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Quantum Theory of the Traveling-Wave Frequency Converter
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The Hamiltonian describing parametric frequency conversion in a nonlinear dielectric is derived, and
a complete solution for the electric fields present is obtained in the limit of an infinite medium. The qualita-
tive features of the classical solution are recovered by considering the motion of wave packets.

is equally applicable to parametric amplification. A
mathematical simplication of the problem is accomp-
lished by considering the medium to be infinite in ex-
tent. We shall attempt to provide some insight into the
relationship between the quantum-mechanical and
classical analyses. In particular, we will show how the
spatial variation of the Gelds predicted classically may
be recovered from the quantum-mechanical solution by
considering the motion of wave packets through the
medium.

I. INTRODUCTION

ECENTLY, simple quantum-mechanical models of
the parametric amplifier and frequency converter

have been proposed' and analyses of the quantum
statistics based on these models have been made. ' 4 In
these models the signal and idler fields are characterized

by monochromatic modes. This adequately describes
the standing-wave problem of two modes coupled in a
cavity. However, in practice the parametric amplifier
and frequency converter are traveling-wave devices. In
a model which represents both input and output by
monochromatic modes, it is impossible to impose physi-
cally meaningful initial conditions in a traveling-wave
configuration.

Experimentally, a signal composed of photon wave
packets is incident on the medium, and what is observed
in the steady state is a spatial variation in the intensity
of the incident beam and the output beam. This is
easily accounted for classically' by simply taking the
Geld amplitudes to depend on spatial coordinates in
steady-state traveling-wave problems, instead of on
time as in standing-wave configurations. However,
quantum theory is much less versatile in this respect,
the Heisenberg equations of motion involving only time
variation. The result is that simple quantum-mechanical
model calculations, such as those of Refs. 1—4, yield
results in exact agreement with classical theory' in
standing-wave configurations when the initial states of
the fields are taken to be coherent, while in traveling-
wave problems such agreement has only been obtained

by strategic substitution of space for time variables in
the Gnal result. In this paper we derive a complete
quantum-mechanical solution for a more realistic model
of parametric frequency conversion in a nonlinear
medium. Though this paper deals explicitly with the
case of parametric frequency conversion, the method

II. HAMILTONIAN DESCMBING PARA
METRIC FREQUENCY CONVERSION

P(r, t) =XE(r,t)+K: K(r, t) E(r,t)+, (2.])

where the Grst term defines the usual linear suscepti-
bility and the second term the lowest-order nonlinear
susceptibility. These susceptibility tensors are taken to
depend only on frequency and direction of polarization,
and to be spatially independent.

The interaction of the electromagnetic field with the
dielectric medium may be described by the Hamiltonian

III ——— E Pd'r

K.g Kd'r — R.g: Kmd'r.

The electric Geld operator may be expanded in terms of
normal modes as'' W. H. Louisell, A. Yariv, and A. E. Siegman, Phys. Rev. 124,

1646 (1961); W. H. Louisell, Radiation and Noise in Quantum
E/ectronics (McGraw-Hill Book Co., New York, 1964).

~ B.R. Mollow and R. J. Glauber, Phys. Rev. 160, 1077 (1967).
I J. Tucker and D. F. Walls, Ann. Phys. (N. Y.) (to be pub-

lished).
4 R. Graham and H. Haken, Z. Physik 210, 276 (1968); R.

Graham, ibid. 210, 319 (1968); 211, 469 (1968).
~ N. Bloembergen, %on-linear Optics (W. A. Benjamin, Inc. ,

New York, 1965).

