are tabulated
for electrons with wave numbers k, = 0.1 to 0.8, where k, '= E (Ry). In Tables II and III a comparison is
made between the present results for s- and P-waves and those obtained by other methods. The first
column contains results from the adiabatic approximation. These were obtained by setting the dynamic
term, 3k, , equal to zero in Eqs. (24) and (25), including all contributions through the quadrupole term in
Vp- In columns 2 and 3 the nonadlabatic results of Te~lns and of Callaway et al 7 are given with the
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TABLE II. Electron-hydrogen singlet and triplet s-wave phase shifts (l=0) (Energy E=ko in rydbergs; p~ inradians).

ko

0,0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.1
0.2
0.3
0.4
0.5
0,6
0.7
0.8

Adiabatic

vp= vp'+ vp'+ vp

2.617
2.165
1.808
1.534
1.324
1.166
1.051
0.970

2.957
2.752
2.547
2.354
2.177
2.017
1.875
1.750

Temkin

(5.6)
2.59
2.11
1.74
1.45
1.23

0.87

(1.76)
2.942
2.723
2.516
2.301
2.112

1.647

Extended
polarization

Singlet (go+)

(7.419)
2.436
1.910
1.537
1.259
1.042

Triplet (go )

(1.676)
2.948
2.735
2.525
2.327
2.145

Present
nonadiabatic

(5.18)
2.612
2.141
1.757
1.452
1.215
1.029
0.887
0.786

(1.57)
2.955
2.733
2.529
2.321
2.129
1.956
1.800
1.662

Variational

(5.95)'
2.553
2.067
1.696
1.415
1.202
1.041
0.930
0.886

(1.769)
2.939
2.717
2.500
2.294
2.105
1.933
1.780
1.643

aThe ko= 0 values are scattering lengths.

present nonadiabatic results in column 4. The variational results, which are again taken as the true
phase shifts, are given in column 5. The entries for k, = 0 are scattering lengths obtained by use of the
expansion based on the low-energy effective-range theory. " The effect of the nonadiabatic terms in the
polarized-orbital results can best be seen by comparing the phase shifts of columns I and 4. The reduction
in the magnitude of the polarization potential through the dynamic terms is reflected in the reduction of
the corresponding phase shifts. This reduction increases with increasing incident velocities over the en-
ergy range below the inelastic threshold.

Comparing the present results with those of Schwartz, "we see that the nonadiabatic method investigated
herein yields rather reliable phase shifts for low-energy electron-hydrogen collisions.

IV. DISCUSSION

As we noted earlier, the objective here has not
been to obtain very accurate hydrogen cross sec-
tions. Instead, the objectives were, first, to
examine the magnitude of dynamic effects on the
distortion of the target system and on the re-
sulting polarization potential as provided by the
conventional perturbation procedure and, second,
to develop a method which might find application
in problems involving more complicated scattering
systems.

From the results illustrated in the figure, we
see that within the approximations made in the
present analysis, the dynamic effect on the polari-
zation potential is appreciable. As one would ex-
pect, "the various multipole components of the
distortion X are not reduced in the same propor-
tion for a given incident energy. For an incident
kinetic energy equal to half the average kinetic
energy of the bound electron, the monopole com-
ponent is reduced by a little less than half, the
dipole and quadrupole component by a little more
than half as compared to the corresponding

adiabatic values.
Though the approximations made in arriving at

the equations for the orbital distortion were some-
what drastic and difficult to quantify, the results
indicate that a useful description survived. An
alternative approach to the treatment on non-
adiabatic effects has been employed LaBahn and
Callaway4 and Callaway et al. , ' wherein the
adiabatic perturbation g and resulting polariza-
tion potential are used to describe the target with
additional dynamic terms appearing in the scatter-
ing equation. Agreement with the variational phase
shifts is somewhat better in the present investiga-
tion than in the extended polarization potential
method' for both electron- and positron-hydrogen
scattering. The inclusion of the dynamic effects
in the equations determining the distortion X, as
in the present treatment, also has some advantage
in that the solving of bound-state equations is in
general less troublesome than solving complicated
continuum equations containing the correlation
functions. In addition, for heavier systems where
the complete solutions for a given incident energy
might become very time consuming, "the present



Extended

k 0 Adiabatic polarization Present

Singlet (gg+)

Qarlatlonal

0.3.

