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A simple sdf'-consistent single-particle equation is investigated and compared with similar attempts. The
proposed model is designed to be particularly suitable for the calculation of (adiabatic) fission processes.
The kernel of this integrodi8erential equation has a structure that allows satisfactory reproduction, with
one constant set of five physical parameters, of (1) charge density distributions, including isotope shifts,
(2) is proton levels as measured in (e, e'p) scattering, (3) total binding energies or nuclear mass defects,
and (4) the shell-model spin assignments and mass structure throughout the periodic table. Hence, it
seems that all future work in this direction has to confirm quantitatively the essential features determined
here, particularly the nonlocahty and rearrangensent e8ects. Rearrangement energies appear explicitly,
since the present model, like self-consistent fields of appropriate many-body formalisms, yields different
eigenvalue spectra and mass defects for different occupation functions. The partial derivative aE/aZ
of the total binding energy (mass) changes considerably at the proton number Z= 114 when the present
Hamiltonian is used for superheavy nuclei. This confirms an earlier suggestion made by this author on
the basis of a gap in the proton eigenvalue spectrum at Z= 114. The present calculations show that this
shell e8ect becomes insignificant for isotopes too far from the extrapolated P stability line, in particular
for F&172.

INTRODUCTION

+HENOMENOLOGICALLY, the Hamiltonian for
a nucleon bound in a nucleus allows a rapidly

converging expansion; B=B1+B~+ ~ ~ in terms of
one-body, two-body, etc. , operators; i.e., a "realistic"
model for the single-particle Hamiltonian Br accounts
rather accurately for gross nuclear data of bound and
scattering states, thus leaving only small phenomeno-
logical many-body forces to produce residual corre-
lations. This picture allows comprehension of essential
facts such as the pronounced nuclear shell structure and
the extremely small ratio of the odd-even mass stagger-
ings to the nuclear binding energies. However, even a
dozen years after the establishment of the shell-model
phenomenology, ' ' basic qgantitatiee questions, about
the extent of nonlocality of Br and its rearrangement-
type response, e.g., are far from being incontrovertibly
settled.

One purpose of this work is to investigate such
features of realistic nuclear single-particle Hamil-
tonians without the usual restrictions and oversimpli-
fications caused by limited computer facilities. For
example, self-consistent equations with nonlocal po-
tentials are solved (numerically) exactly here.

Two approaches for the determination of B~ are
easily distinguished: Number one is the direct prag-
matic way, i.e., an ansatz for a phenomenological
single-particle equation (usually involving nonlocal
one-body potentials) . The second deploys some

$ Work was performed under the auspices of the U.S. Atomic
Energy Commission while the author was holding a NATO
postdoctoral fellowship.

~ Present address: Freie UniversiNt Berlin, %'est-Berlin,
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many-body formalisms with phenomenological two-
body potentials. At the present stage of the theory, a
preference for the latter is unfortunately based on the
prejudice that a complicated answer to a complicated
question is more reliable than a simple one. This un-
certainty is due to the fact that all approaches of the
second kind, although potentially closer to a first-
principle method, still have to be based on a practically
unsolved many-hadron problem. The SN interaction
is not sufBciently understood at the distances of major
importance for this purpose, i.e., smaller than half the
inverse pion mass. 4 This implies the high uncertainty
in the oG-energy-shell behavior of XN potentials, '
particularly in their nonlocality. The nonlocality quite
obviously exhibits the ambiguity of fits of the two-body
SX scattering with potential models, since one can
always construct classes of phase-shift equivalent po-
tentials with identical spectra but quite diR'erent of(-
energy-shell behavior, including cases which give
singular Hartree-Fock-type matrix elements; e.g. , any
unitary transformation acting on a given two-body
Hamiltonian that contains some $$ phase-shift-fitting
potential gives another Hamiltonian, such as e'"Be '",
usualIy with a potential of different nonlocality or
oR'-energy-shell behavior. The fit to the on-shell data
is preserved, as long as the change of the T matrix
(proportional to the change of the Hamiltonian')
vanishes there, i.e., bT~SH $0, H)=0. Thus, all
such transformations with Hermitian two-body oper-
ators 0 yield equivalent on-shell potentials once the
transition matrix element of this commutator van-
ishes. ~ This can be viewed as a formal method of

'Cf. E. Lornon and H. Feshbach, Rev. Mod. Phys. 39, 611
(1967).

'Cf. H. Pierre Noyes, Saclay Conference paper No. SLAC-
PUB-256, 1967;I am indebted to Professor Noyes for enlightening
discussions on these problems.

