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A simple self-consistent single-particle equation is investigated and compared with similar attempts. The
proposed model is designed to be particularly suitable for the calculation of (adiabatic) fission processes.
The kernel of this integrodifferential equation has a structure that allows satisfactory reproduction, with
one constant set of five physical parameters, of (1) charge density distributions, including isotope shifts,
(2) 1s proton levels as measured in (e, e’p) scattering, (3) total binding energies or nuclear mass defects,
and (4) the shell-model spin assignments and mass structure throughout the periodic table. Hence, it
seems that all future work in this direction has to confirm gquantitatively the essential features determined
here, particularly the monlocality and rearrangement effects. Rearrangement energies appear explicitly,
since the present model, like self-consistent fields of appropriate many-body formalisms, yields different
eigenvalue spectra and mass defects for different occupation functions. The partial derivative dE/dZ
of the total binding energy (mass) changes considerably at the proton number Z=114 when the present
Hamiltonian is used for superheavy nuclei. This confirms an earlier suggestion made by this author on
the basis of a gap in the proton eigenvalue spectrum at Z=114. The present calculations show that this
shell effect becomes insignificant for isotopes too far from the extrapolated 8 stability line, in particular
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for N <172,

INTRODUCTION

HENOMENOLOGICALLY, the Hamiltonian for

a nucleon bound in a nucleus allows a rapidly
converging expansion: H=H;+H,+++- in terms of
one-body, two-body, etc., operators; i.e., a “realistic”
model for the single-particle Hamiltonian H; accounts
rather accurately for gross nuclear data of bound and
scattering states, thus leaving only small phenomeno-
logical many-body forces to produce residual corre-
lations. This picture allows comprehension of essential
facts such as the pronounced nuclear shell structure and
the extremely small ratio of the odd-even mass stagger-
ings to the nuclear binding energies. However, even a
dozen years after the establishment of the shell-model
phenomenology,*~® basic gquantitative questions, about
the extent of nomlocality of H, and its rearrangement-
type response, e.g., are far from being incontrovertibly
settled.

One purpose of this work is to investigate such
features of realistic nuclear single-particle Hamil-
tonians without the usual restrictions and oversimpli-
fications caused by limited computer facilities. For
example, self-consistent equations with nonlocal po-
tentials are solved (numerically) exactly here.

Two approaches for the determination of H, are
easily distinguished: Number one is the direct prag-
matic way, i.e., an ansatz for a phenomenological
single-particle equation (usually involving nonlocal
one-body potentials). The second deploys some
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many-body formalisms with phenomenological two-
body potentials. At the present stage of the theory, a
preference for the latter is unfortunately based on the
prejudice that a complicated answer to a complicated
question is more reliable than a simple one. This un-
certainty is due to the fact that all approaches of the
second kind, although potentially closer to a first-
principle method, still have to be based on a practically
unsolved many-hadron problem. The NN interaction
is not sufficiently understood at the distances of major
importance for this purpose, i.e., smaller than half the
inverse pion mass.* This implies the high uncertainty
in the off-energy-shell behavior of NN potentials,’
particularly in their nonlocality. The nonlocality quite
obviously exhibits the ambiguity of fits of the two-body
NN scattering with potential models, since one can
always construct classes of phase-shift equivalent po-
tentials with identical spectra but quite different off-
energy-shell behavior, including cases which give
singular Hartree-Fock-type matrix elements; e.g., any
unitary transformation acting on a given two-body
Hamiltonian that contains some NN phase-shift-fitting
potential gives another Hamiltonian, such as ¢*®He~0,
usually with a potential of different nonlocality or
off-energy-shell behavior. The fit to the on-shell data
is preserved, as long as the change of the T matrix
(proportional to the change of the Hamiltonian®)
vanishes there, i.e., $T~8H~[Q, H]=0. Thus, all
such transformations with Hermitian two-body oper-
ators Q yield equivalent on-shell potentials once the
transition matrix element of this commutator van-

ishes.” This can be viewed as a formal method of

( 49 6C7f) E. Lomon and H. Feshbach, Rev. Mod. Phys. 39, 611
1 .

5 Cf. H. Pierre Noyes, Saclay Conference paper No. SLAC-
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also, G. A. Baker, Phys. Rev. 128, 1485 (1962).
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obtaining families of equivalent potentials by gen-
eralized Scott-Moszkowski-type® separations. There-
fore, it would seem futile to work numerically with
the second approach, as long as the question of off-
energy-shell behavior is not sufficiently understood
quantilatively. At present, it is hardly possible to make
even the qualitative decision between the extreme
cases of purely local hard-core versus highly nonlocal
smooth potentials.?®

It seems safe, however, to adopt as a basis a non-
relativistic potential description of NN forces at the
low kinetic energies of nucleons bound in many-
baryon systems. This belief is due to the small ratio
of the pion to the nucleon mass.!® Thus, it is also safe to
rely on the gross structure of single-particle equations
as given by many-body formalisms and approxima-
tions which are based on sufficiently general NN
potentials. This—presently wise—restriction on the
qualitative results of such formalisms requires the
parametrization of a nuclear single-particle Hamil-
tonian, as is done, e.g., via the ansatz of a Woods-
Saxon or Nilsson-type potential, usually with some
velocity dependence.l'"* However, these simple models
of a nuclear self-consistent field can be replaced now.
Modern computers allow a considerably improved
simulation of the nuclear single-particle equations that
are expected from reasonable many-body formalisms.

One suggestion in this direction is made here (Sec.
1). Complications actually required are slight in
comparison to those necessary for the ancient nuclear-
well ansatz. The proposed single-particle Hamiltonian
has a structure close to the one given grossly by
Hartree-Fock-Bogolubov or Brueckner-type formal-
isms, i.e. nonlocality, density, spin-orbit, and isospin
dependences are introduced into the kernel of this
equation in the form expected in first order from such
formalisms involving rather general nonlocal NN
potentials.

