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The fission-fragment angular distributions were measured for 'He-induced fission of '~Pb and "'Pb
targets. The compound nuclei" Po and ~"Po were obtained at excitation energies ranging from 3 to 20 MeV
above the fission barriers. The experimental data were fitted by a theoretical expression relating the angular
distribution of fission fragments to the distribution of the total angular momentum I and of the angular
momentum projection E on the nuclear symmetry axis at the saddle point. By a least-squares fitting
procedure, the variance Eom of the E distribution was obtained. In the case of the even-even nucleus "'Po,
the Eo' value approaches zero at about 3 MeV above the barrier, while in the case of the odd-A nucleus
~"Po, Kog remains rather large: This indicates the presence of the pairing gap in ' Po and of the residual
quasiparticle in ~"Po. Furthermore, the approximately constant difference in Eo' between the even-even
and odd-A nucleus at corresponding energies is consistent with the expected contribution of a single quasi-
particle to Eo~. From the analysis of the data, the value of the pairing gap 2h at the saddle point of "Po
is estimated to be about 4 MeV, about two to three times larger than in the ground state. The odd-even
diferences of saddle-point masses are also analyzed and the dependence of pairing on the nuclear surface
ls discussed.

I. INTRODUCTION"UCLEI in their fission saddle-point configurations
exhibit "transition state" spectra which resemble

those of deformed nuclei in their stable equilibrium
configurations. ' In general, however, the fission saddle
point is characterized by much larger deformations
than those of the ground-state nuclei. Therefore, the
study of nuclei at the saddle point can provide in-
formation about nuclear properties at unusually large
deformations. The properties of the transition-state
nuclei can be investigated by measurements of fission-
fragment angular distributions.

While at very small excitation energies above the
barrier the angular distributions can be interpreted in
terms of a few transition-state levels, at energies larger
than a few MeV only a statistical analysis is possible.
Halpern and Strutinski' and GrifBn' have used the
assumption of statistical distribution of levels at the
saddle point to calculate the angular distributions at
medium-low excitation energies and attempted to fit
experimental data. The energy dependence was deter-

f Work performed under the auspices of the U.S.Atomic Energy
Commission.*On leave from University of Pavia, Pavia, Italy.' A. Bohr, in Proceedings of the First Un@ed 1Vations Interna-
tional Conference on the Peaceful Uses of Atomic Energy (United
Nations, New York, 1956), Vol. 2, p. 151, Paper P/911.'I. Halpern and V. M. Strutinski, in Proceedings of the Second
United Nations International Conference on the Peaceful Uses of
Atom@ Energy (United Nations, Geneva, 1958), Vol. 15, p. 408,
Paper P/1513.' J.J. GER ~, Phys. Rev. 110, 107 (1959).

mined in terms of the Fermi gas model. The conclusion
of the analysis seems to be that, while the shape of the
angular distributions is reproduced very well, the
expected dependence on the excitation energy is
verified by the experiment no more than qualitatively.
The idea that at relatively low excitation energies the
Fermi gas model is expected to fail and that the pairing
effects must be considered has been expressed by
Halpern and Strutinski, ' GriKn, 4 and Vandenbosch
e$ ul. '

An attempt to measure the saddle-point pairing
effects was made by GrifBn, ' who analyzed angular dis-
tribution data of Vandenbosch et alP on '"Pu and of
Siounons7 on ~OPu compound nuclei. The gap parameter
obtained was ho=1.36 MeV, which implied a pairing
gap of 2= 2.72 MeV for ~Pu. This value is more than
twice the value in the ground state. Further experiments
by Britt et al."using "'Pu(d, pf) reaction succeeded in
estimating the value 2LLs= 2.6(+0.21, —0.45) MeV for
~Pu at the saddle point. More recent experiments by

4 J. J. GD%~, in Proceedings of the International Conference on
Nuclear Structure, Kingston, Canada, I960, edited by D. A.
Bromley and E. W. Vogt (University of Toronto Press, Toronto,
Canada, 1960), p. 843.

'R. Vandenhosch H. Warhanek, and J. R. Huisenga, Phys.
Rev. 124, 846 (1961 .' J J GH+o, Phys. Rev. 132, 2204 (1963l.' J. E. Simmons, R. B.Perkins, and R. L. Henkel, Phys. Rev.
137, B809 (1966).

'H. Britt, R. Stokes, W. Gibbs, and J. J. G6+~, Phys. Rev.
Letters 11, 343 (1963).

I H. Britt, R. Stokes, W. Gibbs, and J. J. Gri+r1, Phys. Rev.
139, B345 (1965).
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FIG. 1. Schematic drawing of the apparatus used in measuring
angular distributions of fission fragments.