0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.0087
0.0217
0.9336
0.0398
0.0422
0.0446
0,0508
0.0623

0,0063
0,0150
0.0160
0.0076

—0.0068

0.0071
0.0181
0.020
0.0095

-0.0080
-0,028
—0.043
—0.052

0.007
0.0147
0.0170
0.0100

-0.0007
-0.099
—0.013
-0.010

Tr1plet (q( )

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.0143
0.0585
0.146
0.265
0.388
0.488
0.555
0.595

0.0102
0.0448
0.1047
0.182
0.261

0.0118
0.0523
0.122
0.207
0.288
0.351
0,398
0.423

0.0114
0.0450
0,106
0.187
0.270
0.341
0.393
0.427

TABI E III. Electron-hydrogen singlet and triplet P-
wave phase shifts (I = 1) (Energy E=ko in rydbergs; &E

in radians) .

method offers the possibility of a simple scaling
of the effective interaction potential for various
incident energies once the solutions have been
obtained for a few cases.

Since the method of polarized orbitals'~" in the
usual adiabatic approximation has provided a very
useful technique for studying low energy collisions
involving many-electron systems, "~"~ 22 a similar
technique which includes nonadiabatic effects
should provide a useful extension, particularly for
systems which are very highly polarizable. These
include many atoms, e. g. , the alkalis, and a
large number of molecules. The present method
can be employed on a Hartree-Pock (H. F. )
target system in a manner similar to the above
treatment„yielding somewhat more complex
equations for the dynamically perturbed H. F.
orbitals. These quations are presently under
investigation.

Regarding the study of dynamic effects in low-
energy atomic collision phenomena, one final
comment seems appropriate concerning the avail-
ability of experimental data. There is particular
need of very accurate cross-section data on a sys-
tem which is both simple and highly polarizable.
The Li atom should be a likely candidate for this
purpose.

~Research sponsored by the U. S. Atomic Energy
Commission under contract with Union Carbide Cor-
poration.

M. H. Mittleman and K. M. Watson, Phys. Rev. 113,
198 (1959),

M. H. Mittleman, Ann. Phys. {¹V. ) 14, 74 (1961).
A. Temkin, Phys. Rev. 126, 130 (1962).
R. W. LaBahn and J. Callaway, Phys. Rev. 113,

198 (1959).
'R. Pu and E. S. Cha~, Phys. Rev. 151, 31 (1966).
C. J. Kl.einman, Y. Hahn, and L. Spruch, Phys. Rev.

165, 53 (1968).
J. Callaway, R. W. LaBahn, R. T. Pu, and W. M.

Duxler, Phys. Rev. 168, 12 (1968).
R. M. Sternheimer, Phys. Rev. 96, 951 (1954); 115,

1198 {1959).
A. Temkin, Phys. Rev. 107, 1004 (1957); 116, 358

(1959).
J. Callaway, Phys. Rev. 106, 868 (1957).
V. D. Obedkov, Zh. Ekeperim. i Teor, Fiz. 43,

649 (1962) [English tranel. : Soviet Phys. —JETP 16,
463 (1963)j.

H. Reeh, Z. Naturforsch. 15a, 377 (1960).
W. R. Garrett, Phys. Rev. 140, A705 {1965).
The first term on the right side of Eq. (10) behaves

as -x& dC j&& for x ~. Thus the leading dynamic

term in the asymptotic polarization potential goes as

rp {d/d~p)fI(rp), whereftt is the 1th partial-wave
--p--t.f ~. S-R.f.. 2 "d6.

C, Schwartz, Phys. Rev. 124, 1468 (1961).
R. L. ArlTlsteadq Lawrence Radiation Labo1 atory

Report No. UCRL-11628 1964 (unpublished) .
A wave function of the form (4) can. describe the

formation of virtual positronium; however, the second-
order terms which were dropped in Kq. (10) must be
retained for this description. The present polarization
potential is the same for positive or negative incident
charges. The complete perturbation equation does not
behave similarly.

See Ref. 13. The 1adial equation of Ref. 13 ie mis-
printed. It shouM have the form (34).

T. F. O' Malley, L. Spruch, and L. Rosenberg,
Phys, Rev. 125, 1300 {1962).

20The solutions for the multipole components of 'Vp

required about 3 minutes each for a given kinetic ener-
gy, thus about 9 minutes for complete scattering cross
sections on the IBM 360/75 at the Oak Ridge National Labor-
atory. Because of the short word length on the 360/75,
all calculations were done in double precisions (16 deci-
mals) .

W. R. Garrett and H. T. Jackson, Phys. Rev. 153,
28 (1967).

R. J. W. Henry, Phys. Rev. 162, 56 (1967) ~