Section 2 A shows that only five physical parameters -

allow a surprisingly good fit to many independent data
throughout the periodic table. Such a widespread
application was inconceivable with previous models
of Hy. The essential features of a realistic single-particle
Hamiltonian seem to be determined rather uniquely this
way. They will have to be confirmed once substantial
experimental information on the off-energy-shell be-
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havior of NN potentials has been accumulated so that
some number two approaches can leave the status of
model-dependent models. The quantitative results
of the fairly conservative and pragmatic approach
adopted here provide a rather safe foundation. This
resembles the situation in nuclear physics of small-
baryon-number hadron systems, where a pragmatic
approach now determines basic features in terms of
Regge singularity parameters.

Rearrangement-type responses (Sec. 3) of this self-
consistent model appear to have the right order of
magnitude. Orbital rearrangement energies, for ex-
ample, were found to be comparable to level spacings
in nuclear potential wells.® This result seriously
questions the usual identification of such level spacings
with the mass differences observed, e.g., in nucleon
transfer reactions.

In the presence of fluctuating rearrangement ener-
gies, a gap in the eigenvalue spectrum, as, e.g., found at
the proton number 114, does not necessarily lead to a
real shell effect in the masses as a function of nucleon
numbers. The deployment of this realistic Hamiltonian
in the region of superheavy nuclei (Sec. 4) therefore
provides an almost independent check on the magic
proton number 114 which was originally!®.14.16-18
suggested from extrapolations of proton eigenvalue
spectra.

All data in this paper refer to spherical nuclei; Sec. 5
deals in some detail with the straightforward extension
of this self-consistent field model to axially symmetric
deformed densities. The present form has particular
advantage for the description of adiabatic fission
processes.

The Appendix is concerned with some of the compu-
tational problems.

1. SELF-CONSISTENT FIELD MODEL
A single-particle equation of the type

(%:_:2 —e,,,,,‘>¢,',,‘,(r)= / 'K (1, T) @pm (1)) (1)

is sufficiently general to allow for a rather realistic
model of the nuclear self-consistent field. The sub-
script » stands for all quantum numbers specifying a
bound nucleon except for its isospin 3-component
m,. The formalism for the plain Hartree(HF)-Fock
calculation, for instance, viz.,

K () = 3 [W*(f)“(f, ) oi(r) —8(t—1)

1]

X /dw."‘(r)u(r, r')w(r')]ﬁ—(%—m:)KcOux, (2)

15 H. Meldner, Nuovo Cimento 53B, 195 (1968).

16 Cf. Ref. 23 in the paper of Myers and Swiatecki.

17W. D. Myers and W. J. Swiatecki, Nucl. Phys. 81, 1 (1966).

18 A, Sobiczewski, F. A. Gareev, and B. N. Kalinkin, Phys.
Letters 22, 500 (1966) ; S. G. Nilsson, J. R. Nix, A. Sobiczewski,
Z. Szymanski, S. Wycech, C. Gustafson, and P. Méller, Nucl.
Phys. Al115, 545 (1968).
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with suitable models for #(r, r’) provides nuclear
single-particle Hamiltonians which are quantitatively
almost as useful as the ones mentioned in the Intro-
duction.”® Therefore, the HF result, i.e., the result in
the limit where perturbation methods are applicable to
more general many-body formalisms, is sometimes
referred to in the following discussion—although one
should by no means regard the phenomenological
kernel proposed here as being necessarily connected
with a plain HF formalism.

A comparison of (2) with the symmetrical factorized
Van Vleck-type kernel®

K,m(l’, rl) ='U(I r—r’ |)u,,.,(r+r’) + (%_mt)KCoul, (3)

yields upper bound estimates for the ‘‘ranges” of # and
v; namely, the range in | r—r’ | should not exceed the
order of the inverse pion mass (1.4 fm) and the function
% should essentially vanish for its argument larger than
nuclear radii (412 fm). Therefore, % is usually taken to
be proportional to the nuclear matter distribution.
Lower limits on the range of the factor v are required,
for instance, in order to reproduce the observed mo-
mentum dependence of local potential wells, i.e., the
fact that the effective mass of bound nucleons is not
larger than 0.5 in real nuclei®* As is shown in the
next section, this clearly excludes nonlocality ranges
which are small enough to render a § function for v,
i.e., local potentials a reasonable ansatz. Since the
factorized form (3) also allows for self-consistency, it
would appear to yield the simplest kernel that has a
chance to simulate any realistic nuclear self-consistent
field.

A. Nonlocality

Figure 1 shows empirical information on the Fourier
transform of »(| r—1’|), i.e. the approximately equiv-
alent (momentum)?-dependent local potential depth
9(k?), defined, e.g., through

() = / K (1, 1) (T

=ou(0) / dr’ exp[ik (r—t) (| 1=1' ).  (4)

W K. T.R. Davies, S. J. Krieger, and M. Baranger, Nucl. Phys.
84, 545, (1966) ; W. H. Bassichis, A. K. Kerman, and J. P. Svenne,
Phys. Rev. 160, 746 (1967); D. Vautherin and M. Vénéroni,
Phys. Letters, 26B, 552 (1968); P. Pirés, R. De Tourreil, D.
Vautherin, and M. Vénéroni, in Proceedings of the 1968 Inter-
national Symposium on Nuclear Structure, Dubna, USSR (un-
published) ; A. Faessler, P. U. Sauer, and H. H. Wolter, ibid.

% For some discussion on this particular choice see, e.g., W. E.
Frahn and R. H. Lemmer, Nuovo Cimento 6, 664 (1957); A. L.
Fetter and K. M. Watson, in Advances in Theoretical Physics I,
edited by K. A. Brueckner (Academic Press Inc., New York,
1965); A. E. S. Green, Rev. Mod. Phys. 30, 569 (1958); K. A.
Brueckner, Phys. Rev. 103, 1121 (1956); J. H. Van Vleck, ibid.,
48, 367 (1935).

% M. H. Johnson and E. Teller, Phys. Rev. 98, 783 (1955);
V. F. Weisskopf, Nucl. Phys. 3, 423 (1957); Rev. Mod. Phys.
29, 174 (1957); K. A. Brueckner, A. M. Lockett, and M. Roten-
berg, Phys Rev 121, 255 (1961).
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F16. 1. Depth of the nucleon-nucleus potential as a function
of energy. The solid bars give the limits for regions 1-4 as dis-
cussed in Sec. 1 A.