K(r, t) =i g(2hcoq)' Laq(t)uq(r) —aq (t)nq*(r) j, (2.3)

where aq(t) and an't(t) are the usual annihilation and
creation operators for the kth mode, obeying the com-

6 R. J. Glauber, Phys. Rev. 131, 2766 (1963).
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The presence of an electromagnetic field in a dielec-
tric causes a polarization of the medium. We assume
that the polarization may be expanded in powers of the
instantaneous electric field'
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mutation rules

La/, (t),a/t(t)] = bP/,

La p(t), a&(t)]= Lag, (t),a/ (t)]= 0. (2.4)

plus other terms corresponding to three-photon ab-

sorption and emission which are highly energy-non-
conserving and so will be neglected. The coupling con-
stant in (2.12) is

(V2+&dppp2/'c2)up(r) = 0

with the orthonormality condition

(ppe/)'/2up*(r) u/(r)dpr= 81&.

(2.5)

(2.6)

The mode functions u/, (r) are solutions to the wave

equation. The sects of the linear polarizability in a
nondissipative medium may be accounted for by simply
including a dielectric constant «=1+4~&. The mode
functions are thus taken to satisfy

(1k)2 I II 1/2

I&(p&,p&', &p") = i — ep g: e&, ep ~ . (2.13)
V«««

We now suppose that an intense, monochromatic laser
beam of frequency uJ. is present in the medium and that
it is the source of all non-negligible coupling. The
Hamiltonian appropriate to the frequency conversion
process we wish to describe may be obtained by setting
k' or k" equal to kz in (2.12)

H1 =Q 2/&(p&, p&', p&z) apt(t) a/. (t)az(t)
kk'

Hp=p Ap&ka/Ita/I.
k

(2 7)

The remaining term in the interaction (2.2) may now
be considered as a perturbation on (2.7) describing a
nonlinear coupling of the normal modes:

Hj ——— K g:KKd'r. (2 g)

Their polarization is chosen so as to diagonalize the
dielectric tensor, so that «appears as a scalar.

The Hamiltonian for the field including the sects of
the linear polarizability is then found to assume the
same form as in the case of the free field

&&
— e «" " "'&'—d'r+H c (.2..14)
V

This interaction describes processes in which a photon
of frequency cv' is annihilated along with a quantum
from the laser field to produce a photon at frequency co,

so that (2.14) describes "frequency conversion" effects.
It may also be seen that the coupling described by this
interaction is extremely complex even with the assump-
tion of a purely monochromatic laser field. This com-
plexity is greatly simplified in the limit of an infinite
interaction volume. The mode function integral in (2.14)
reduces in this case to a 6 function, and the interaction
Hamiltonian becomes

From (2.5) and (2.6) the appropriately normalized mode
functions are seen to be

H1=+ 2&&(p&Ip& Ip&z)a/I (t)ap'(t)az(t)t&&I, &I'+&Iz+H.c. (2.15)
kk'

where

up(r) = ep
(P'e ) 1/2

(2.9)

The simplification which results from considering the
case of an infinite medium is seen to be just the require-
ment of exact momentum conservation in each term
of the interaction Hamiltonian

p& p = ck/pp / (2.10) k= k'+kL, . (2.16)

t is the normalization volume and «k a unit polarization
vector, where for simplicity we drop the usual polariza-
tion indices. The expansion of the electric field (2.3) then
becomes

Our subsequent analysis will be based on the Hamilton-
ian H=Hp+H1 given by (2.7) and (2.15). In Sec. III,
we obtain the solutions to the equations of motion for
all field operators in the pararn. etric approximation.

n

E(r,t) =i P ep(e'~'ak(t) —e *'"'a/t(t)). (2.11)
2V«k

Substitution of this expression into the interaction (2.8)
yields

H1= Q I&(&p, p&', &p")apt(t)a/, (t)ap" (t)
kk'k"

1
e *&" &" ""&''d'r+H. c. (2.12)

V

' Y. R. Shen, Phys. Rev. 155, 921 (1967};C. Y. She, i'. 1?6,
461 (1968).