Rickey and Britt" gave the value 26p=1.98&0.15
MeV for '~Pu and 2'='2. 10~0.15 MeV for '~U.

The rather large value of the pairing eBects at the
saddle point was observed much earlier by Swiatedu"
in his investigation of the even-odd mass differences at
the saddle point of nuclei heavier than thorium. He
observed that while the odd-odd, odd, and even-even
families of nuclear masses in the ground state are
separated by about 0.77 mmu, at the saddle point the
same families are separated by about 1.2 mmu. Fong"
also discusses the same eGect. This increase in pairing
e8ects in the transition-state spectrum was attributed"
to the increase in surface area of the nucleus at the
saddle point. Some calculations by Kennedy et al."
on the slab model of a nucleus show that while infinite

I &
I

~ I & I ~ I & I I I I

6.0 e&pb + &He e4P ~ fission
206 4 BIO+

5.5

E„=23.0 MeV

3'3I %068

5.0

4 5-

3.5—

3.0—

2.5—

nuclear matter presented vanishingly small pairing
efkcts, the slab-model calculations predicted a finite
pairing gap very sensitive to the slab thickness.

To shed more light on the problem we attempted to
determine the pairing eEects at the saddle points of
~"Po and "'Po. The reason for this choice is twofold:
(a) The increase in surface area at the saddle point is
for these nuclei ~20% according to liquid-drop calcula-
tions, '4 while for '40Pu it is 10% relative to the spherical
shape and less when one considers the deformation
already present in the ground state. (b) The fission
probability near the barrier, though very low, is still
sufhcient to allow the measurement of fission-fragment
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FIG. 2. Fission tracks in mica. Etching: 6 h at room temperature
in 48% hydrofluoric acid. The fission fragments have entered
perpendicullly to the mica surface; therefore the picture shows
the normal sections of the tracks. The large track is a pre-etched
background track due to spontaneous fission of U II in mica.

'e F. A. Rickey, Jr., and H. C. Britt, Bull. Am. Phys. Soc. 13,
36 (1968).' W. Swiatecki, Phys. Rev. 100, 936 (1955).» P. Fong, Phys. Rev. 122, 1545 (1961)."R. C. Kennedy, L. Wilets, and E. M. Henley, Phys. Rev.
Letters 12, 36 (1964).
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Fro. 3. Center-of-mass angular distribution of fission fragments
in 29-MeV-He -induced fission of Pb .The continuous line is the
least-squares fit to the experimental data.

'~ James Rayford Nix, University of California Radiation
Laboratory Report No. UCRL-17958, 1968 (unpublished).

angular distributions. The reason for the choice of the
even-odd pair was the expectation that systematic
even-odd differences in the properties of the transition
spectrum could be observed.

II. THEORETICAL EXPRESSION FOR
THE ANGULAR DISTMBUTION

An axially symmetric nudeus at the fission saddle
point is characterized by three angular momentum
quantum numbers which are the total angular momen-
tum I, the projection of I on the space-fixed z axis M,
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and the projection of I on the body-fixed symmetry
axis E. If E stays constant from the saddle point to
in6nity, the probability distribution of the sym-
metrical top wave function at the saddle point deter-
mines the Gssion-fragment angular distribution. The
constancy of E is classically dependent on the preserva-
tion of axial symmetry from saddle to infinity; this
assumption is partially supported by the liquid-drop
model which predicts axially symmetric saddle-point
shapes, and by the pairing eGects which tend to pre-
serve axial symmetry. Furthermore, the stage between
saddle and scission point seems to be so short" that the
Coriolis interaction might be prevented from electively
mixing levels with difterent E.If some limited E mixing
from Coriolis or y-vibrational interactions is present,
the theoretical approach may still be valid. A strong
evidence of the goodness of the E quantum number
from the saddle point to infinity comes from the
sharpness of the experimental angular distributions
themselves. Assuming then that E is a good quantum
number, the angular distribution of Gssion fragments
from a system characterized by a given set of I, M, E
values will be
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For large I the angular distribution can be expressed
in the following approximate form'~'.

Fro. 4. Center-of-mass angular distribution of fission fragments
in 50-MeV-He4-induced fission of Pb .The continuous line is the
least-squares fit to the experimental data.

li'v/(8) = [(2I+&)/4 7 I
D~ x'(4, 8. ~ x) I' (&) ~~,x'(8) = [(2I+&)/~7

where D~,~~ is the symmetrical-top wave function and
qb, 8, and y are the Eulerian angles that define the
position of the body with respect to the rest frame of
reference.

Since the quantity D~,x can be written explicitly as

~ xr(4, , 8, x) = d(8) e~'s~", (2)

it follows that
~
D~,xr ~'is a function only of the angle 8

between the space-fixed and body-fixed axis.

X[(I+q) ' sin'8 3P E'+—2ME—cos87-'J'. (3)

In order to reproduce the angular distributions of
fission fragments obtained in particle bombardments,
the above expression must be averaged over the E
and I distributions.

Following Halpern and Strutinski, ' we assume the E
distribution to be of the form exp( —E'/2KO'). &f

M=O, for 6xed I and Ko' the angular distribution
will be

2g+ $ (1+1/2) sinfl

Wxg'(8) =
0

(—E
dK[(I+&)2 sjn28 —K27 ~2 exp

~

&2EO'

(—E''t
dE exp

i (4)

The upper limit of the integral in the numerator
represents the highest value of E which is classically
possible at every angle 8. By executing the integration
we have

2 (Ko~)'~' 2 (E ~) '~'

(I+s)~ sin~8 . (I+s')' sin'8

where erf is the error function and J0 is the Bessel
function of order zero.

The angular momentum distribution for the com-
pound nucleus can be obtained by analyzing the
reaction mechanism involved in its formation. In the
present case, involving a particle bombardment with

compound nucleus formation, the total angular momen-
tum distribution can be obtained from an optical-model
calculation.

If we assume that the nuclei at the saddle point have
the same I distribution as the compound nucleus, the
Anal angular distribution averaged over E and I
will then be

CO 1+1
W(8) ca g (2I+1)'Tr erf

IM (2E(P) '"

(I+—,')' sin'8 . (I+))' sin'8
X exp

4K g
IO

4K 2 l ( )

"T. A. Wheeler, in F~t 1Vegtroe Physics, edited by J. B.
Marion and J. L. Fowler (Wiley-Interscience Publishers, Inc. ,
New York, 1963), Part II.
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where T~ are the optical-model transmission coefBcients.
This approximate expression has been shown to be very
satisfactory when compared with the expression ob-
tained using the symmetrical-top wave functions in
their exact quantum-mechanical form. "

III. EXPERIMENTAL PROCEDURE

The experiments were designed to measure the
fission-fragment angular distributions of He'-induced
fission of Pb'™and Pb~. The lowest excitation energy
for which angular distributions were measured was
about 3 MeV above the fission barrier. The highest
excitation energy, about 20 MeV above the barrier,
was determined on the basis of substantial onset of
multiple-chance fission as estimated from the cross-
section data.

Mica was used for detecting the 6ssion fragments"
because of its good performance and convenience when
very small cross sections are involved, as was the case
here. The experimental setup consisted of a small 6ssion
chamber as indicated in Fig. 1, in which a mica holder
was 6tted. The mica strip was laid on a cylindrical
surface whose radius was 2.84 cm. The exposed surface
of mica ranged in angle from 45' to 205' with respect to
the beam direction. At 205' a shield was used to cover
the mica and give a sharp cutoE in the fission-fragment
distribution, which served as an angular reference
point. The height of the exposed part of the mica strip
was 1 cm.

Particular care was taken in preparing high-purity
targets because of the very low cross sections

"J.R. Huizenga, A. N. Behkami, and L. G. Moretto (un-
published) ."P. B.Price and R. M. Walker, J.Appl. Phys. 33, 2625 (1962);
33, 3407 (1962).
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FrG. 5. Center-of-mass angular distribution of fission fragments
in 31-MeV-He'-induced fission of Pb'~. The continuous line is
the least-squares fit to the experimental data.

(&10 " cm') at the lowest excitation energies above
the barrier. With such cross sections even one part in
10' of uranium or thorium would contribute enough
6ssion events to cause a substantial error in the experi-
ment. The target backing consisted of a mater-cooled
copper block that was fitted in the center of the chamber
at an angle of 45' with respect to the beam direction.
The surface on which the target material was to be
deposited was first covered with a thickness of more
than 20 mg/cm' of high-purity silver deposited by
evaporation. This layer prevented fission fragments
coming from the impurities in the copper from escaping
and entering the mica. The target materials, mono-
isotopic ~Pb and ~'Pb in the form of metal, were
evaporated on the silver. In preparing the targets by
vaporization of the lead isotopes, early and late fractions
of the distillate were excluded since they are most
likely to contain the highest levels of impurities. It is
especially desirable to avoid collecting the late fractions
because the uranium and thorium impurities tend to
concentrate there. The purity of the targets was checked
by two methods. The 6rst involved bombarding at
energies below the 6ssion barriers of "OPo and ~"Po and
searching for 6ssion events which might come from
impurities with lower fission barriers, such as uranium
or thorium. The second method consisted in checking
the steepness of the cross-section curves as a function of
energy at energies near the barrier.

The thickness of the targets ranged between 1 and
3 mg/cm'. The effects of the thickness of the target on
the angular distributions were determined experi-
mentally and found to be negligible up to 3 mg/cm'
thickness for angles between 85' and 175'. The position
of the beam on the target was determined by a collimator
22.35-mm long and 1.59 mm in diameter and by the
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Frc. 6. Center-of-mass angular distribution of fission fragments
in 42-MeV-He'-educed fission of Pb~'. The continuous line is the
least-squares fit to the experimental data.
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I I » & l I I TABLE II. Ep versus excitation energy in "'Po 6ssion.

50-

40-

~lab
(MeV) (MeV) Kp~

Anisotropy
W(180') jW (90') (P }

~&O
Y

low convergence of the beam, controlled by a quadrupole
focussing lens 7 m away from the collimator. The beam
current was read from the target itself without a
separate Faraday cup.

The variable energy beam of the 'He particles was

provided by the 88-in. variable-frequency cyclotron in

TABLE I. Ep versus excitation energy in ~"Po fission.

~lab
(MeV) (MeV)

Anisotropy
8'(280') /8 (90') (P}

29.0

30.0

23.0 3.32+0.68 6.05+0.54

24.0 8.85~0.58 3.73+0.13

89.723

99.400

31.0
31.5

32.0

32.5

33.0

33.5

34.0

34.5

35.0

35.5

36.0

36.5

37.0

37.5

38.0

38.5

39.0

40.0

41.0

42.6

45.0

50.0

25.0 13.24~0.63 3.16+0.08 109.154

25.5 15.86&0.66 2.92+0.07 114.052

26.0 24.92+2.29 3.09~0.24 11S.960

26.5 27.62~0.56 2.88+0.05 123.877

2'l. 0 28.40+0.72 2.87+0.06 128.801

27.4 20. 22~0.79 2.79+0.06 133.731

27.9 20.60&0.64 2.82+0.05 238.664

28.4 23.96~0.72 2.63&0.04 143.601

28.9 24.47+2.27 2.65w0. 07 148.539

29.4 28.67~2.00 2.48~0.04 153.480

29.9 28.42+2.24 2.53~0.06 158.420

30.4 29.54~0.72 2.52~0.03 163.361

30.9 29.79~2.30 2.55~0.06 168.302

31.4 31.27+0.60 2.52+0.02 1'l3.242

31.9 28.94&2.46 2.67a0.0/ 178.1SO

32.4 32.43+0.63 2.59~0.03 183.117

32.8 33.57~2.26 2.53&0.05 188.052

33.8 36.23~2. 75 2.50+0.06 197.926

34.8 34.47+0.82 2.63~0.03 207.769

36.4 38.05~2.48 2.59~0.05 223, 510

38.7 42.96&2.47 2.56~0.04 247.058

43.6 48.72~2.42 2.63&0.04 295.853
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Fzo. 7. Ep' dependence on excitation energy at the 6ssion sad-
dle point of Po'". The arrow indicates the position of the 6ssion
barrier.
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41.0

42.0

43.0

44.0

46.0

4S.O

50.0

22.8 13.57&0.51 3.22+0.06 209.796

23.8 26.39~0.56 2.94&0.05 119.637

24.3 17.69+0.55 2.88~0.05 124.571

24.8 17.92~0.89 2.92+0.08 129.512

25, 3 22.83+0.66 2.68~0.04 134.458

25.8 22.97aO. 70 2.65&0.04 139.408

26.2 22.35wO. 87 2.74+0.06 144.362

26.8 24.53~0.86 2.66~0.05 149.317

27.2 25.63~1.16 2.64~0.06 154.274

27.7 25.05~0.88 2.72~0.05 159.232

28.2 28.77~0.97 2.56w0. 04 164.189

28.7 29.59~2.12 2.56~0.05 169.146

29.2 31.92+2.34 2.50~0.05 174.103

29.7 34.64~2.36 2.43+0.05 179.058

30.7 38.88~2.50 2.35~0.05 188.963

31.6 37.74&2.34 2.45~0.04 198.859

32.6 37.66a2. 25 2.52a0.04 208.746

33.6 41.28~1.48 2.45~0.04 218.620

34.6 42.33~2.24 2.48+0.04 228.483

35.6 44. 24~2.46 2.48&0.04 238.332

3/. 5 52, 43~2.93 2.36~0.04 257.988

39.5 56.64&2.79 2.35&0.06 277.586

41.5 60.88+3.04 2.34&0.06 2¹ 225
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FrG. 8. Xp~ dependence on excitation energy at the 6ssion sad-
dle point of Pot". The arrow indicates the position of the 6ssion
barrier.

Berkeley. The mica strips obtained from the experiment
were etched with hydroiiuoric acid (48%) for 5 to 6 h.
In this way the diamond-shaped fission tracks were
observed using an optical microscope (Fig. 2) with a
total magnification ranging from 60' to 200'.

Rectangular strips of the mica were scanned almost
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FIG. 9. Experimental values of Eo' in Po'" compared with the
Fermi-gas prediction (see text for the values of the parameters
used).

continuously over angles ranging from 85' to 172'. The
angular correction for the aberration introduced by the
scanning technique is presented in the Appendix. The
angular width of the strips was 3' or smaller, since the
angular resolution of the system was about 3'.

IV. ANALYSIS OP THE DATA

~Pb

V= —50 MeV

W= —23.00 MeV

rp= 1.17A't' fm

r =1.77 fm

d= 0.576 fm

~Pb

V= —50 MeV

W= —23,12 MeV

rp= 1.17A'I3 fm

r =1.77 fm

d=0.576 fm

These parameters have been taken or extrapolated
from the work of Huizenga and Igo."

The eGect of the ~~Pb target spin ~ on the angular
distribution has been neglected. An estimate of such an

' R. Vandenbosch and J. R. Huizenga, Phys. Rev. 127, 212
(1962).

'I J.R. Huizenga and G. Igo, Nucl. Phys. 29, 462 (1962).

The experimental angular-distribution data were
6rst transformed to the center-of-mass system. In this
case the assumption was made that all of the 6ssion
fragments had the same kinetic energy equal to half the
average total kinetic energy. The total kinetic energy
for "'Po was taken as 146.6 MeV and for "'Po as
146 MeV (see the experimental data of Vandenbosch
and Huizenga") . The dispersion in angle introduced by
the variations in kinetic energy of 6ssion fragments and
by the neutrons evaporating from the fragments was
estimated to be of the order of 1'. The center-of-mass
angular distributions were fitted with Eq. (6). The
6tting parameters were the value of a normalization
constant and the quantity Kp'.

The coeKcients TI were obtained from an optical-
model calculation on the ~Po+'He and ~Pb+4He
reactions using a Rood-Saxon potential. The parameters
used were

eGect has been done following GriSn. ~ The change in
the predicted anisotropy has been evaluated and found
to be smaller than 1.5%.

Some examples of experimental angular distributions,
together with the theoretical 6ts, are shown in Figs. 3,
4, 5, and 6. The values of Kp' versus E obtained from
the data 6tting are presented in Figs. 7 and 8 and
Tables I and II. The quoted errors are calculated from
the statistical errors of the experimental data. No other
random error has been estimated. The expression for the
angular distributions has been found to be very satis-
factory in 6tting all of the experimental data. The
center-of-mass anisotropy W(180') /W(90') obtained
from the best-6t curves and the average of the square of
angular momentum (P) obtained from the optical-
model calculations are also given in Tables I and II.

V. DISCUSSION

In order to estimate the magnitude of the pairing
eGects at the saddle point, a knowledge of the 6ssion
barriers of the nuclei being considered is essential. The
best estimate available at present for the 2'pPo 6ssion
barrier has been obtained by Thompson e) u/. "In their
experiments the 6ssion cross sections for the reactions
~Pb+4He and ~Bi+'H were measured over a large
range of energies going down to cross sections as low as
10 "cm'. Theoretical expressions derived by Huizenga
ef al.~ and by Burnett et ul.~ were used to 6t the data
expressed in the form of the ratio I'r/P . The fission
barriers deduced from 6t ting the data when the
parameters were varied over rather large reasonable
ranges averaged 19.82 MeV for ~Bi+'H and 20.25 for
~Pb+4He. These calculations do not include pairing
effects. Thus for even-even compound nuclei the level
density at the saddle point will tend to make the above
values overestimates so that the real barriers should be
somewhat lower. Nonetheless, we shall take 20 MeV as
the nominal value for "Po with the mental reservation
that the true value could be somewhat lower. This
uncertainty means only that the value of the gap
estimated in the present work is a lower limit, and the
magnitude of the gap could be even larger.

In the case of "'Po, no measured barrier is available.
We then rely on two ways of making an estimate: (1)
From Myers and Swiatecki's mass formula" the 6ssion
barrier is calculated to be 20 MeV (note that the saddle
masses have been normalized to the ~'Tl experimental
value ) . (2) From Thompson et ut."we have taken the
measured 6ssion barriers of the following odd nuclei:
~'Tl, ~Bi, ~Bi, and "'At and subtracted from them

2 J.J. Gri6in, Phys. Rev. 12'7, 1248 (1962).» S. G. Thompson, Arkiv Fysik 36, 267 (196'E).~ J. R. Huizenga, R. Chaudhry, and R. Vandenbosch, Phys.
Rev. 125, 210 (1962)."D. S. Burnett, R. C. Gatti, F. Plasil, P. B. Price, W. J.
Swiatecki, and S. G. Thompson, Phys. Rev. 134, B952 (1964).~ W. D. Myers and W. J. Swiatecki, Nucl. Phys. 81, 1 (1966) .
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T is the nuclear temperature at the saddle point which
is related to the excitation energy at the saddle point
E,*by the expression

ay being the level density parameter at the saddle point.
The effective moment of inertia g,u is related to the
moment of inertia about the symmetry axis 6~~ and
about an axis perpendicular to it, gi, by the expression

6«& Sll '5& (9)

The values of Kp' obtained from both the experimental
data and from Eq. (7) are shown in Fig. 9. The value
of 6', fg was taken from the liquid-drop calculations of
Cohen and Swiatecki, ~~ and ay was taken equal to
A/SPP This curve does not represent an actual 6tting to
the data. It merely indicates the disagreement between
theoretical predictions and experimental data. The
fact that Ko' is lower than predicted on the basis of
the Fermi gas assumption can be accounted for in terms
of pairing effects. In particular we observe that in the
"Po case, Eo' drops rapidly to zero at about 3 MeV
above the saddle point. More precisely, at 3 MeV above
the "nominal" barrier, Eo'= 3.3. This value is so small
that it can be explained in terms of collective excitation
states (rotational and vibrational) within the gap,
precluding any substantial contribution by intrinsic
(two-quasiparticle) excitations. Also the next higher
point has a value Ko'=8.8 that could be explained both
by collective excitations and intrinsic excitations. This
indicates that the pairing gap for "'Po at the saddle
point is at least 3 MeV. An immediate check in the
"'Po case shows that Eo' does not drop to zero even at
3 MeV above the barrier. This is to be expected for an
odd nucleus for which a gap is absent because the odd
particle provides intrinsic excitations at all energies.

Another large effect that can be observed is the
overall difference between the two Ko~ curves. The
"'Po curve follows the trend of the "'Po curve rather
well, but lies higher by about 7.5 units of Eo . If this is

the mass shift due to the shell effect in the ground state.
%e have plotted these corrected values as a function of
the fissility parameter x. By interpolation and correction
for the shell effect we obtained for the "'Po barrier
about I9.8 MeV, very close to the Myers-Swiatecki
predicted value.

Once the barrier height is known, we can make a
comparison with the predictions of the Fermi gas
model. This model relates Eo' to the excitation energy
E,*over the saddle point as follows':

ICp'= (P gg/5') T

an even-odd effect, then we conclude that the average
contribution of one neutron quasiparticle to Ko~ is
about 7.5 units. This checks rather well with a calcula-
tion based on the Nilsson model. We have calculated
the average square of the 0 values of the Nilsson
orbitals about the Fermi level. At the maximum
deformation available in ¹lsson calculations~ (p= 0.6),
(P) is about 8 for neutrons and 5 for protons (average
over 16 levels). With these contributions to Eps of one
neutron and proton quasiparticle, one can check whether
some of the structure visible in the plots of Eo' for "'Po
and "'Po is related to the onset of diferent numbers of
quasiparticles. In "Po two Qattenings occur at Ko 16
and Eo'—29, values which are consistent with two- and
four-quasiparticle configurations, respectively. In "'Po
two Qattenings occur at Ko'—22.5 and Eo'—37.5 values,
again very close to the expected ones for three- and Sve-
quasiparticle configurations. The very definite possi-
bility of different values for the gap parameter for
neutrons and protons makes it dificult to decide the
quantitative significance of the above structure. How-
ever, their positions in excitation energy, as well as the
absolute values of Ep' as a function of energy, when
compared with the one-quasiparticle contributions,
still suggest a rather larger value for the pairing gap
than the lower limit previously discussed, possibly
4 MeV or larger.

A. Gap Parameter from Even-Odd Mass
Differences at the Saddle Point

The difference in fission barriers between odd-A and
even-even isotopes can provide in principle some
information about the gap parameter d, at the saddle
point, just as the ground-state even-odd mass differences
allow the evaluation of the ground-state gap parameter
6,. It is therefore of interest to analyze this problem
since we have reasonably good values for the fission
barriers of 2MPo and "'Po.

Let us assume with Myers and Swiatecki~ and
Strutinski~ that shell and pairing effects are separable
from a smooth liquid-drop-like term. This term can be
derived from a pure single-particle model with smoothly
varying level spacing and including surface, symmetry,
Coulomb energy, and any other term which is of single-
particle and electromagnetic nature. Using such a single-
particle model for the energy base line, we can express
the fission barrier of an even-even nudeus BI,. as
follows (see Fig. 10):

Br,.=B,p,,+Shellp, ,+C„.—Shell„,—C, ,„
(10)

where B,r, „

is the term deriving from the single-particle
(liquid-drop-like) model.

~ S. Cohen and W. J. Swiatecki, Ann. Phys. (N.Y,) 22, 406
{i963}."K.J.LeCouteur and D. W. Land, Nucl. Phys. 13, 32 (1959).

"C. Gustafson, I. L. Lamm, S. ¹1sson, and S. G. Nilsson,
Arkiv Fysik 36, 6i3 {1967).

V. M. Struti~s4, Arkiv Fysik 36, 629 (1967).
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FIG. 10. Schematic repre-
sentation of the fission barrier
of an even-even and odd-A
nucleus in terms of a smooth
single-particle model plus shell
and pairing effects.
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Shell, , and Shell„, are the shell terms in the ground
state and saddle point, respectively, due to the bunching
of single-particle levels.

C,„and C„,are the condensation energies due to
pairing in the ground state and saddle point, respectively.

In order to obtain the 6ssion barrier for an odd-A
nucleus, we must add the lowest one-quasiparticle
excitation to both the paired ground state and saddle
point of the corresponding even-even nudeus; we can
also make allowance for smooth changes due to the
introduction of the extra particle. The one-quasiparticle
excitation energy is

E=L (p—x) '+5'j"'
where X is the Fermi level and ~ is the energy of the
single-particle level closest to it. Then the 6ssion
barrier By,o for an odd-A nucleus can be written as
follows (see Fig. 10):
By,p= B,p,p+ Shellp. p+ Cp, p

—hp —Shell, p
—C .p+ d&

(11)
where 6, and 6, are the gap parameters at the ground
and saddle point, respectively, and the other terms are
the equivalent to those described in the previous
expression.

From (10) and (11) we obtain

6,—5,= (By,p
—By,.) —(B, ,p

—B, ,)
—(Shell, ,p

—Shell, ,)+ (Shell„p—Shell„,)
—(Cp, p

—Cp, ,) + (C~,p
—C...) . (12)

The two terms (C, ,p
—C,„)and (C„p—C...) should be

small because the main effect of the odd particle is
included in the one-quasiparticle excitation and should
be of negative sign because of the blocking effect of the
odd particle. Since the two terms appear with opposite
sign, one might disregard them for lack of better
knowledge.

The term (Shell„p—Shell„,) is likely to be small for
large saddle deformations. The term (Shell, ,p

—Shell, „)
is dependent on the position of the two nuclei with
respect to a closed shell and can be as large as a few
MeV; therefore, it cannot be disregarded.

The term (B,p, p
—B,p, ,) can be evaluated from

liquid-drop calculations, and its magnitude is of the
order of a few tenths of 1 MeV if the odd particle is a
neutron and of the order of 1 MeV if the odd particle
is a proton.

The relation
hp By p By,, — —— —(13)

has been used by Stepien and Szymanski. 29 It seems
from the above considerations that such an expression
could be very unreliable in obtaining the saddle-point
gap parameter 6,.

We caIl now apply Eq. 12 to the "'Pop "'Po pair to
estimate the gap parameter b„atthe saddle point. If we
take the 6ssion barrier values previously discussed and
the shell effects and liquid-drop terms from Myers and
Swiatecki, ~ we obtain 6,—6,=1.0 MeV; it is difBcult
to establish the uncertainties of this quantity, but, on
the basis of the discussion of the "'Po 6ssion barrier in
Sec. IV, it could be somewhat larger. Using for d, the
value of 0.81 MeV given by Nemirovsky and
Adamchuk' (this value, obtained from even-odd mass
differences, has been corrected for shell effects and other
liquid-drop contributions), we obtain LL, =1.81 MeV
and then the pairing gap 2h, =3.62 MeV, in agreement
with the value obtained from the angular distribution
analysis.

B. Possible Reasons for the Large Pairing sects
There is no satisfactory explanation as yet for the

very large pairing effects observed at the saddle point.
s' W. Stepien and Z. Szymanski, Phys. Letters 25B, 181 (1968).~ P. E.Nemirowsky and Yu. V. Adamchuk, Nucl. Phys. 39, 551

(1962',
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However, it is interesting to consider some possible
causes of such eGects.

From the uniform model, the gap parameter 6 can
be expressed approximately in terms of the density g of
¹ilsson levels near the Fermi level and pairing strength
G as follows:

(14)

2.0

1.9-

l.7

I I I I I I I ( I (

G=GoL1+ (bs/s) ], (15)

where S is the energy interval above and below the
Fermi surface over which the pairing interaction
extends.

An accidental bunching of levels about the Fermi
surface at the saddle-point deformation could in

principle result in an increase in g sufhcient to explain
the observed effect. However, such an explanation may
be ruled out if the experimental results continue to
show more cases in which a larger value of b, is observed
at the saddle point than in the ground state, especially
if the observations are made over a large range of
deformation. Even the present data together with the
data available for ~'U and ~Pu tend to rule out the
hypothesis that the e8ect is due only to the accidental
bunching of levels. An increase of pairing strength G
with an increase in the surface of the nucleus resulting
from deformation is considered to be a more likely
explanation.

The dependence of the gap parameter b on the nuclear
surface has been studied by Kennedy et a/. " They
observed that in6nite-nuclear-matter calculations with
realistic nucleon-nucleon potentials yielded very low
values for the pairing gap. The physical reason for this
eGect can be understood as follows: The Fermi momen-
tum for the nuclear-matter density corresponds to
collision energies of about SO MeV in the center-of-mass
between two nucleons. At this energy the repulsive core
in the nucleon-nucleon potential approximately com-
pensates for the attractive part of the potential. On the
other hand, a calculation carried out for a slab of nuclear
matter of 6nite thickness and ininite extension yielded
a substantial pairing gap whose magnitude was very
sensitive to the slab thickness. This can be understood
by noting the lower density in the surface region. The
lower density implies a lower Fermi momentum, for
which the hard core of the nucleon-nucleon potential is
not strongly felt.

Stepien and Szymanski~ attempted to explain the
large pairing gap at the saddle point by assuming that
the pairing strength increases proportionally to the
nuclear surface as the nucleus deforms from the equilib-
rium con6guration to the saddle point. They also quote
some results of gap-parameter calculations carried on
in the rare-earths region. In these calculations the
BCS equations were solved for increasing values of the
pairing strength. By making the same assumptions we
can obtain a general approximate relation between
b ands.

We write

1.6

Jhp
1,5

!.4

1.2

1.00 0.05 0.1 0.15 0.2
8s
S

I

0.25

Fro. 11.Dependence of the gap parameter on the nuclear surface
calculated using the assumption of Stepien and Szymanski.

where bs/s is the fractional surface increase; substituting
in (14), we obtain

1 bs/s
ln —=—

lLp gGO 1+(bs/s)
(16)
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APPENDIX: ANGULAR CORRECTION

The 6ssion fragments coming at a given angle 8 with
respect to the beam axis constitute a cone which inter-
cepts the cylindrical surface on which mica is present.
When the mica is Qattened out on a plane the equation
of intercept in cylindrical coordinates will be (see

The quantity gGD is dimensionless and has a value of
about $. The increase in b as a function of bs/s is
presented in Fig. 11. The agreement between this
general calculation and the specihc case reported by
Stepien and Szymanski is good, but it appears that the
increase in gap predicted in this way is not quite large
enough to reproduce the experimental data.
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FIG. 12. Drawing of a mica strip with lines of equal angle.
The sea~»~g is carried on in rectangular strips as indicated in the
6gure.
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Fro. 13. Correction for the angular aberration introduced by
the sca»i~g technique. The two curves correspond to the exact

(17) and approximate expressions given in the text.

where R= p and S/R=~.
When the mica scan is done in rectangular strips as

shown in Fig. 12, one has to introduce a correction in

the measured angular distribution due to the angular
aberration. If the true angular distribution can be
considered linear within the maximum and minimum 8

values in the strip, the correction can be done exactly
by substituting the nominal angle with the weighted

average of the angle within the strip

( ma*
8=

i
8($, z) dSds 2s (Ss—Sr) i. (18)

sg

The quantity 8(S, s) can be obtained from Eq. (17):
cos($/R)

8($, z) =cos ' ~, „,. (19)

8= $(z'/R') )tan(S/R) j-'. (21)

Then Eq. (19) becomes

8(S, z) = (S/R)+$(z'/R ) Ltan($/R) j-' (22)

With this approximate form, the double integral (18)
can be evaluated in closed form and the result is

8= + — ln .
Ss+St 1 s ' sin(Ss/R)

(23)
2R 6 R(Ss—Sr) sin(Sr/R)

Expanding cosL($/R)+8) to first order in 8 and
equalizing the expression to L1—$(zs/R )]cos(S/R),
one obtains

The double integral can then be evaluated numerically
or the following approximation can be used:

zs/m&1,

or

1 s ' sin(Ss/R)
6 R(Ss—St) sin(St/R)

' (24)

( 1 zs) S
8(S, s) =cos-'

i
1———

i
cos—~~)

S
=cos ' cos —+8 iE j (2o)

Since the expression (21) does not behave well near 0',
expression (24) cannot be used for very small angles,
which in general are not accessible anyway. A com-
parison between the exact and the approximate ex-
pression is shown in Fig. 13.