Therefore, in order to specify reasonably well a non-
locality function »(| r—1’|), one needs in addition to
its width in | r—1’ | at least one more property like its
asymptotic slope. For example, Yukawa and Gaussian
form factors »(| r—r’|) fit the dashed curve in Fig. 1

() =v(e—20(e) ), ()

with widths around 0.8 and 1.5 fm, respectively (cf.
Ref. 14). The most important evidence on w(e) in
region 1 comes from the (e, €'p) experiments.? The
data on #Ca and ™As suggest that 1s protons are bound
by at least 80 MeV in heavier nuclei. Other limits on
%(e) in this region may be inferred from estimates of
the effective nucleon mass in nuclear matter.3%

In region 2, ie., for ¢ around the Fermi energies,
w(e) is most accurately determined in absolute mag-
nitude—via the observed separation energies. But the
slope there is subject to some speculations. One school
suspects an appreciable wiggle there,? a zero, or even a
sign change of the slope as indicated by the dotted line
in Fig. 1. However, the arguments presented for such
anomalies are not conclusive yet (cf. Sec. 3 and Ref.
15).

In regions 3 and 4 the evidence comes mainly from
fits of nucleon-nucleus scattering.2¢28 Although one
cannot completely disentangle the energy dependences
of real and imaginary parts, there is general agreement

2 For results on As, see U. Amaldi, Jr., G. C. Venuti, G. Cortel-
lessa, E. De Sanctis, S. Frullani, R. Lombard, and P. Salvadori,
Accad. Naz. Lincei-Rend. Sc. fis. mat. e nat. Serie VIII, XLI,
fasc. 6 (1966) for results on “Ca, Phys. Letters 22, 593 (1966).
(1;‘ 6?) E. Brown, J. H. Gunn, and P. Gould, Nucl. Phys. 46, 598

# P, E. Hodgson, The Optical Model of Elastic Scattering (Ox-
ford University Press, New York, 1963).

% F. G. Perey and B. Buck, Nucl. Phys. 32, 353 (1962); H.
Schulz and H. Wiebicke, Phys. Letters 21, 190 (1966). .

3% L. Rosen, J. G. Beery, A. S. Goldhaber, and E.'H. Auerbach,
Ann. Phys. (N.Y.) 34,96 (1965) ; R. L. Cassola and R. D. Koshel,
Nuovo Cimento 53B, 363 (1967).

2 F., G. Perey, Phys. Rev. 131, 745 (1963).

% Cf., for example, A, Watt, Phys. Letters 27B, 190 (1968).
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TasBLE 1. The two parameter sets used in the present calculation.
Except for Table II all results refer to parameter set A.

v (MeV) a(fm) p (fm™3) o (fm?) T
Set A 391.3 0.8 0.3 0.5 0.3
Set B 289.0 0.9 0.4 0.5 0.3

now that the real part has the minimum decrease, with
energy indicated in Fig. 1 for the well-analyzed 10-
MeV region. Straightforward use of the real part of an
optical-model fit did exactly yield the shell structure.!!
However, the nonlocality there did correspond to the
lower limit for the slope indicated in region 3 (derived
from Refs. 25 and 26) and gave only about half the
total binding energy.?® Therefore, the stronger energy
dependence indicated by other optical-model fits?
is favored from the bound-state fits—if one excludes a
strong curvature of 7(e) for ¢<0. No appreciable
energy dependence is established for the 100-MeV
region; v, may essentially become a constant there.24:2

The dashed curve in Fig. 1 corresponds to a Yukawa
nonlocality function with the width used here (cf.
set A of Table I). This simple form can account quite
well for the data. Superpositions of several Yukawas
that did, for instance, give a wiggle in region 2 were
found to be unnecessary at this stage of the phe-
nomenology. A Yukawa, i.e., an NN potential-type
function is suggested from the Van Vleck kernel and
seems to fit the curvature in Fig. 1 a little better than
a Gaussian.

B. Saturation and Density Dependence

The real part of # in Van Vleck-type kernels is usually
taken to be similar to the matter density p.202% Taking
literally #=p(3(r+1’)) is, of course, not consistent:
The output p from a bound-state calculation has a
smaller rms radius than the input. This self-consistency
problem can be solved by adding to the width function
v, the “interaction” in the Van Vleck kernel, some
density dependence such as

o(r—r)[1—0pfG(r+1))—"++], (6)

with a, 8>0. The resulting kernel ~v»(1—apf) gives a
sum of terms proportional to p*/3, —p, and p*# for the
energy—readily seen from the Thomas-Fermi ap-
proximation. One can therefore make it stationary at
the observed nuclear saturation densities. In this class
is, for instance, Bethe’s recent proposal for the effective
NN interaction®: v(1—ap??). A similar term appears in

® R. D. Koshel, Phys. Rev. 144, 811 (1966).

®H. A. Bethe in Proceedings of the International Conference on
Nuclear Physics, Gatlinburg, Tennessee, 1967 (Academic Press
Inc., New York, 1967) ; see also A. Lande and J. P. Svenne, Phys.
Letters 25B, 91 (1967); and A. M. Green, Phys. Letters 24B,
384 (1967). Introducing this term as an explicit density depend-
ence of the two-body potential would modify the relation used
here [Eq. (18)] for the total binding energy. I am grateful to
Professor K. A. Brueckner for discussions on these questions.
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HF-type formalisms as a first-order correction for non-
locality of the two-body potential. This is seen from the
analogous formula to Eq. (4) for a nonlocal NN po-
tential. The equivalent momentum-dependent potential
derived in this way is a local one multiplied by the
usual power series in momentum operators squared—if
the kernel is symmetric:

v(1=apt—bpi—-++); )

and Eq. (6) follows from the statistical approximation
p~p'3. The particular power g is therefore suggested
from such considerations and used in the model below.
The choice is not critical as long as =% is not very dif-
ferent from this value. Some variations in the range
0.3<B<1 with adjustments of other parameters left
results practically unchanged.

Similar arguments hold for the simplification
of taking p(3(|r|+]|r'|)) instead of p(G(r+41’))=
p(G(| r+1'])) for the spherical density distributions
considered here (for nonspherical p see Sec. 5). Both
choices should give essentially the same fits to the data
up to some parameter renormalization.

A summation of the preceding considerations there-
fore yields as the most straightforward model of a
nuclear kernel:

K(r,v) =o(| r—1"|) {1—[p(x) /o P} p (),
e=3([r|+| D). (8)

This will be adorned by two “fine-structure” terms
discussed in Secs. 1 C and 1 D.

C. Isospin Dependence

Conventionally, the isospin dependence of nuclear
single-particle Hamiltonians is introduced via a Lane
potential®

t-T/A4, 9

where t and T are, respectively, the isospins of the
nucleon and residual nucleus in question. However, this
term yields the wrong isotopic variation of rms radii of,
e.g., Ca isotopes if it is used with the strength necessary
in optical-model fits or as required to fit the
neutron/proton ratio in heavy nuclei. Only an in-
consistently small strength parameter could reproduce
the data.®

Considerations similar to the ones that led to the
kernel (8) would suggest the use for the effective p of
an appropriately weighted average of the densities
pety2) corresponding to neutrons and protons, namely,

(10)

with a dimensionless parameter r<1. This can be
interpreted as assuming that only a fraction of the like
nucleons interact with the particle in question, or that

Pmi ~ Pemy) T+ TP

3t A. M. Lane, Nucl. Phys. 35, 676 (1962).

# B. F. Gibson and K. J. van Oostrum, Nucl. Phys. 90A, 159
(1967) ; cf. also A. Swift and L. R. B. Elton, Phys. Rev. Letters
17, 484 (1966).
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they are felt by the particle to be as attractive as the
unlike ones. One can therefore account for effects of
the Pauli principle as well as for isospin-dependent
terms in the NN interaction. It is only the latter that
led to the assumption of the Lane potential. In the
statistical limit, where surface terms are neglected,
a simple exercise shows the present ansatz (10) to be
completely equivalent to Lane’s term p(1+4-at:-T/4).
However, Eq. (10) can reproduce satisfactorily the
neutron/proton ratios or optical-model results as
well as the isotope shifts in rms radii. Recent fine-
structure investigations of the isospin dependence®
also seem to favor a term like (10).

D. Spin-Orbit Interaction
A single-particle spin-orbit term of the type
s-br1(dp/dr) (11)

can be derived from HF-type formalisms* and now
even its strength appears to be understood in this
framework.® About equally satisfactory seems to be
the pragmatic introduction of this term as the simplest
invariant (with respect to rotations and inversions)
proportional to p, s, and Vp, namely,® (pxs)-Vp.
This gives Eq. (11) for spherical nuclei. However, the
present calculations with such a term did not show very
clearly the shell structure for heavy nuclei, as seen,
e.g., from the results of Sec. 2. One reason seems to be
the factor »~dp/dr which emphasizes the influence of
wiggles in the inside density distribution. This did not

8 P, C. Sood and H. G. Leighton, Nucl. Phys. 1114, 209 (1968).

# K. A. Brueckner, J. L. Gammel, and H. Weitzner, Phys. Rev.
110, 431 (1958).

% J. B. Law and D. W. L. Sprung, in Proceedings of the 1968
International Symposium on Nuclear Structure, Dubna, USSR
(unpublished) .

# Cf. for example, V. A. Chepurnov and P. E. Nemirovsky
Nucl. Phys. 49, 90 (1963).

show up in similar but non-self-consistent models
where the density (or potential) was proportional to
the usual Fermi function which is practically constant
inside. Therefore, a form

7(pxs)-Vp (12)

might improve the results.

2. PARAMETRIZATION

A. Five-Parameter Kernel

The accumulation of all essential pieces from Sec. 1
yields the five-parameter kernel

Ko (1, 1) =vev1%/ (y/a) [1— (pm, (%) /p1)**]
X[1—(o/%)8-1(d/dx) Jom, (x) +8(3) (F—me]Veour (%),

(13)
with
Pm¢ = D(—'M)+Tp(m¢)](1+")—ly
x=3(r+r"), y=|r—r'|,
and
YFermi
Py =22 | @rim (14)

v

for the self-consistent field model (1) of spherical
nuclei. The electromagnetic part is assumed to be given
by the static Coulomb potential Vcou of the proton
density p(12 normalized to Z—1; [cf. Eq. (17)].

(1) The parameter v simply determines the energy
scale and was adjusted in all computations to give
(within 0.3 MeV) the total binding energy for Pb*®,

(2) According to the discussion in Sec. 1 B, the non-
locality range should be 0.7 <@ $0.9 fm. An increase in
a widens the level spacings, i.e., decreases the effective
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nucleon mass—as is readily seen from Egs. (4) and
(5). An increased a yields larger rms radii if v is de-
creased according to (1) and all other parameters are
kept fixed (cf. the discussion below on parameter
set B).

(3) The parameter p; stands for the (average)
critical nucleon density where the nucleon-nucleus
interaction changes from attractive to repulsive. Since
actual nuclei saturate with (average) central densities
around 0.15 fm™2, p; must be larger than this value.
An upper limit around 0.5 fm=® is given from hard
sphere packing according to hard-core NN potential
models. It turns out that the present model reproduces
the rms radii of actual nuclei for 0.2<p; $0.4 fm=3.

(4) The observed sequence of shell closures allows
a fairly unique determination of the strength o for the
conventional spin-orbit term. This parameter is con-
fined here to 0.45 <o <0.55 fm? if one wants to re-
produce the magie nucleon numbers up from N=Z=
20. Of course, even narrower limits result if the other

TaBLE II. Some results for parameter set B; cf. Sec. 2 A.
roIr eﬁpsﬁmental data and the pairing correction see Tables
and V.

Binding energy  {("?)"2sharge
(MeV) (fm)

m
4Ca 396.4 3.18
2Pb 1636.2 5.38
29Bi-*¢Pb 4.9
2sPh-27T1 5.7
29Ph-*¢Pb 4.8
28Pb-2"Pb 5.3

parameters are kept fixed and/or further details of the
shell-model spin assignments are required.

(5) The isospin mixing parameter 7 determines
(like o) essentially some sort of fine structure; e.g., the
isotope shifts in rms radii. Satisfactory fits to most
gross data, like masses and radii, are possible with a
very wide range of 7 values. But in order to fit the
isotope mass dependences as well as rms dependences
and the neutron/proton ratios in heavy nuclei, this
parameter should be in the range 0.1<7 <0.5.

The above discussion reveals the problem of a fit
here; there are various data of different dimensions that
should be reproduced reasonably well. But within the
scope of this work there is no apparent preferable
selective principle for a better fit to one particular set
of data, fitting-radii at the expense of fitting masses, for
example. Naturally, it depends on the application of the
model, to which data some sort of least square fit will
be performed. In any case, the parameters should be
confined to the “physical” limits discussed above.

The parameter set A of Table I was used here for the
fairly extensive comparison with data of spherical
nuclei. The set B of Table I has the parameters ¢ and
p close to the limits of their reasonable regions. A
decrease in rms radii (by about 49%) that would result
because of the increase of p; from 0.3 to 0.4 fm=3 is
compensated for in this case by increasing the non-
locality from 0.8 to 0.9 fm. Some results for parameter
set B are given in Table II.

B. Results for a Typical Parameter Set

It should be emphasized that all results in this paper
except for Table II refer to computations done with
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Fic. 4. Upper and lower solid
curves give the density distribu-
tions of protons and neutrons for
some nuclei on the g stability line.
The dashed curves are the nuclear
charge densities calculated with
Eq. (24) from the corresponding
(bare) proton densities. Examples
of Fermi function fits to electron
scattering data are shown as thin
dashed curves. The different fits
of Ref. 44 are practically indis-
tinguishable in this figure.
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r, fm

just the one parameter set A of Table I; i.e., everything
is computed with simply the rough center values of the
above estimated parameter regions. In view of this
fact, the general agreement with data throughout the
periodic table is surprisingly good. Absolute values for
masses, radii, and 1s proton levels are reproduced
within a few percent. The mass- and radius-difference
data are quite satisfactorily reproduced, normally within
30%. Even the higher-order difference quantities such
as rearrangement energies or isomer radius shifts seem
to result with the correct order of magnitude.

Figure 4 shows density distributions of protons and
neutrons (lower and upper solid lines). One point of
recent interest is the “neutron skin” of heavy nuclei,—#
the Johnson-Teller effect.® In the case of 2®Pb, for
example, the results of pionic scattering and isobaric
analog-state analyses seem to disagree significantly
with u or K mesic experiments. There are two percent
rms radius differences between neutron and proton
densities deduced from the former type of data,®
whereas a difference of more than 109 is reported from
u~ atoms and K~ capture, as well as from some optical-

# D. H. Wilkinson, in Proceedings of the 1968 International
Symposium on Nuclear Structure, Dubna, USSR; Comment
Nucl. Part. Phys. I, 80 (1967).

# L. R. B. Elton, Phys. Letters 26B, 689 (1968) ; G. W. Green-
less, G. S. Pyle, and Y. C. Tang, Phys. Rev. Letters 17, 33 (1968);
B. Holmquist and T. Wiedling, Phys. Letters 27B, 411 (1968);
H. A. Bethe and P. ]J. Siemens, ibid. 27B, 549 (1968).

# S. A. Nolen, Jr., J. P. Schiffer, and N. Williams, Phys. Letters
27B, 1 (1968).

“ E. H. Auerbach, H. M. Querski, and M. M. Sternheim, Phys.
Rev. Letters 21, 162 (1968).

4 Cf. M. H. Johnson and E. Teller, Phys. Rev. 93, 357 (1954).

and shell-model analyses.® The present self-consistent
model gives rms(#) —rms(p) =0.07 fm (see Table IIT)
in excellent agreement with the value 0.07+0.03 fm
due to an analysis of the isobaric analog state®® which is
consistent with recent #*-Pb scattering data.® In
addition, the absolute magnitude of the 2%®Pb rms
charge radius given in Table III agrees perfectly with
elastic electron scattering experiments yielding the
value 5.4240.03 fm.2 One should notice the neutron

TasrE III. Binding energies and rms radii for some spherical
nuclei. Additiona! comparisons with experimental data give, e.g.,
for the 1s proton level in #Ca: experimental 77414 MeV®, calcu-
lated 79 MeV.

Binding energy Calculated
(MeV) rms radii (fm)
Experi-

Nucleus mental Calculated (r2)Y2gh.re0 (202,  (2)V2,
40Ca 342.0 339.4 3.15 3.06 3.02
“4Ca 380.9 380.3 3.22 3.13 3.20
48Ca 416.1 426.6 3.29 3.20 3.34
88Sr 768.5 711.5 4.02 3.95 4.02
usSn 1004.8 1017.9 4.50 4.43 4.47
10Ce 1172.8 1189.0 4.74 4.68 4.73
208Ph 1636.4 1636.4 5.44 5.38 5.45
00114 2140.5 6.26 6.21 6.24

® Reference 22,

4 J, Bellicard and K. J. van Qostrum, Phys. Rev. Letters 19,
242 (1967).
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F16. 5. Isotopic variation of charge density distributions for
0.4,4Ca and 12.18,1245n; cf, Table IV for rms radii.

skin or halo of 2%Pb shown in Fig. 4 which looks
surprisingly large in view of the small rms radius dif-
ference. In the case of “Ca, the effect is reversed.
According to the present calculation, the rms radius of
neutrons is 0.04 fm smaller than that of the protons, in
qualitative agreement with a recent optical model
analysis.®

Figure 5 and Table IV give calculated isotopic vari-
ations of charge densities for some Sn and Ca isotopes.
For example, the calculated #Ca to “Ca rms charge
radius difference agrees well with experiments.#
Use of the standard (NV—Z)/A term from optical-
model fits [instead of the term (10)] would yield the
wrong sign for this shift.