IIL SOLUTIONS TO EQUATIONS
OF MOTION

r =s +L, . (3.1)

We have seen that all terms in the interaction Hamil-
tonian (2.15) conserve momentum. However, not all
of these terms conserve energy. Terms which are sub-
stantially non-energy-conserving will oscillate rapidly
and provide no significant coupling. Suppose, however,
that we succeed in obtaining two modes, which we shall
call the signal and idler, which not only satisfy the
momentum-matching condition (2.16) but are energy-
matched as well
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ar, (t) -+ {rz.e ' z (. (3.3)

The terms in the Hamiltonian which describe the fre-
quency-matched modes may be then written as

H'= 50}z az02(t)az (t)+50}s as t(t)as'(t)
+Pi/{(taz t(t)as (t)e *~c'+az (t)'as t(t)e+'~r') (3.4)

where the coupling constant is given by

Quantities referring to these energy-matched modes will

be denoted by the superscript 0. We take the propaga-
tion vectors of signal, idler, and laser modes to all lie in
the s direction, so that (2.16) becomes

kz =ks +tzz, or {t}z ez '/c={t)s es /c+{t}101/c. (3.2)

Conditions (3.1) and (3.2) can be simultaneously satis-
fied, for example, in some uniaxial crystals by appro-
priate use of ordinary and extraordinary modes to
cancel the efIIects of dispersion. '

From (2.7) and (2.15) it is seen that these modes are
efITectively coupled only to each other, and so may be
treated independently. We ignore for the moment the
other pairs of modes which are not frequency-matched.
The laser mode is assumed to be in a coherent state and
of sufhcient intensity that we may neglect the reaction
of the nonlinear coupling back on the state of this mode.
In this parametric approximation, the field operators
for the laser mode may be replaced by their expectation
values

quency from cup or cps'. Consider a mode with propa-
gation vector in the s direction and of the same polariza-
tion as the signal mode, but with frequency

{r&S=SO+ . (3.8)

In the infinite medium, this mode will be coupled to
one with frequency near that of the idler mode

r =10+m (3.9)

The relation between cv and co' is determined by the
momentum conservation condition (3.2). For small (d

and or', the relation is found to be

CV= Vl VS CO, (3.10)

where sl and vs are the group velocities Cko/'dk evaluated
at the idler and signal frequencies, respectively. Using
the parametric approximation (3.3), the terms in the
Hamiltonian involving these two modes are seen from
(2.7) and (2.15) to be

H"= A{dsast(t)as(t)+tt0}razt(t)ar(t)
+It/{faz (t)as(t)e '" {+ar(t)as'(t)e+'" 'j (3.11.)

The same coupling constant (3.6) appears again in
(3.11), as we assume that the change in the nonlinear
polarizability is negligible for very small deviations in
frequency. The coupling terms in (3.11) no longer con-
serve energy since

(1$)2{0 0{0 0 }/2

AK= ~L&I 'X ~ &S eL ~

~r ~S
(3.5) =~(1 ms/mr)—

=—Ace. (3.12)
In this expression, EL represents the maximum ampli-
tude of the electric field in the laser mode:

Ec= 2') 2(tr~z/2011 )}/2nz
I
'. (3.6)

The constant AK has been taken to be real for con-
venience. This can always be accomplished by adjusting
the arbitrary phases of the mode functions.

The Hamiltonian (3.4) is seen to be the model pre-
sented in Ref. 1 and treated in detail in Ref. 3. The
only difference is that here we have derived an expres-
sion (3.5) for the coupling constant in terms of the
parameters of the medium and the strength of the
laser field. The solutions to the Heisenberg equations
of motion are found to be"

az (t) =e ' "'(az (0) cos{{t 2as'(0) sinK—tj,
(3.7)as'(t) = e ' s"I as0(0) cos-/{t maz0(0) sin/{—tj .

Now, however, we wish to go beyond this simple
model and consider also modes which are very nearly
frequency-matched, but which differ slightly in fre-

8 J. A. Giordmaine and R. C. Miller, Phys. Rev. Letters 14,
973 (1965);J.A. Giordmaine and R. C. Miller, Physics of Quantum
E/ectroeics, edited by P. L. Kelley, B.Lax, and P. E. Tannenwald
(McGraw-Hill Book Co., New York, 1966); J. E. Midwinter and
J. Warner, J. Appl. Phys. 38, 519 (1967).

The degree of mixing is found to depend on the
amount of frequency mismatch Ace. The solutions to the
Heisenberg equations of motion corresponding to (3.11)
are found to be

(t) = "' *"" (0)(coc(( '+(-'tt )'}'"t)

sin(P/{'+(-'D0})'j'"t)
~)2P/{2+. (1g{0)2j}/2

idler
+ c( (( '+ (-a) }"t})'''

2(/{2+ (2 g~) 2j}/2

—2az(0) sin(L +(/{125{t))2j})2t)
Ls2+ (1+{0)2]1/2

In the limit as A0}~ 0, we recover (3.7) for the case of

K—2as(0) si (nL
' /{+(-,'6{0)'j'"t)

Ls'+(-'S~) 2j}/2

(3.13)

(t)=e-"*+tc'" ct(0)(ccc{('+(,'C )')'"t)



178 TRAVEL I NG —WAVE CONVE RTE R 2039

perfect energy matching. However, for Ace))~, the
solutions (3.13) become

ar(t) ~ a, (0)e-'"'

as(t) ~ ae(0)e-'"e', (3.14)

just as for the free field. Therefore, the mixing becomes

negligible for pairs of modes whose energy mismatch is

large compared to the coupling constant.
The solutions to the equations of motion (3.13) com-

pletely characterize our model frequency converter. In
the infinite medium the modes are coupled in pairs,
and each of these two mode systems may be treated
independently. A complete analysis of the quantum
statistics for each of these pairs of coupled modes may
be carried out along the lines described in Ref. 3. The
solution for the general time-dependent P representa-
tion for the fields in a pair of such modes corresponding
to the solutions (3.13) is given in Appendix A.

(Er+(s,t)) = (n„0
~
ier —

(
ar (t)e'~"

~
a„0). (4.1)

2ero V)

Using the solution for the time-dependent field opera-
tors (3.8), this is seen to be

IV. FREQUENCY CONVERSION OF
WAVE PACKETS

The solutions (3.13) of the equa, tions of motion for
the field operators provide, in principle, a complete
quantum-mechanical solution to the problem of para-
metric frequency conversion in the limit of an infinite
medium. We will now proceed to indicate the manner
in which the well-known spatial variation of the signal
and idler fields calculated classically and observed ex-

perimentally may be seen to emerge from this quantum-
mechanical solution.

In the simplest quantum-mechanical model of par-
ametric frequency conversion, " the signal and idler
fields are both represented by monochromatic modes.
The only part of the Hamiltonian considered in this
case is (3.4) corresponding to the pair of modes which

are perfectly phase-matched, satisfying the conditions
(3.1) and (3.2). If we assume that the signal mode is
initially in a coherent state of argument n, and that
the idler is in the vacuum state, then after time t there
will be an electric field in the idler mode given by

tric frequency conversion for perfectly phase-matched
modes. In fact, the steady-state solution with the signal
field incident at a= 0 and otherwise ignoring boundary
effects turns out to be just (4.2) with the substitution
t ~ s/c in the argument of the sine.

We see that the quantum-mechanical solution for the
idler electric field varies sinusoidally in time rather than
in space and thus does not adequately describe a travel-
ing-wave device. To enable the quantum-mechanical
solution to describe a traveling-wave device, the above
substitution of space for time variables is often advo-
cated, and in some instances rather elaborate arguments
have been used to support it.'

This problem inevitably arises in any simple quan-
tum-mechanical treatment of a traveling-wave problem,
in which each field is characterized by a single plane-
wave mode. This is because the magnitude of the plane-
wave mode function is constant over all space, and thus
it is impossible to achieve the spatial variation found
in classical solution or even impose physically meaning-
ful initial conditions with such simple models. If, indeed,
the electric field is expanded in terms of plane-wave
modes, then the spatial variations which appear in
traveling-wave situations can only be found in a quan-
tum-mechanical solution by considering a large number
of modes. A solution to the many-mode problem allows
us to construct spatially localized wave packets at the
initial time, and then to watch their behavior as they
propagate through the medium. This avoids the un-
physical feature of the single-mode calculation, in which
it is necessary to specify some sort of fields existing
throughout the medium before the interaction is
"turned on."

