Further Results on 'He

RICHARD H. STOKES AND P. G. YOUNG

Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico*

(Received 9 October 1968)

Improved measurements of ³He spectra from the ⁷Li(t, ³He)⁷He reaction have given final results for the ⁷He ground state. The ⁷He mass excess ($^{12}C=0$) and width were determined, respectively, to be 26.11 ± 0.03 and 0.16±0.03 MeV. Measurements of differential cross section for the ground-state group are reported for center-of-mass angles of 11° to 63°, and for a triton bombarding energy of 22.0 MeV.

Subsequent to the initial observation¹ of ⁷He, additional data have been taken with the $^{7}Li(t, ^{3}He)^{7}He$

FIG. 1. Differential cross section of the ground-state group from the $^{7}\text{Li}(t, ^{3}\text{He})$ ⁷He reaction. The energy of the bombarding tritons was 22.0 MeV.

reaction. A thinner target (100 μ g/cm² of ⁷Li on 50 $\mu g/cm^2$ carbon) and improved energy calibration per-

* Work performed under the auspices of the U S. Atomic Energy Commission.

¹ Richard H. Stokes and P. G. Young, Phys. Rev. Letters 18, 611 (1967).

mitted better energy resolution and mass determinations. Data from all measured angles combine to give a value of 0.44 ± 0.03 MeV for the energy of the ⁷He \rightarrow ⁶He+n decay. This value corresponds to a ⁷He mass excess of 26.11 ± 0.03 MeV on the ¹²C scale. The width of the 7He ground-state group was determined to be 0.16 ± 0.03 MeV (full width at half-maximum). For a radius of 3.5 F and $l_n = 1$, this width is 0.16 of the Wigner limit. The differential cross section of the ground-state group was measured for laboratory angles of 6° to 35°. Figure 1 shows these data with statistical errors indicated. The absolute accuracy of the cross section is estimated to be $\pm 15\%$. No other state of 'He were observed to an excitation energy of 2.4 MeV above the ground state.

The mass of 'He and the revised masses² of the first $T = \frac{3}{2}$ levels in ⁷Li and ⁷Be can be used together with the isobaric multiplet mass equation³ to predict the mass excess of ⁷B as 27.76±0.17 MeV. Note added in proof. A second revision of the energy of the lowest $T = \frac{3}{2}$ state of ⁷Be yields a value of 27.87 \pm 0.15 MeV for the predicted mass excess of ⁷B [J. Cerny, Ann. Rev. Nucl. Sci. 18, 27 (1968)]. This is consistent with the value of 27.94 ± 0.10 MeV measured by McGrath, Cerny, and Norbeck.² Also, if the $^7B \rightarrow ^6Be + p$ two-particle decay mode is assumed to dominate the decay of 7B, the width of 7B can be calculated from the ⁷He width and the ratio of l = 1 penetrabilities (r = 3.5 F). The resulting value of 0.60 MeV is a lower limit, and is consistent with the experimentally determined value² of 1.4 ± 0.2 MeV.

² Robert L. McGrath, Joseph Cerny, and Edwin Norbeck, Phys. Rev. Letters 19, 1442 (1967). ³ For example, D. H. Wilkinson, Phys. Letters 12, 348 (1964).