3. REARRANGEMENT EFFECTS

In any HF-type many-body formalism, the kernels
depend on the occupation functions, which are, e.g.,
for the ground state, (e, —e¢,) in the HF formalism,
and {14 (&r—¢) /[ (6 —€&)2—A2]H2} in Hartree-Bogo-
liubov-type formalisms. The effective force acting on a
single nucleon will therefore change when different
states (orbits) are occupied by the other particles, i.e.,
when the residual nucleus rearranges. The correspond-
ing orbital rearrangement energies have been discussed

4 N. Berovic, P. M. Rudolph, and S. M. Scarott, Phys. Letters
27B, 477 (1968).

# K. J. van Oostrum, R. Hofstadter, G. K. Néldecke, M. R.
Yearian, B. C. Clark, R. Herman, and D. G. Ravenhall, Phys.
Rev. Letters 16, 528 (1966) ; R. D. Ehrlich, D. Fryberger, D. A.

Jensen, C. Nissim-Sabat, R. J. Powers, V. L. Telegdi, and C. K.
Hargrove, Phys. Rev. Letters 18, 959 (1967).
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with this model in some detail elsewhere.’® They were
shown to be comparable to eigenvalue-differences in
local (Woods-Saxon—type) potential wells. Hence, it is
an unjustified simplification to identify such level
spacings with the mass differences observed, e.g., in
nucleon transfer reactions. Parameter set A of Table I
gave a good fit to all difference data in the Ca region.
One typical example is the first neutron-hole state for
4Ca: The observed mass difference to the ground
state of about 2.6 MeV is reproduced by the present
single-particle Hamiltonian that gives at least 6 MeV
for the corresponding level spacing; i.e., more than 3.4
MeV result from orbital rearrangement (cf. Ref. 15).

The agreement with the mass data is also excellent
for the #“Ca= (one nucleon) differences (see Table
V). For this example another type of rearrangement
effect is revealed in Fig. 6. Conventionally, the eigen-
values were fitted to the experimental total binding
energy differences; i.e., rearrangement was totally
neglected. Of course, one could not do better in cal-
culations that had no chance to get the right order of
magnitude for the total binding—as in Jocal potential-
model fits. Here, in Fig. 6, the observed binding energy
differences are reproduced within 0.2 MeV. However,
due to rearrangement, they differ up to 6 MeV from
the corresponding eigenvalues.

It might be argued that for some reason this model
strongly overestimates rearrangement effects. But the
magnitude of this model’s rearrangement response can
be checked to some extent by a comparison with the
calculated isomer shifts due to single-particle excita-
tions (Table VI). Their order of magnitude seems to
be confirmed by some relevant data.*® This corrobor-
ates the present results on rearrangement energies
because of the well-known radial and eigenvalue shift
correlation for single-particle potential models.

This observation also casts doubts on shell-model
calculations that use the observed total binding-energy
differences (of A+1-nucleon systems) as the eigen-
values for one constant single-particle Hamiltonian.
Rearrangement destroys the orthogonality of the wave

TasLE IV. Some calculated isotope shifts of rms radii. Within
the accuracy of the calculation, the charge radius differences are
equal to the corresponding proton results and the 12¢-12Sp 112-120Gp
and 18718 as well as the 6-14Sn differences are all equal to
the 1%-185n shift. Note the large calculated neutron rms radius
difference for 4#4Ca.

Ay, A,
(fm) (fm)
4Ca—4Ca 0.08 0.08
#Ca-4Ca 0.08 0.15
120Sp-118Sn 0.04 0.06
1148128 0.01 0.01

4 D. Quitmann, of the Lawrence Radiation Laboratory, Uni-

versity of California at Berkeley (private communication).
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TaBLE V. Rms radius and binding-energy differences at closed shellsz-one nucleon for established magic numbers and for Z=114.
The pairing correction is assumed to be (15/AY%) MeV.* The energies are calculated with an accuracy of about 0.2 MeV; the radii
within about 3)X 102 fm. No radius difference is reported for cases where the result was smaller than this error. The calculated charge
radius differences agree with the corresponding proton results within the numerical accuracy.

Binding-energy differences Calculated radius differences
Magic MeV fm)
number Nuclei Experimental Calculated A2 )2, APy,
N=20 41Ca-4Ca 8.4 8.4 0.019 0.048
#Ca-%Ca 15.6 15.3 0.006 0.005
Z=20 4Sc-4Ca 1.1 1.1 0.051 0.022
#Ca-¥K 8.3 8.0 0.021 0.011
N=28 49Ca—Ca 5.0 0 0.010 0.042
48Ca—Ca 10.1 13.3 0.020 0.034
Z=28 8Cu-92Ni 6.1 2.7 0.011 0.003
©Ni-8Co 1.1 13.9 0.033 0.017
N=350 89Sr—83Sr 6.8 5.3 0.007 0.013
8Sr-87Sr 11.1 11.7 0.004
Z=50 19Sh-18Sn 5.2 2.3 0.008
usSn-UTTn 9.9 10.7 0.004
N=82 UICe140Ce 5.5 3.3 0.007
H0Ce-19Ce 9.1 8.6 0.005
Z=82 20B;j—2%¢Ph 3.8 3.3 0.008
208PhH-207T] 8.0 5.5
N=126 20Ph-28Ph 3.9 3.2 0.004
28PH-27Ph 7.4 5.4 0.004 0.006
Z=114 287115-2%6114 0
286114285113 .ee 3.4
0111550114 0.1 .
30011429113 cee 5.2 cee coe

2 P, E. Nemirovsky and Yu. V. Adamchuk, Nucl. Phys. 39, 551 (1962); for experimental rms charge radius differences, cf., for example, D. Quittmann,

Z. Physik 206, 113 (1967).

functions for single-particle states of nuclei with dif-
ferent excitations and/or nucleon numbers.

4. MAGIC PROTON NUMBER 114

The charge spectrum of cosmic-ray nuclei indicates
the existence of nuclei with Z>110.#% An increasing

39 40cq 4g 39,
1f 1.2
49 40 2,, —
—_——ed?

QICu

1.5 if
_\7/?12‘0
x—

‘OCO

02 20 oo 182 ,
8 | _n.o =
0 T e | 108
Sec—
-E 331.49 337.0| 340.5 ~E 324.1 337.0 347.8
-AE Gd -AE ©3

F16. 6. Example for rearrangement effects: N =Z=20 shell-+
one nucleon. Compare the eigenvalues (in MeV) (arrows) with
the circled total binding-energy differences AE (also in MeV). An
excellent fit to the data results (cf. Table V) when a pairing
correction of 2.4 MeV is added to “Ca. Conventionally, the eigen-
\s/aluess are identified with total binding-energy differences; cf.

ec. 3.

4 P. H. Fowler, University of Bristol, Wills Physics Laboratory
Report (unpublished) ; I am grateful to Professor N. Flerov for
drawing my attention to this work.

amount of experimental effort is spent now to produce
such superheavy nuclei.¥ For some time, Z=126 was
the main theoretical candidate for a relatively stable
superheavy nucleus. This belief, based on a simple-
minded shell-model picture that did not differentiate
between protons and neutrons, thus assumed a repeti-
tion of the V=126 shell in Z.

Shell closures, i.e., structure-dependent tendencies to
prefer spherical shapes, have been shown to be of prime
importance for the spontaneous-fission half lives of

TasLE VI. Examples of rms charge radius differences etween
the first one-neutron-hole excitation and the ground statc. Ex-
cept for the case of Ca, the amount of computer time invested
here did not allow checking for more than the orders of magnitude.

A, Ay,
(fm) (fm)
41Ca*4Ca 0.012 0.037
207T]*-207T] 1073 1073
2TPh*-27Ph 107 1073

4 S. G. Nilsson, S. E. Thompson, and C. F. Tsang, Phys. Letters
28B, 465 (1969); S. G. Thompson, of the Lawrence Radiation
Laboratory, University of California at Berkeley (private com-
munication) ; N. Flerov, in the Proceedings of the 1968 Inter-
national Symposium on Nuclear Structure, Dubna USSR
(unpublished).
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superheavy nuclei” The contribution to the barrier
height due to shells is negligible at the proton number
Z =50 and is about 309, of the total for Z around 82
near the 8 stability line. In the region beyond Z=110
the average value, or liquid-drop-model barrier, be-
comes practically negligible, since it is quite small as
compared to the present uncertainties about structure-
dependent contributions there.

About four years ago, calculations of this author
showed Z=114, N=184 to be a clearly preferable
candidate for a rather stable superheavy nucleus.!®
This has since been confirmed by many independent
computations®*®® and is widely discussed now.® The
extrapolations were based on single-particle potential
fits that showed a shell structure in the eigenvalues
similar to the one observed in the experimental mass
defects. Fluctuating rearrangement effects were totally
neglected. Most authors used the questionable pro-
cedure of identifying eigenvalue spacings with mass
differences (cf. Sec. 3).

The present calculations check the real shell effects
in the nuclear masses. As can be seen from Table V,
the partial derivative d E/dZ of the total binding energy
(mass) changes considerably at the proton number
Z=114 when parameter set A of Table I is used for
superheavy nuclei. The present calculations for N =172
and 186 show the expected decrease of the shell effect
for isotopes far from the extrapolated beta stability
line. At N=172 and Z=114, the lack of neutron
excess seems to smooth the step in the mass function
to an insignificant wiggle. For 186 neutrons the shell
effect has the magnitude observed at established magic
numbers. Therefore, experiments on Z =114 should aim
for compound nuclei with mass numbers around 290 or
higher.

5. DEFORMED NUCLEI AND FISSION

It is rather straightforward to extend the model given
by Egs. (1), (13), and (14) to nonspherical, in par-
ticular axially symmetric, density distributions. Present
computer sizes, however, seem to require some sort of
“local energy approximation” to the nonlocality
problem. For this case, most aspects of the resulting
numerical work have been investigated recently.®
The present Hamiltonian is, in such an approximation
for axial symmetric cases (cf. Ref. 49, Eq. 2.8),

Hop, = (p*/2m) +v(&m,) {1—Lomi (3, b) /m "}
X[1=(a/h) (p %8) - Vpm (2, b) + (3 —m)V (2, b),
(15)
where cylinder coordinates (z, b) are introduced,

4 A. M. Weinberg, Phys. Today 20, 23 (1967); C. Y. Wong,
Phys. Rev. Letters 19, 328 (1967); see also G. T. Seaborg, Ann.
Rev. Nucl. Sci. 18, 53 (1968).

# F. Dickmann, Z. Physik 203, 141 (1967).
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Y =2a2+4?, and pn, is the effective density calculated
according to Egs. (13) and (14). Two methods are
mainly used for the computation of the energy-de-
pendent local potential that corresponds to a given
Van Vleck-type kernel. In bound-state calculations the
simple technique of using the Fourier transform ac-
cording to Egs. (4) and (S5)

v(e) = {1+ (2m/A*) a*[e—v(e) ]}

is probably as good® as the fancier LEA.®! Equations
(15) and (16) give a framework for self-consistent
calculations of nuclear single-particle data. The
problematic boundary condition of “volume conserva-
tion” in equipotential contours, for example, is com-
pletely avoided here. In fact, most of the classical dif-
ficulties®? of the Nilsson-type models for deformed
nuclei and adiabatic fission computations do not arise.

(16)

6. CONCLUSIONS

The final remarks of Sec. 5 reveal the main reason
for the computations done so far, namely, a check of
the qualities of the proposed model that is designed to
work for a much wider range of applications. Already
here, the proposed Hamiltonian was used for the cal-
culation of more independent data than was conceivable
with previous models. For spherical nuclei, one constant
set of five physical parameters allowed satisfactory
reproduction of

(1) charge density distributions, including isotope
and isomer shifts,

(2) 1s proton levels as measured in (e, e’p) scatter-
ing,

(3) total binding energies of nuclear mass defects,
and

(4) the shell-model spin assignments and mass
structure

throughout the periodic table. Hence, it seems that all
future work in this direction has to confirm quanti-
tatively the essential features of a nuclear kernel de-
termined here, particularly the wmonlocality and re-
arrangement effects. The present concept works quanti-
tatively well enough to allow predictions such as the
proton shell 114.

Equation (1) was solved (numerically) exactly. The
results can therefore be used to check approximations
that might be necessary for deformed and fissioning
nuclei.

Naturally, there are many improvements to be con-
sidered, such as those mentioned in the discussion

8 M. Krell, Z. Physik 205, 272 (1967).

51 Cf., for example, H. Meldner and G. Suessmann, Z. Natur-
f((irgsgg) 20a, 1217 (1965); H. Fiedeldey, Nucl. Phys. 77, 149

&2 L.'Wilets, Theories of Nuclear Fission (Clarendon Press,
Oxford, England, 1964), Chap. 4.3.
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about the spin-orbit term. Some residual interaction
effects of the pairing type, for instance, could be taken
into account by appropriately smoothing the step
function used in Eq. (14) for the occupation prob-
ability distribution.
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APPENDIX

For spherical symmetric density distributions the ra-
dial equation is

L2/ 2m) (@ drt~[10+1) /7T} —eotim Yt (1) =3 [ @ra(r, ) (1= Com () /0175)
0

X {om () = (a/22) [ §(541) =1(41) —§]0"mi (%) }thntim, (7")
+G—m) ((Z—1)/Z)é [f'l /—r dr'rpyn (r') + fw d""ﬁ(—m)(f')]unzim(f),
0 r

where x=3(r+7'), n denotes the radial, / denotes the orbital-angular momentum, j denotes the total-angular-
momentum quantum number, and m, denotes the isospin 3-component for the nucleon in question; p’ is the
derivative of p with respect to the argument and ¢2=1.4368 MeV fm. The 4; are the partial-wave projections of the
width function »(| r—r'|).

The single-particle equation is assumed to emerge from pure two-body internucleon forces. The total binding
energy is therefore

E= Dt D= i et [ droc @i, (18)
1 1,7 2
where the sums extend over the occupied levels; ¢; is for the spherical cases
ttimg = (2/2m) [ dr([H0A1) /7Tt () + () it () /7). (19)
0

Eigenstates in Strongly Nonlocal Potentials

The computer problem is to find the first few eigenvalues ¢ and eigenvectors % of an integrodifferential equation

(@/dr?) ~[e+C( Tju(r)+ [ dr'gr, yu(r) =0 (20

0

for. boundary conditions of the type lim,.o #(r)~r**! and lim,.,., u(r)~exp[ —r(e)"2]. Selecting an appropriate
finite integration interval (0, R) divided into N parts and with s=R/N, ¢;=C(is), and gi;=g(is, §s), one gets the
corresponding difference equation (A—e)x=0 with a symmetric matrix

sgu—C1—2/s*  sgpt1/st  sg

sgut1/s®  sgu—Cy—2/s?
Sgal

sgn sgny—Cy—2/s?
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A good approximation % to « is obtained, e.g., from a
LEA program. The vector »© fulfills approximately
the same boundary conditions as # and has the same
number of nodes. An appropriate iteration program is
the following:
Start with :=0.

(1) Normalize by replacing % with %® (1/4®Ty®).

(2) Compute e =u®OThy®,

(3) Solve #'tD = (h—e®)~14® with some standard
inversion program.

(4) Replace 7 with i41; go to (1)
unless | e —e® |/| e |K1.

This “Wielandt inverse iteration’* works as follows:
Let v be the exact solution, i.e., (A—en)?,=0. Then,
step (3) is in spectral decomposition

> ey, = (h—e®) 1 > cm Ot

= 2 [m®/(en—e)Jom,  (21)

so that
en ) =0/ (em—eD).

Therefore, the iteration converges to the nearest eigen-
vector v, which is picked out via the above pole.

Partial-Wave Projections of Yukawa Functions

The above 4; are
' o elrrila
hi(r, r') =2mrr g dz Py(3) m ,
with r=|r |, z=rr'/rr, since®
exp[— (1/a) (r2+r2—2rr'z) 1/2]
(r24-r2—2rr'z) 102

= 2 (214-1) Py (2) (rr") 2K 1yyo(r' /@) Tia (2] a)

one has

hi(r, ') =dmwa(rr') V2 11)2(r/0) Kipao(r'/a)  for r<r'.

% E.g., the Fortran routine LINIT of the Lawrence Radiation
éaboratory, University of California at Berkeley, Computing

enter.

% H. Wielandt, Report No. B44/J/37, Aerodyn. Vers.-Anstalt
Gottingen, 1944 (unpublished); J. H. Wilkinson, The Algebraic
Eigem:alue Problem (Clarendon Press, Oxford, England, 1965),
p. 321.

% G. N. Watson, Theory of Bessel Functions (University Press,
Cambridge, England, 1962).
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Also from Ref. 55, p. 80,

:
Inyao(%) Kipajo() =3 (2a") V2 e E (=)*Ty(x)

—(2)e Y Tu@ e X Tul#),
=0 =0
with Ty (x) = (I+k) |/ (k!(1—k) !(2x)*). The following

formula is feasible for computations:

hi(r, r') =2ma*[el® g (=)*¥Tw(r/a)

(=) X Tulr/a e Y Tulr/a)
k=0 k=0

for r<r', (22)
so that ko(r, ¥') =2mwa2(e"/e—e"/%)¢~'I3, etc.
Charge Density and Proton Form Factors

The nuclear charge density pen is obtained by folding
the proton probability distribution with the electric
proton form factor f

pa()= 2 [ lonnlof(r=r ). (29)

The ¢,,-1/2 are properly normalized single-particle wave
functions and the sum extends over all occupied proton
levels. The best phenomenological proton form factor
appears to be an exponential®

f(r) =(8/8r)etn,
with

a=(12/{())¥2 and (r2)=fdrr"’f(r).

For spherical symmetric p= | ¢ |2 one has

() =(a/tr) [ drro(r) [ r—r' | + D)l
0
—[a(r47) +1]est+n7],

The present calculations were done with the value
(r)12=0.75 fm (cf. Ref. 56).

(24)

% F. Burmiller, M. Croissiaux, E. Dally, and R. Hofstadter,
Phys. Rev. 124, 1623 (1961); for a comparison with other form
factors see P. Hofstadter, Rev. Mod. Phys. 30, 482 (1958).