We now proceed to give an example illustrating the
manner in which the qualitative features of the classical
solution emerge from a complete quantum-mechanical
solution by considering the motion of wave packets
through our model parametric frequency converter. We
suppose that at time I= 0 the idler field is in the ground
state and that the electric field of the signal is comprised
of a single wave packet centered at the origin. This
field is nearly monochromatic, and is composed of a,

superposition of coherent states for modes of the field
having frequencies near ~,'. The wave packet is defined
formally by the expression'

(Er+(s,t)) = er a, sin)ct e'~~'" ~"')
2&r0V

~ 0~0 1/2I 8

ier g—.+(0,0))
0~ 0

Xsinat e'('"' """. (4.2)

so that the signal-field mode of frequency

CO, =CO,0+CO'

(4.5)

(4.4)

is in a coherent state of argument )ti(co'). To be explicit,
we take this distribution to be of the form

This result is very similar to that obtained with the
simplest sort of classical calculation describing parame-

where

(4.6)
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The initial electric Geld is therefore given by for ~' and her in terms of co, we Gnd

(E.+(z,0))=((P(~')) Iiz.
d(0' A((0,0+(0')

2)r 20,((0„0+(d')V

AM Kpo
(Ez+(z, t) )= ez ~i (kgoz —coI0t)

2&roV 2m'

&«- (o)"'""*Iftt( ')&) (47)

With the condition (4.6), we may approximate

d &s(o) lvI) [z—k(vs+vs) t J

A(~ 0+~&) 1/2 A~ 0 1/2

20g(0), '+(0') V 20,(0).') V
(4 g)

sin(K2+)(2(02) '"t
X (4.14)

(~2+~2~2) (K 2+ )(20)2) 1/2

&= 2(1—0./zz), zt= 0/ zz (4.15)
We may write expf2(k, '+k')zj as exp)20, (0),'+0)')
X(((0.'+(d')z/c)$ &f w«xpand 0.(04'+(0') )n aTay»r The integration over(0in (4.14) maybeperformed using
series in the small frequency shift (0 and consider only the tabulated form (Bi) given in Appendix B. The
terms linear in co', we find Gnal result is

With the above two approximations, Eq. (4.7) becomes

exp/i0, (0).0+0)l)((0),0+(d')z/c) j= exp((0'z/0, ). (4.9) A0)z0 )»2 Ktt0
(Ez+(z t)) —zz

I
0 (2/ s)(s $—(vz+a, )i(—

2er'V) 2yg

( A(0, 0 '/2 d0)'

(E.'(z,0))= ie.I
0*'"* 0*""/"—'P(~')

(20,0V 2)r

p P~0
~
—y( zJ Ivs~&ke0»

8

2y 2e V
(4.10)

where 0,= (()(0/()k)
I „„,o is the group velocity.

We now wish to examine the Geld generated in the
idler mode after time t. As shown in Sec. III, each mode
of the signal Geld at frequency 10, given by (4.4) is
coupled to a mode of the idler Geld of frequency

(4.11)

where the relation between 0) and (0' is given by (3.10).
The electric Geld in the idler mode at time t is thus seen
to be

d0! f A(0)z +(d)
(E.+(z,t)) =(P(~ )) Ii~z

2)i' 420z(Mz +0))V

)(o (t)zi(k/0+k)0I (p((0l))) (4 12)

d A(uz0y~) )'/2
(Ez+(z,t))= ez P(~')

2)r 20z(0)z0+(d) VJ

sin(LK'+ (2'a(d)'j'"t)
t K2+.(2 g~) 1)1/2

g 0
i((k/0+0) z—(&al—$0~) 1] (4 13)

Using the condition (4.6), an expression similar to Eq.
(4.9) for e'(k"+k)*, and the relations (3.10) and (3.12)