'Cf. M. L. Goldberger and K. M. Watson, Col14sioe Theory
(John Wiley R Sons, Inc. , New York, 1955).' P. Mittelstaedt and M. Ristig, Z. Physik 193, 349 (1966);see
also, G. A. Baker, Phys. Rev. 128, 1485 (1962}.
i815



1816 HEINER MELDN KR 178

obtaining families of equivalent potentials by gen-
eralized Scott-Moszkowski —type' separations. There-
fore, it would seem futile to work numerically with
the second approach, as long as the question of o6-
energy-shell behavior is not sufficiently understood
quantitatively. At present, it is hardly possible to make
even the qualitative decision between the extreme
cases of purely local hard-core versus highly nonlocal
smooth potentials. '

It seems safe, however, to adopt as a basis a non-
relativistic potential description of ES forces at the
low kinetic energies of nucleons bound in many-
baryon systems. This belief is due to the small ratio
of the pion to the nucleon mass. "Thus, it is also safe to
rely on the gross structure of single-particle equations
as given by many-body formalisms and approxima-
tions which are based on suKciently general ES
potentials. This—presently wis- restriction on the
qualitatize results of such formalisms requires the
parametrization of a nuclear single-particle Hamil-
tonian, as is done, e.g., via the ansatz of a Woods-
Saxon or Nilsson-type potential, usually with some
velocity dependence. ""However, these simple models
of a nuclear self-consistent field can be replaced now.
Modern computers allow a considerably improved
simulation of the nuclear single-particle equations that
are expected from reasonable many-body formalisms.

One suggestion in this direction is made here (Sec.
1) . Complications actually required are slight in
comparison to those necessary for the ancient nuclear-
well ansatz. The proposed single-particle Hamiltonian
has a structure close to the one given grossly by
Har tree-Fock-Sogolubov or Brueckner-type formal-
isms, i.e. nonlocality, density, spin-orbit, and isospin
dependences are introduced into the kernel of this
equation in the form expected in first order from such
formalisms involving rather general nonlocal XX
potentials.

Section 2 A shows that only five physical parameters
allow a surprisingly good fit to many independent data
throughout the periodic table. Such a widespread
application was inconceivable with previous models
of H~. The essential features of a realistic single-particle
Hamiltonian seem to be determined rather uniquely this
way. They will have to be confirmed once substantial
experimental information on the oQ'-energy-shell be-

8 S. A. Moszkowski and B.L. Scott, Ann. Phys. (N.Y.) 11, 65
~1960),

'Cf. , for example, the discussion in Proceehngs of the Inter-
national Conference on Eudear Physics, Gatlinbgrg, Tennessee,
1N7 {Academic Press Inc. , New York, 1967},p. 673.

'0 Cf. G. Chew, Phys. Rev. Letters 19, 1492 (1967); Comments
Nucl. Part. Phys. II, 107 (1968)."H. Meldner and G. Suessmann, Phys. Letters 6, 353 (1963)."A. A. Ross, R. D. Lawson, and H. Mark, Phys. Rev. 104, 401
(1956); P. E. Nemirovsky, Zh. Eksperim. i Teor. Fiz. 36, 889
(1959) LEnglish transl. : Soviet Phys. —JETP 9, 627 (1959));
D. J.Wyatt, J.G. Wills, and A. K. S. Green, Phys. Rev. 119, 1031
(1960);L. R. B.Elton and A. Swift, Nucl. Phys. A@4, 52 (1967)."H. Meldner, Arkiv Fysik 36, 593 (1967)."C. Gustafson, I. L. Lamm, B. Nilsson, and S. G. Nilsson,
Arkiv Fysik 36, 613 {1967).

havior of EE potentials has been accumulated so that
some number two approaches can leave the status of
model-dependent models. The quantitative results
of the fairly conservative and pragmatic approach
adopted here provide a rather safe foundation. This
resembles the situation in nuclear physics of small-
baryon-number hadron systems, where a pragmatic
approach now determines basic features in terms of
Regge singularity parameters.

Rearrangement-type responses (Sec. 3) of this self-
consistent model appear to have the right order of
magnitude. Orbital rearrangement energies, for ex-

ample, were found to be comparable to level spacings
in nuclear potential wells. " This result seriously
questions the usual identification of such level spacings
with the mmes differences observed, e.g., in nucleon
transfer reactions.

In the presence of fluctuating rearrangement ener-

gies, a gap in the eigenvalue spectrum, as, e.g., found at
the proton number 114, does not necessarily lead to a
real shell eBect in the masses as a function of nucleon
numbers. The deployment of this realistic Hamiltonian
in the region of superheavy nuclei (Sec. 4) therefore
provides an almost independent check on the magic
proton number 114 which was originally'» "'~'
suggested from extrapolations of proton eigenvalue
spectra.

All data in this paper refer to spherical nuclei; Sec. 5
deals in some detail with the straightforward extension
of this self-consistent field model to axially symmetric
deformed densities. The present form has particular
advantage for the description of adiabatic 6ssion
processes.

The Appendix is concerned with some of the compu-
tational problems.

1. SELF-CONSISTENT FIELD MODEL
A single-particle equation of the type

IfP 8'
~

———„, , ~p„, , (r) = f dr'x„, (r, r')y„, , (r') (1)
m r

is suKciently general to allow for a rather realistic
model of the nuclear self-consistent field. The sub-
script v stands for all quantum numbers specifying a
bound nucleon except for its isospin 3-component
rN~. The formalism for the plain Hartree(HF)-Fock
calculation, for instance, viz. ,

E„,ttp(r, r') = g y;~(r) u(r, r') y;(r') —b(r —r'}

drq;~ r I r, r' q; r' &~
—m& E~, ~, 2

"H. Meldner, Nuovo Cimento 53B, 195 (1968)."Cf. Ref. 23 in the paper of Myers and Swiatecki.
"W. D. Myers and W. J. Swiatecki, Nucl. Phys. 81, 1 (1966).
"A. