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APPENDIX B

'I'he f&illowing integrals used in the t.ext. are t.al&ulate(l
in Ref. 9:

sin[b(x'+ a'-') '/'-']

cos(px) dx
(x2+c2) (x2+a2) 1 /2

sin [b(a' —c') "'-]
= 2re

—i'&i (B1)
2c(a' —c') "'-

where c/a, b~& p;
' A. Erdelyi, Tables of Integral Transforms (McGraw-Hill Book

Co., New York, 1954).

cos(px) cos[b(a'+x'-)"-] (1x
x +c

= -'2re ~'"~ cos[b(a —c')'"] (B2)
where b& p;

sin[b(a'+ x') '"] c
sin(px) x dx

(a2+ x2) 1/2 x2+ c2

e ~'"~ sin[b(a' —c')'/2] (B3)
(a2 c2) 1,'2

where b &p & ~ .

PII YSI CAL REVIEW VOLUME 178, NUMBER 5 25 FE B RUAR Y 1969

Quantum Mechanics of Paraparticles*

JAMEs B. HARTLE

Department of Physics, University of California, Santa Barbara, California 93106

AND

JoHN R. TAYLQR

Department of Physics and Astrophysics, University of Colorado, Boulder, Colorado $0302
(Received 19 September 1968)

We show that it is possible to formulate a consistent first-quantized theory of paraparticles, i.e., particles
which are neither bosons nor fermions. We examine a number of properties of the theory and show that the
formulation of Messiah and Greenberg in terms of generalized rays can be replaced by an equivalent for-
mulation in which states are represented by rays in the usual way. We use this alternative formulation to
establish some results of ordinary quantum mechanics. We examine in detail the consistency of the theory
with the cluster law and show that paraparticles must have states associated with whole families of difFerent
permutation symmetries, according to the following rule: If a given particle has Ã-particle states associated
with a given Young diagram, then it must have (N —1)-, (N —2)-, , two-particle states associated with
all Young diagrams which can be obtained from the first by successively removing squares. This gives rise
to infinitely many different kinds of paraparticle, all with rather complicated properties.

I. INTRODUCTION

'HERE is no evidence that particles other than
bosons or fermions exist in nature. There is also

no evidence that any but the most stable known par-
ticles actually are either bosons or fermions. ' The name
"paraparticle" has been introduced for a particle which
is neither boson nor fermion, and the possible exist-
ence of such particles has been discussed by several
authors. ' '

~ Work supported in part by the National Science Foundation
and the U. S. Air Force Once of Scientific Research.' The experimental situation with regard to the first-quantized
theory discussed here is reviewed by A. M. L. Messiah and O. W.
Greenberg, Phys. Rev. 136, B248 (1964).' O. Steinmann, Nuovo Cimento 44, A755 (1966).' P. V. LandshofF and H. P. Stapp, Ann. Phys. (N. Y.) 43, 72
{1967).

4 O. W. Greenberg and A. M. L. Messiah, Ply s. Rev. 138, B1155
{1965).

~ Y. Ohnuki and S. Kamefuchi, Phys. Rev. 170, 1279 (1968).

Theories of paraparticles have been constructed in
two ways. The erst approach considers the allowed per-
mutation symmetries of the multiparticle wave func-
tions and is formulated within the framework of fIrst-
quantized quantum mechanics. (See Refs. 1—3.) The
second approach is a second-quantized theory in which
commutation relations more general than the customary
Bose or Fermi type are considered. (See Refs. 2—5.) In
this paper we discuss only the former (first-quantized)
approach; we do not discuss the as-yet unexplained
connection between the two types of theory.

Our aim is to examine the consistency of the 6rst-
quantized theory of paraparticles. In particular, we re-
examine the argument of Steinmann' that parastatistics
are incompatible with the important cluster law, which
requires that two well-separated groups of particles can
be treated as separate isolated systems.
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We show that a consistent first-quantized theory of
paraparticles is possible. ' It can be formulated in terms
of the Hilbert space 3C~—the tensor product of the one-
particle space 3C' to the Nth power —as proposed by
Messiah and Greenberg. In this formulation the con-
ventional rule which associates every state with a unique
ray (i.e. , one-dimensional subspace) is relaxed, and the
states are instead represented by any irreducible sub-
space invariant under the permutation group Sa. (See
Messiah and Greenberg, ' where such subspaces are
called generalized rays. ) We emphasize an alternative
and equivalent formulation on a smaller space. This ver-
sion of the theory eliminates the former's redundancy
(which arises from the symmetry under permutations)
and restores the connection between states and rays.
It allows one to establish a number of results of ordinary
quantum mechanics whose usual proofs depend on this
connection.

Having thoroughly explored its formulation, we can
now show that the theory is consistent with the cluster
law. We find that the requirement of consistency re-
stricts the possible symmetry types of the multiparticle
wave functions as follows: If a particle has N-particle
states associated with a given Young diagram, then it
must have (A —1)-, (E—2)-, , two-particle states
associated with aLL Young diagrams which can be ob-
tained from the first by successively removing squares.
This means, for example, that all of the infinitely many
possible kinds of paraparticle would have symmetric
and antisymmetric two-particle states; i.e., they would
behave in pairs like bosons and fermions. Our conclu-
sion is therefore that, although paraparticles appear to
be consistent with all reasonable requirements, their
properties are disagreeably more complicated than those
of the conventional boson or fermion.

II. STATES OF SEVERAL IDENTICAL
PARTICLES

Generalized. Rays

Theoretical considerations alone cannot determine
the correct formalism for discussing systems of identical
particles. Experiment must always be the final test.
Nonetheless, it is possible to argue the reasonableness
of a theoretical framework and we shall begin this sec-
tion by presenting what seems a reasonable framework
for the discussion of identical particles. Our arguments
lead to the formalism of Messiah and Greenberg, which
we review briefly. The formalism includes the conven-
tional theories of bosons and fermions, but does not
single them out for a preferred role.

The fundamental elements in any quantum-mechani-
cal theory are the Hilbert space-of-state vectors and the
operators corresponding to observables, whose expecta-

6 That is, we disagree with the conclusion of Steinmann {Ref.2).
A similar opinion is given by Landshoff and Stapp {Ref.3); but
without spelling out the details of the argument. We discuss
Steinmann's paper in Sec. III below.

tion values are the measurable numbers. The structure
of the Hilbert space depends on the number of diferent
types of particles and their spins. We shall for simplicity
consider only a single kind of spinless particle and sup-
pose that the number of particles is fixed. v

We take for granted that the one-particle states are
in one-to-one correspondence with the rays of the space
X,' made up of all I' wave functions of one coordinate.
The states of a system of N nonidenticaL particles, dis-
tinguished by a label i =1, . , N but otherwise iden-
tical, would correspond to the vectors of the space K~
which is the tensor product of N single-particle spaces,

g~=X'X'g . X' (S times).

This is the space of all I.' functions of N coordinates. It
can be spanned by product functions

f(xl) ' ' ' )XN) = Ql(xl) ' ' aN(xX) )

where a&, . , aN are any one-particle wave functions;
or, in abstract notation,

If&= I
at "a~)=

I
at&" 3

I
a~&.

Notice that the space 36~ is defined in such a way that
the order of the labels in a product vector is relevant;
the vectors

I
ab) and

I ba) are quite distinct unless a =b.
The starting point of the theory of identical particles

is the assumption that the physical observables for Ã
identica/ particles are exactly those observables for X
LabeLed particles @hick do not distinglish the labels. In
order to identify this sublcass of observables we intro-
duce the unitary permutation operators. For any I' in
the group S& of permutations of N objects,

P: (1,2, ,1V) ~ (P1,P2, ,PN),

one defines U~ by the relation

Upl al' ' ' aN)=
I
apl' 'apN&

for any a& a&, or in terms of concrete wave
functions,

(Uptf)(xt, ,xq) = f(xpt, .
,xpy).

The operators UI arise from permuting the particle
labels. We can therefore identify the observables which
do not distinguish the labels as those observables whose
expectation value for any vector

I f) in KN is the same
as that for Up

I f), for any P; that is,

&f1~If)=(flUpt~Uplf& (P&~~) (21)

Since this relation must hold with
I f) replaced by any

linear combination of vectors, it holds also for off-

' The restrictions to one kind of particle and to spin zero are
quite inessential. The complications which arise when particle
production is possible are described in Ref. 1.' The argument here is not affected by superselection rules. If

g) and j h) belong to di6erent superselection sectors, we can use
f}=

~ g}+ ~
h} to represent a statistical mixture of the states

~ g}
and

~
h) and compute expectation values in the ordinary way {after

correctly normalizing).
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diagonal matrix elements and so is an operator identity.
The observables for E identica/ particles are therefore
that subset of observables for X labeled particles which
commute with the permutation operators

LA, Up) =0. (2 2)

(glAlg)=(hlAlb) (all A withLA, U~)=0). (2.3)

(ii) Conversely two vectors
I g) and

I h) representing
distinct states must give diferent expectation values
for some observable:

(glA lg&W(hl AID) (some A with LA, U~]=0). (2.4)

The apparatus of group theory enables one to determine
the collections of vectors with these properties as
follows:

We consider an arbitrary vector
I f) in K~ and the

subspace spanned by the E!vectors Us
I f). Since this

subspace is invariant under the permutations we can

' Here, and throughout this paper, we use the word "state" to
mean "pure state" except when explicitly noted to the contrary.

Having identified the observables of our system of N
identical particles we must next establish the corre-
spondence between the states and the vectors of X~'.
Specifically, we must find which vectors of BC~ corre-
spond to states and the nature of this correspondence.
We first note that two vectors which give the same ex-
pectation values for all (identical-particle) observables
must represent the same state. Thus Eq. (2.1) implies
that whenever a vector

I f) in K~ corresponds to a
physical state then the vector Upl f), for any P, must
correspond to the same state.

In the conventional theory of identical particles it is
assumed that every physically distinct state of lV iden-
tical particles must correspond to some unique ray in
3C~. If the vector

I f) represents some state, then
I f)

and U~
I f) must lie in the same ray and hence must be

proportional. This immediately leads to the conclusion
that only vectors which are symmetric or antisymmetric
under permutations can actually represent states. '

There is, however, no a priori reason to insist tha, t
every state of X identical particles correspond to a
unique ray in 3C~. The possibility that a single state of S
identical particles could correspond to some larger col-
lection of vectors in 3C~ must be considered, and it is this
possibility which leads to the notion of paraparticles.

To decide what collections of vectors in 3CN can corre-
spond to physical states we note that any state can be
completely characterized by specifying the expectation
values of all observables. Thus the sets of vectors which
represent states must have the following two properties:

(i) Two vectors fg) and fh) representing the same
state must give the same expectation value for all
ohservables:

choose any basis f I f,)) and then

Uplf')=2 ff &D~'(P),

where the matrices D(P) form a unitary representation
of S~.In general the representation will be reducible and
the subspace can be decomposed as the direct sum of
smaller subspaces each supporting an irreducible
representation.

Since every observable commutes with all permuta-
tion operators, LA, U~)= 0, Schur's lemma implies that
every observable is a multiple of the identity on each
irreducible subspace. This means that any two vectors
in one irreducible subspace satisfy Eq. (2.3) and must
correspond to the same state.

By contrast if
I g) and

I h) belong to different irreduc-
ible subspaces then there exist self-adjoint operators A
satisfying LA, Us) =0 with different expectation values
for Ig) and Ih); i.e., Eq. (2.4). (The projector onto
either subspace is an example of such an observable; we
shall discuss others in Sec. III.) Different irreducible
subspaces must therefore correspond to physically dis-
tinct states.

Vectors which do not lie in any irreducible subspace
cannot correspond to pure states. To see this, note that
each such vector

I v) can be written as a sum of vectors
I e, &

which lie in different irreducible subspaces

le&=Z a. l "&.

A consequence of Shur's lemma is that matrix elements
of all physical quantities A (ones for which LA, Uz) =0
for all P) which connect states of di8erent irreducible
representations vanish. For any physical quantity the
vector

I e) is then equivalent in its consequences to the
density matrix

p=Z I "&la.l'(v.
l

This cannot be a pure state unless all but one of the a„
vanishes, which would mean that the vector

I v) does lie
in an irreducible subspace.

Messiah and Greenberg have introduced the name
generalized ray for the irreducible subspaces of 5&. The
situation may then be summarized by their generalized
ray postulate: Every state of a system of 1Videntica/ par
ticles corresponds to sonse generalized ray in 3C~.

We have not yet discussed which irreducible subspaces
correspond to states. For example, in the conventional
theory with just bosons and fermions, only the rays of
the totally symmetric or totally antisymmetric repre-
sentations actually represent states. Before discussing
what happens in general, it will be useful to discuss in
detail the example of three-particle states.

Three-Particle States

We consider first those three-particle vectors made up
from three orthogonal one-particle vectors Ia), fb), Ic).
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If we write
If)= I

ab'&= la& lb& lc&

then t.he six independent vectors Upl f) span a, six-

dimensional subspace S of 3C'. This can be decomposed
into irreducible subspaces invariant under S3 in the well-

known way:
g = &.$(&~'$&~")68.,

where b, and b are the one-dimensional sub-

spaces defined by the symmetric and antisymmetric
combinations

and
I f.)=Z e~&~I f)

The remaining four-dimensional space splits into two
irreducible subspaces transforming under the same rep-
resentation of S3, namely, that of the triangular Young
diagram. (The subscript t stands for "triangular. ") One

particular choice for these two subspaces is given by the
basis vectors

I f,')=—', (labe) l
cab)+ lb—ac) lcba));— (2.5)

I f~'&=(I abc& 21 b«)—+ I «b)
—2

I
acb)+

I
bac)+

I
cba))/2vZ (2.6)

spanning 8&', and

I f,"&= ( I abc) —2
I
bca)+ I

cab)

+2
I
acb)

I
bac)——I cba))/24$, (2.7)

I
f2"&= —2(l abc& —

I
ca» —

I
bac&+

I
cba&) (2 g)

spanning 8&". These bases are chosen so that the two
spaces define identically the same representation of S3.
As

I f) runs over the whole of K' we can, in this way,
decompose K' into three sectors

X'=3C,X]QX~.

According to our general discussion, pure states may
be represented by any irreducible subspace in any of the
three sectors K„Kg, and K; the irreducible subspaces
of K, and 3C being one dimensional, those of K& being
two dimensional. Two states represented by subspaces
of different representations (e.g., one from K, and one
from 3C,) are physically distinct (if they occur). Simi-

larly, states represented by different subspaces of the
same representation (e.g., B~' and 8/' above) are also
distinct.

The situation in the general E-particle case is quite
analogous. In particular, the space 3CN decomposes as

where „contains all irreducible subspaces transform-
ing according to the irreducible representation D( f» of
SN.

Superselection Rules

As pf~int. cd out by Messiah and Greenberg, if thc}.c
exist states corresponding to subspaces of diferent rep-
resentations (e.g. , symmetric and triangular in our
three-pa. rticle example), they must be separated by a
superselection rule. This follows from Schur's lemma
which guarantees that if LA, U~j=0 then all matrix
elements of A connecting different representations are
zero.

This result led Messiah and Greenberg to propose, in
analogy with the conventional situation where bosons
and fermions have state vectors of a unique symmetry
type, that any paraparticle would have E-particle
states corresponding to just one representation of SN.
Ke shall see in Sec.III that this proposal is incompatible
with the cluster law. For the present we merely note
that if there are states corresponding to diferent repre-
sentations of SN, then they must be separated by a
superselection rule.

Buy eryositions

We now restrict attention to states all represented by
subspaces of the same irreducible representation; for
definiteness we consider states of three particles repre-
sented by subspaces of the triangular representation of
S3. Given two such states we ask the question: What
pure states can be formed from superposition of these
two pure states?

Ke denote the two subspaces by 8 and $, with bases
{I g;)} and {I

h, )}(i= I, 2) chosen to support identically
the same representation of S~. (For example, we could
consider b, ' and b," above. ) In general, a, linear com-
bination of any vector from b and any vector from
5' (e.g., a

I g&)+PI h, )) does not lie in any single irreduc-
ible subspace and so cannot represent a pure state. In
fact such superpositions do lie in an irreducible subspace
if and only if we superpose vectors of 8 and 5 transform-
ing according to the same row of the irreducible repre-
sentation (e.g., nlg~)+plh&). Thus the states arising
from superposition of the original two states form a two-
real-parameter family, represented, for example, by
nlg&)+plh&), exactly as in the conventional situation
where states are given by unique rays.

Elimination of the Generalized Ray

We are now in a position to see that the distinction
between rays and generalized rays is a consequence of
the particular framework we have chosen to use, and not
a distinction of fundamental quantum mechanical sig-
nificance. The point is that any "triangular" state rep-
resented by a generalized ray b, with basis {I g;)}, can
arbitrarily be represented by the number-one basis vec-
tor

I gq). According to what we have just found, the gen-
eral result of superposing two such states can itself be
represented by a vector nlgi)+pl h&), which is automa-
tically the number-one basis vector of its generalized
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ray. If then we decompose X,t, the space of all "tri-
angular" vectors, as

t t1$t2 y

where Kt~ contains all number-one basis vectors, we
find that every triangular state is represented by a
unique ray in 3C,& (or in 3C,2) and that every ray in 3C,&

represents a unique such state. Further, since the Hamil-
tonian commutes with all permutations, all representa-
tive vectors will remain in BCt~ for all times if we choose
them there initially.

By our arbitrary decision to label each triangular
state by its number-one basis vector we have restored
the connection between states and rays. Every triangu-
lar state is labeled by a unique ray in SCt& rather than
a two-dimensional generalized ray in Kt. It should be
emphasized that we achieve this at the expense of sym-
metry under the permutation operators, since the latter
carry vectors from Kt& to anywhere in X.t, that is, once
we restrict attention to BCt~ the permutation operators
are no longer defined. This is, of course, exactly as one
would expect. The redundancy of. the generalized ray is
caused by the symmetry under permutations and to
remove that redundancy we have chosen a smaller
space, within which the permutation operators are not
defined.

Some Results of Ordinary Quantum Mechanics

The theory formulated on the smaller space BCt~ is not
the only way to construct a theory of paraparticles with
a unique connection between states and rays. Nor a.re
such formulations necessarily more natural or con-
venient than ones using generalized rays. However, the
existence of these formulations with the normal connec-
tion between states and rays does allow us to carry over
to theories with generalized rays a number of results
whose usual proofs depend on this connection. We men-
tion as examples Wigner's theorem, "which states that
any syrrnnetry can be represented by a unitary or anti-
unitary operator, and the reduction of the ray represen-
tations of the rotation group to vector representations
of SU(2).

If we confine attention to 3Ct~ then Wigner's theorem
holds, and any symmetry can be represented by a uni-
tary (or antiunitary) operator U& on 3C,&. The same is, of
course, true on 3Ct2 and it is easily seen that the operator
U = U ~(9 U2 represents the symmetry on the whole of
3Ct and commutes with the permutation operators, as
one would expect. Thus Wigner's theorem can be ex-
tended to the formalism of generalized rays in the
natural way.

Similarly, if we confine attention to3Ct~ then the well-
known analysis of Wigner" establishes that we can ad-

'0 E.P. %signer, Group Theory and its A pp/ication to the Quantum
3fechanics of Atomic Spectra (Academic Press Inc. , New York,
1959), p. 233."E.P. signer, Ann. Math. 40, 149 (1939).

just phases so that the rotation operators Uq(R) give
a vector representation of SU(2). The same is true of
U2(R) on 3C,~ and hence of U(R) on 3C~. Since the rota-
tion operators commute with the permutations the same
is true of their generators, as one would expect.

Extension to N Particles

Finally, we note that the above considerations extend
in an entirely straightforward manner to the general,
cV-particle, case. In this case there are many inequiva-
lent irreducible representations D(~) & of 5~, with dimen-
sions n„. Every state corresponding to D'~» is repre-
sented by an n„-dimensional generalized ray b in 3C„~.
However, in each such 8 we can choose a basis ( l g;)},
i= 1, n„and, exactly as above, the state can then be
represented by the unique ray defined by a number-one
basis vector lg&). Everything else goes through just as
for three particles.

III. CONSEQUENCES OF THE CLUSTER LAW

Cluster Law

The presence or absence of particles on the moon
should not affect the results of experiments performed
on the earth. This is a special case of the cluster law,
which states that systems sufficiently separated in
space may be treated as isolated systems, and which
may be regarded as an essential requirement of any rea-
sonable physical theory.

The wave function for E distinct particles grouped
into one cluster of particles on the earth and another on
the moon will factor into two parts, each part describing
one cluster. The cluster law then follows in an elemen-
tary way. By contrast, the permutation symmetries of
the wave function for E identical particles mean that
the function does not factor in this way, and the question
naturally arises whether all theories of identical particles
are consistent with the cluster law.

In the case of bosons or fermions the cluster law is
easily verified since a symmetric or antisyrnmetric func-
tion is automatically symmetric or antisymmetric in any
subset of the labels.

The object of this section is to discuss under what
conditions a theory of paraparticles is compatible with
the cluster law. In order to illustrate the situation we
begin by considering the example of three-particle
states.

Three-Particle States

We consider the most general triangular state formed
from the three one-particle wave functions a, b, c. This
state can be represented by a superposition of the vec-
tors

l
f&') and

l f&") of Eqs. (2.5) and (2.7):

lg) =-'lf ')+-"lf.")
We fix attention on a function c localized near the moon
and functions a and b localized in the laboratory. The
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A straightforward calculation using the expressions
(2.5), (2.7), and (3.1) gives

w"'(x, y, z) = Ic(*)I'( I a(x)b(y)I'+ I a(y)b(x)I'
+2(l~'I'- la"I') «a(x)b(y)a*(y)b*(x))
+Lcyclic permutations in x, y, zj
+Lcross terms in c(x)c*(y), etc.j . (3.2)

We now consider the two-particle distribution seen

by an observer confined to the laboratory. We choose
for our coordinates in the laboratory the variables x and

y. (This choice is arbitrary since w is a symmetric func-
tion of its arguments. ) With x and y in the laboratory,
c(x) =c(y) =0 and the only term which contributes to
w is that which is written explicitly in Eq. (3.2). Since
the observer in the laboratory does not concern himself
with the particle on the moon, we integrate over the
variable z, to give the observed distribution

w&'&(x, y) —= d'z w "&(x,y,z)

= la(x)bb) I'+
I ab)b(x) I'

+2(l~'I'- l~"I') «a(x)bb)a*b)b'(x). (3 3)

This observed distribution air(3) must precisely match
some allowable two-particle distribution. The most
general form of the latter, corresponding to a statistical
mixture of symmetric and antisymmetric states, is

w&'&(x y) =X,
I a(x)b(y)+a(y)b(x) I

'
+~.

I a(*)bb) —a(y)b(x) I

'
=

I a(x)b(y) I'+
I a(y)b(x) I'

+2P..—X.) Rea(x) b(y) a"(y)b*(x) (3.4)

with statistical weights P, and ), satisfying X,+A =1.
The distributions (3.3) and (3.4) match if and only if

With this choice of the weights the requirements of the
cluster law are satisfied.

For particular choices of the coefFicients 0.' and n" in
the three-particle vector lg) of Eq. (3.1) the observed

cluster law requires that the resulting three-particle
state, when observed by an experimeter confined to the
laboratory, must precisely resemble some allowed two-

particle state; in other words, no measurement made
within the laboratory should be sensitive to the pres-
ence of the third particle on the moon.

We consider, in particular, the probability distribu-
tion w&'&(x, y,z) for finding one particle localized at x,
one at y, and one at x. This is given by

w&'&(x, y, z) = (g I A(x, y, z) I g),
where the projection operator A is given by'

li(x,y,z)=g Uzlx, y, z)(x,y, zlU~t.

distribution (3.3) is precisely that of a tv~o-boson or
two-fermion state. Specifically, if n'=1, a"=—0 and the
three-particle state is just

I
f&'), then the observer sees

a two-boson distribution in his laboratory; if n'=0,
c&"= 1 and the three-particle state is just

I
f&"), then the

observer sees a two-fermion distribution. It follows that
a particle which has three-particle states corresponding
to the triangular Young diagram must have both boson-
and fermion-type two-particle states. "

We must now consider the argument of Steinmann2 3

which claims to find an inconsistency in this situation.
He first states, in agreement with our conclusions, that
the general triangular state made up from the one-
particle wave functions a, b, c will appear to an earth-
bound observer as a statistical mixture of boson and
fermion two-particle states. He then argues that the
observer can make a measurement on the two-particle
system to determine its symmetry type. In making this
two-particle measurement he changes the observed two-
particle state to either pure symmetric or pure antisyrn-
metric. Steinmann next claims that if we now consider
the history of the whole three-particle system, the
measurement has introduced a distinction between vec-
tors which are supposed to be indistinguishable. How-
ever, this is not so. The three-particle state before the
measurement is represented by

Ig)=a'If&')+a" If~")

If the result of our earth-bound observer's experiment is
a symmetric two-particle state, say, then the resulting
three-particle state vector must, as we have seen above,
be

I
f&'). The state vectors before and after the measure-

ment have the same three-particle symmetry type,
namely, triangular (as they must do, since there is a
superselection rule on symmetry type). But they belong
to diferent irreducible subspaces and so are expected to
be experimentally distinct, as indeed they are. The es-
sential point is that the measurement carries the three-
particle vector from one irreducible subspace to another.
There is no question of its distinguishing between vec-
tors in the same irreducible subspace (such as

I
f~') and

I f2')) which certainly are indistinguishable.

General Case

So far, we have established for three-particle states
that parastatistics are compatible with the cluster law,
at least as regards measurements of position. We must
now extend our considerations to include arbitrary num-
bers of particles and all localized measurements.

Our procedure is as follows:

(i) Write down the most general form for an (%+1)-
particle state vector of symmetry type D(~+'» and
made up from one-particle wave functions a~, , a~+~.
The corresponding density matrix is denoted lV(~+').

"This and its generalization to the E-particle case was noted
by A. Casher, G. Frieder, M. Gluck, and A. Peres I Xucl. Phys.
66, 632 {1965)g.
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(ii) Establish the form of the most general observable
M(~+» for an experiment made on the X particles in
a laboratory, of an (%+1)-particle state with one par-
ticle far away. This mill be expressed in terms of the
general X-particle localized observable L' ), localized
in the laboratory.

(iii) The result of the most general measurement
made in the laboratory on the (%+1)-particle state is
then a number of the form Tr(M&~+'&IF&~+"). We show

that this can be reduced to the form

Tr(M (X+1)iP(N+('&) —Tr(I (&&()g'(M+1)) (3.5)

where 8'(~+» is a certain "reduced" density matrix.
(iv) The observed result (3.5) must precisely match

the result Tr(L(~)W(~') of a measurement on a E
particle system in some allov ed state given by a density
matrix tV( '. We show that such a state exists and is
uniquely determined by this requirement. This com-
pletes the proof of consistency.

QD, '~+""(I')*Usia& aM+1) (3.6)

then, as can be easily veri6ed, the n„vectors

I fi'&, , I f-.'&
are an orthonormal basis of an irreducible subspace
transforming under D'~+'»; and as j runs from 1 to n„
we obtain the n„equivalent orthogonal such subspaces.
It follows that the most general state constructed from
a~, . , a~~i and represented by a subspace of D'~+" f'

can be represented by a vector

(3.7)

corresponding to the vector
I g& of Eq. (3.1). (The choice

of the lower index 1 is, of course, arbitrary; changing it
to 2, 3, , n„gives distinct vectors a11 representing
the same state. )

'3 See, for example, M. Hamermesh, Group Theory and its
A pplications to Physical Problems (Addison-Wesley Publishing
Co., Inc. , Reading, Mass. , 1962), Chap. 7.

Multiyarticle States

Ke shall for simplicity consider states made up from
(cV+1) orthogonal, normalized, one-particle functions
a~, ~, a~+~. The assumption of orthogonality is easily
relaxed, but at the expense of some inconvenient nor-
malization factors. States more general than these prod-
uct states can also be treated, again at the expense of
some inconvenience in notation.

The vectors in the irreducible subspaces of the repre-
sentation D'~+"f" can be constructed in the familiar
way '3 If we degne

Local Observables

If we consider a system of X distinct particles, we can
characterize an observable L'N) localized in the labora-

tory by the equation

L&»lx," x~)=0

unless x&, . , x& are all in the laboratory. The proto-

type for such a localized observable has the form
L(~'= Ih&X(hl, where lb) is a state completely lo-

calized in the laboratory.
The same measurement, considered as an observable

for X+1 distinct particles, one of which is not observed,
is given by the operator

~(&+»=J (&)(31,

where M acts on K~+', L acts on X~, and the unit
operator on 3C' expresses the fact that the state of the
last particle is not measured.

Finally, the corresponding operator for N+ 1 identical
particles is seen to be

M'"+'&= Q U~t(L&~&1) UI .
PgS~+j.

(3 8)

d'»&+i 2 &xi'' ' 'xN'x)&(+il U~l g&
&Csm+i

X(gl Urtlxi XN+i).

Since L(~' is an observable localized in the laboratory,
only those values of x~' - xg' and x~ . xg in the labora-
tory are relevant for the computation of the expectation
value (3.9).

We now take for our (%+1)-particle state the state
represented by the vector lg) of Eqs. (3.7) and (3.6).We
further take for a~+~ a function localized near the moon
while a~, . . . , aN are localized in the laboratory. When
we insert this explicit

I g) into W, the resulting rather
complicated expression simplifies since a»(+i(xi)=
= aN+i(xz) =0 (xi, ,xz being fixed in the laboratory).
Of all the permutations involved, only those which
leave the last variable 6xed actually contribute and this
allows us to factor out a term I a»(+i(xN+i) I

', which dis-

Reduced-Density Matrix

The expectation value of the laboratory observable
M&~+" in any state represented by a vector lg) is

(g I
M ()(+I)

I g) Tr(M (N+n g/ (X+I))

where iV&~+&)= lg)(gl is the corresponding density
matrix. Using the specific form (3.8) for M, this becomes

Tr(M&~+'&8'&~+'&) =Tr(L&~&W&N+'&), (3.9)

where 8'(~+» is an operator on 3CN which we call the
reduced density matrix and is given by its matrix
elements:

&xi'' ' 'x&((
I

mr(++i)
I xi x»(&
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appears on integration. Ke finally obtain, for the re-
duced density matrix of the state

l g),
poses as"

v+» "(p)= (i& o D(x&"(P) p
lfv'(&('+&&= Q Q n.D. .()&(+()u(P)~ P

PQS& i, j

X[ P Uql(r& o)r)&a) anal Uqptj, (3.10)
Qgsx

where t.he sum over I'+SN includes all I'+5~+~ which
leave the last variable fixed.

Using the operator (3.10) in the expression (3.9) we
can now calculate the observed result of any experiment
localized in the laboratory.

The representation D(N+'» contains D&N&" either once
or not at all (i.e., a„=1 or 0) according as the Young
diagram of the latter can be obtained from that of the
former by removal of one square. If we choose a basis
for D(N+'» appropriate to this decomposition and re-
label the (r, as n&", Fq. (3.13) becomes

2 &.2 P~"Du(")"(P)P("*
v k, l

=P a„P (ra"Dq(' '"(P)(r)"* (all PE5'»() .
r k, l

Comparison with N-Particle States

According to the cluster law the observed result (3.9)
of any measurement in the laboratory must coincide
precisely with the result Tr(1.(~&lV(~&) of a measure-
ment on some allowed X-particle state,

Tr(1 (N)ivtv'(&'+))) —Tr(1 (&&v) g'()('))

Using the orthogonality relations we can immediately
project out the relation

),Pk"P)"*——a~k"n)"*)

(3.14)&(„=a„g lo.),"l'

which has the unique solution (apart from some irrele-
vant phases)

gT(N+1) t Ip' (N ) (3.11)

This identity can hold for all localized measurements
I ( ) if and only if

and
P&,

"
o(),

"j——g&(, when a„=1

when a„=0. (3.15)

for some 8"N'.
The most general lV-particle state is a statistical mix-

ture, with weights )„ofstates corresponding to all pos-
sible symmetries O' N'". This has a density matrix

Here Q X.=1 and the vectors lg„) are given by Eqs.
(3.7) and (3.6) with sV+ 1 replaced by 1V and the coeffi-
cients e, replaced by P),.

" satisfying P&, lP),"l'=1. After
some algebra this gives

gl(rv) Q & Q Q p vD (N&v(p)17 v4

v PQS1((r k, E

Xl g Uol~)" o~)&n) n~lUop'j. (3.12)
Qgsx

According to Eq. (3.11) our theory is consistent with
the cluster law if and only if we can find numbers X„,
P),

" such that the two operators (3.10) and (3.12) are
the same. Since the Et operators in square brackets in
each expression are linearly independent, we require
that their coefFicients are separately equal; i.e. ,

p p vD (K)v(p)p v4

v k, t

=Q a;D;,'(~'+'»(P)n, * (all PQS~) . (3.13)

On the right-hand side of Eq. (3.13) is the matrix
D(~+'»(P) of the )(th irreducible representation of
5»+(. When P is restricted to 5»( (last variable fixed),
this gives a redlcible representation of SN which decorn-

This completes the demonstration.

IV. CONCLUSION

From the solution given in Eqs. (3.14) and (3.15) it is
clear that in general the observer sees a statistical mix-
ture of all those E-particle symmetries D(N" which can
be obtained from D' +'» A particular choice of the
coefficients o, can give a pure state of any one of these

symmetry types, and the occurrence of states of the
original (1V+1)-particle symmetry D +()&t)herefore
implies the existence of all of these E-particle symmetry
types. This means that for a given kind of paraparticle
there is a whole family of allowed symmetry types, with
the property that whenever the family contains an
/V+ 1)-particle symmetry type D(~'+»I" it contains all
iV-, (lV—1)-, , two-particle symmetries whose Young
diagrams can be obtained from that of D(N+'» by re-
moval of successive blocks.

An illustration of this general rule is given by our
three-particle example where both the boson and
fermion two-particle diagrams can be obtained from the
triangular three-particle diagram by removing a single
square. (See Fig. 1.)

Special cases of the general rule are, at one extreme,
the conventional situation where the family consists of
single horizontal rows for bosons or vertical columns for
fermions; and at the opposite extreme, a particle for
which every Young diagram is an allowed symmetry
type. In between, for example, one could have a para-
particle (generalizing the fermion) for which no more

'4 See Ref. 13, p. 214.
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than two particles could occupy the same state. The
symmetry types necessarily present in the general E-
particle state would be just those Young diagrams with
Ã blocks but no more than two columns. Once again
both boson and fermion states must be admitted in the
two-particle sector.

There seems to be no simple classification of the pos-
sible families of allowed symmetry types and the sub-
ject seems too academic to merit detailed examination
at this point. We therefore content ourselves with a few
disjoint concluding remarks

(i) There are clearly infinitely many distinct possi-
bilities for the families of allowed symmetries of a para-
particle.

(ii) As can be easily seen, any paraparticle must in-

clude among its allowed X-particle symmetries either
the totally symmetric or the totally antisyrnmetric
typ" plus, of course, some others.

(iii) Every paraparticle must have triangular three-
particle states" and hence both symmetric and anti-
symmetric two-particle states.

(iv) The statistics of any paraparticle are different
from Fermi-Dirac, Bose-Einstein, and Maxwell-Boltz-

"There is one exception, namely, a particle which has both sym-
metric and antisymmetric states, but no others.

Fro. 1. Both boson and fermion two-particle diagrams can be
obtained by removing one square from the triangular three-particle
diagram.

mann. (For example, consider a paraparticle which has

symmetric, antisymmetric, and triangular three-particle
states. From three distinct one-particle states one can
form four independent three-particle states; for a boson

or fermion this number would be 1, for a Maxwell-

Boltzmann particle 6.)

We feel that these remarks justify us in the conclusion

that, although there is no theoretical reason to exclude

paraparticles, their properties are sufficiently disagree-

able for one to hope sincerely that there will continue to
be no evidence in their favor.
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The two-body problem of classical electrodynamics can be formulated in terms of action at a distance
by using the retarded Lienard-Wiechert potentials {or a combination of retarded and advanced potentials).
The resulting equations of motion in the retarded case, for example, form a complicated functional delay-
diAerential system. For such equations in the case of one-dimensional motion, as shown in an earlier paper,
one can specify rather arbitrary past histories of the particles, and then solve for the future trajectories.
Yet it is often assumed or asserted that unique trajectories would be determined by the specification of
Newtonian initial data (the positions and velocities of the particles at some instant). Simple examples of
delay-differential equations should lead one to doubt this. For example, even if the values of x and all its
derivatives are given at $0, the equation x (t) =ax(t)+bx(t —r), with v)0 and b/0, still has infinitely
many solutions valid for all t. Nevertheless, under certain special conditions for the electrodynamic equa-
tions it is found that instantaneous values of positions and velocities do indeed determine the solution
uniquely. The case treated in this paper involves two charges of like sign moving on the x axis, assumed
to have been subject only to their mutual ret:arded electrodynamic interaction for all time in the past. The
similar questions of existence and uniqueness for a more general model, e.g. , three-dimensional motion or
half-retarded and half-advanced interactions, or even for charges with opposite signs remain open.

1. INTRODUCTION

'/OR 60 years the two-body problem of classical
electrodynamics remained completely unsolved.

The equations of motion were expressible in terms of

* Work supported by the U. S. Atomic Energy Commission.

retarded action at a distance by use of the Lienard-
Wiechert expressions. However, this led to a complicated
functional delay-differential system which had not
been treated mathematically. (Some authors also

f Present address: Department of Mathematics, University of
Rhode Island, Kingston, R. I. 02881.