Substituting (zz„(t) from the solutions to the equations
of motion (3.11) yields

s)nI K2 —(yx/))) q) /2t

X- &i(kl0z ar/0t) — (4 16)
LK ('yx/)/)

It is seen that the wave packet generated in the idler
field after time E has the same form as the original
packet present in the signal Geld (4.10), and that it
moves with the average group velocity f)=-'2(zz+0, ) of
the two modes. If we consider the frequency spread y
of the initial wave packet to be su@ciently small so that

XP I Qr

2 v„
(4.17)

then there is essentially total conversion, and (4.14)
reduces to

XsjnKt 0—(2/e )ls-0((ezi(kz s az01) (4 i—g)

The behavior of the generated wave packet is apparent
from (4.18). After t=0, the packet begins to form at
the idler frequency with an envelope of the same form
as the initial signal Geld. As time progresses, the packet
moves with the average group velocity, its center being
at z0=(it, and grows in amplitude as sinKt=sin(Kz0/8).
It is in this manner that the expected spatial variation
in the strength of the idler Geld is manifested quantum-
rnechanically. If we pictured the signal Geld as corn-
posed of a succession of such wave packets with co-
herent phase, we would expect the time average of the
electric Geld in the idler mode to vary as sin(Kz/8), in

Acor pa
(Ez+(z, t)) = ez Sjn~~ g-(71'vs) I»—vt tgs(kro» —o)got)

2er'V 2yq

00 0 1/20
= —2ezI —(E,+(0,0))

&.'~r'
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qualitative agreement with the classical steady-state
solution.

These conclusions are, of course, independent of the
particular form of the wave-packet envelope. In fact,
it is not difFicult to show that if the original wave packet
present in the signal field at t=0 is of the form

(E,+(z,0) &
=ie,f(z)e""* (4.19)

where the envelope f(z) has a frequency width p satisfy-
ing (4.15), then the idler held at time t is given by

Thus, the above qualitative arguments are seen to
apply for an arbitrary initial wave packet, provided

0~ 0 1/2p

(Er+(z, t) ) = ier — —sin»t f(z vt)—
CO,0&1' V,

)(ei(krzz witt) — (4 20)

~0 Po~(~)=, , P(~')=,
~2+~t'2 ~I2+~2

With the conditions

y'(& ~l ) y((~s

(4.22)

the expectation value of the electric held in the idler

may be written as

that its frequency spread is sufFiciently small. The above
considerations may be generalized to the case where

there is an initial wave packet present in both the
signal and idler fields. The initial density matrix is

taken to be

p(0)= l{P( ')){ ( )))({ ( )){P( ')}I, (4.21)

where the amplitudes of the coherent states are again
assumed to have a Lorentz profile in frequency space.

({~){P)I
E"(z,t) I {P){o)&=i'1

2&10 t/

A0 j0/

Sin�(t(»2+

&2tt/2)1/2)

dt0 ei(ra/zl) (z—et) COS(t(»2+gzt02)1/2)

p2+Q)2 (»2+ +2002) 1/2

tiP0 sin(t(»2+)ptzt2)1/2)
Z

~t2+2/2102 (»2+X2t02)1/2
(4.23)

The integration over t0 in (4.23) may be performed using the tabulated integrals (B1), (B2), and (B3) given in

Appendix B.The final result is

&{P){) IE"(,t)I { ){P)&

7'
= er expi(kr0z —t010t) exp

I
z vt

I
(E—r—(0)&

—cos(L»2 —(y'x)2]'/2t) —i sin(L»2 —(y'x)2]'/2t)
Vg L»' —(xv')']'"

7 ~ 0~0 1/2 K

i exp ——
I
z—gt

I

—(E,+(0)&- sin(I »2—(y/tt)2] /2t) . (4.24)
gl t0 0010

I
»2 (y/2/) 2]1/2

Thus, we see the oscillatory exchange of wave packets between signal and idler. We note that there is not
perfect conversion at t=2r/2», because of the energy mismatch present in the coupling of the modes which make
up the wave packets. In the limit ~X/tr (», q'X«K, Eq. (4.24) reduces to

({P){) IE"(,t)I{ ){P)&

'Vg COg 6s
=er exp(i(trr0z t010t)] (Er+—(0)) cos»t exp ——Iz —vtI i ——(E,+(0)) sin»t exp ——Iz —vtI

I
(4.25)

&s s &I0 0 'Vs )

and we have essentially perfect conversion at t= r/r2 . K

V. CONCLUSION

We have derived a quantum-mechanical model for
parametric frequency conversion which includes the
effects of coupling between bands of modes centered
about the ideally phase-matched signal and idler fre-
quencies. The case of an infinite medium was taken to
simplify the coupling and enable a solution to the equa-
tions of motion for the field operators by elementary

means. We utilized this model to indicate the manner
in which the expected spatial variation in amplitude
of the generated idler field emerges from a quantum-
mechanical analysis.
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APPENDIX A

We shall derive the time-dependent density operator
for two coupled modes with an energy mismatch, which

are initially in a coherent state.
The initial density operator is assumed to be

by2, 8

X&(t] ~ t) —(npPpI&0«t«)+[pt(t)& 0«a-(t) [«0—(t) Ing ) (A2)

The solutions for the time-dependent operators for the
energy-mismatched modes are given by Eq. (3.10).
Substituting these solutions into Eq. (A2), we obtain

p(0) =
I nppp&(«Pp I

. (A1)

The time-dependent characteristic function is defined
g~(g 0 t3 —

pter
*( )-tl* (&)+$P*(&)-$*P(&)

+X lr tpt / )

where
(A3)

cos(xc((,/x)'+ ')'")—'
o(xc(( /'x)'« ')"') s' ( x(c(/x)'t ')'"))

-(t) ts i(c«—10+co) tpiXta —ipp—
[(K/X) 2+~2]1/2 [(K/X) 2+ cd 2]1/2

K

p(t) —p
—s(cs«0+a') cts iX too sin(Xt[(K/X) +cp ]'/')

X[(,/X)2+„2]»2

+Pp cos xt K x '+co' '" + iso(xs((/x)'+ ')'"))
[(K/X) 2+&2]1/2

(A4)

We may obtain the time-dependent I' representation In order to integrate out the 8 functions, we require
from' ' the inverse of the transformations (A4), which may be

written as follows:
j.

p(a p t) = p0' +&*//—0 " [/t"X2/(t], g, t)d—2)]d2$.
m. 4

llpon substitution of (A3) this becomes

P( /) t) ep«[a-a(t)] —0[a—a(t)]
Clpjvl p /

m4

(A5)
icpX sin(t[K + (Xcp)2)' '

eo —— cos t K' Xco ' '" +
[K2+ (X~)2) 1/2

iK sin(t[K2+(Xp/)2)'/ )
Xa(t)(ss(«lip+«I) tts iXc«t+-

[K2+ (X&)2]1/2

Xet«[// /t(t» 2[/1 /t(o-] "dpt]d-pg, — (A6)
Xp(t) es(a«0+a') teiXat

which yields on integration

P(a,P, t) = &'( n( a))tt' (P)—P(t))—
(A10)

iK sin(t[K2/ (Xcp) 2)1/2)
(A7) p, = n (t)ei (co/0+co) tts iXc«t—

[„2+(„„)2]1/2

We shall now calculate the general solution for the
time-dependent density operator given that an initial
P representation exists.

We assume that the 6elds in the two-mode system
initially have the P representation

s(o) f I t) )( d lt'( 0,0—)t' st O' (set), '*

Since this just amounts to an ensemble of coherent
states, we may use the previous result (A6) to obtain

iX(p sin(t[K'+ (Xcp)2)»2))+ cos(t[K +(Xcp) ] )+
[K'+(X )2]t/2

Xp(t)tsi(c«lp+a') teiXat

P(a,P,t) =P(e(n, P, t)(]](n,P,t),0), (A11)

Carrying out the integration over np and pp in (A9)
with the aid of (A10), we obtain

P(n,p, t) = P(ap, pp, 0)t['(a—a(t)) where Q(n, p, t), $(n,p, t) are identical to np, pp, respec-
tively, given by Eq. (A10), with the substitutions

Xb'(p —p(t))dpant2P, . (A9) a(t) ~ a, p(t) ~ p.
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APPENDIX B

'I'he f&illowing integrals used in the t.ext. are t.al&ulate(l
in Ref. 9:

sin[b(x'+ a'-') '/'-']

cos(px) dx
(x2+c2) (x2+a2) 1 /2

sin [b(a' —c') "'-]
= 2re

—i'&i (B1)
2c(a' —c') "'-

where c/a, b~& p;
' A. Erdelyi, Tables of Integral Transforms (McGraw-Hill Book

Co., New York, 1954).

cos(px) cos[b(a'+x'-)"-] (1x
x +c

= -'2re ~'"~ cos[b(a —c')'"] (B2)
where b& p;

sin[b(a'+ x') '"] c
sin(px) x dx

(a2+ x2) 1/2 x2+ c2

e ~'"~ sin[b(a' —c')'/2] (B3)
(a2 c2) 1,'2

where b &p & ~ .
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Quantum Mechanics of Paraparticles*

JAMEs B. HARTLE

Department of Physics, University of California, Santa Barbara, California 93106

AND
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(Received 19 September 1968)

We show that it is possible to formulate a consistent first-quantized theory of paraparticles, i.e., particles
which are neither bosons nor fermions. We examine a number of properties of the theory and show that the
formulation of Messiah and Greenberg in terms of generalized rays can be replaced by an equivalent for-
mulation in which states are represented by rays in the usual way. We use this alternative formulation to
establish some results of ordinary quantum mechanics. We examine in detail the consistency of the theory
with the cluster law and show that paraparticles must have states associated with whole families of difFerent
permutation symmetries, according to the following rule: If a given particle has Ã-particle states associated
with a given Young diagram, then it must have (N —1)-, (N —2)-, , two-particle states associated with
all Young diagrams which can be obtained from the first by successively removing squares. This gives rise
to infinitely many different kinds of paraparticle, all with rather complicated properties.

I. INTRODUCTION

'HERE is no evidence that particles other than
bosons or fermions exist in nature. There is also

no evidence that any but the most stable known par-
ticles actually are either bosons or fermions. ' The name
"paraparticle" has been introduced for a particle which
is neither boson nor fermion, and the possible exist-
ence of such particles has been discussed by several
authors. ' '

~ Work supported in part by the National Science Foundation
and the U. S. Air Force Once of Scientific Research.' The experimental situation with regard to the first-quantized
theory discussed here is reviewed by A. M. L. Messiah and O. W.
Greenberg, Phys. Rev. 136, B248 (1964).' O. Steinmann, Nuovo Cimento 44, A755 (1966).' P. V. LandshofF and H. P. Stapp, Ann. Phys. (N. Y.) 43, 72
{1967).

4 O. W. Greenberg and A. M. L. Messiah, Ply s. Rev. 138, B1155
{1965).

~ Y. Ohnuki and S. Kamefuchi, Phys. Rev. 170, 1279 (1968).

Theories of paraparticles have been constructed in
two ways. The erst approach considers the allowed per-
mutation symmetries of the multiparticle wave func-
tions and is formulated within the framework of fIrst-
quantized quantum mechanics. (See Refs. 1—3.) The
second approach is a second-quantized theory in which
commutation relations more general than the customary
Bose or Fermi type are considered. (See Refs. 2—5.) In
this paper we discuss only the former (first-quantized)
approach; we do not discuss the as-yet unexplained
connection between the two types of theory.

Our aim is to examine the consistency of the 6rst-
quantized theory of paraparticles. In particular, we re-
examine the argument of Steinmann' that parastatistics
are incompatible with the important cluster law, which
requires that two well-separated groups of particles can
be treated as separate isolated systems.


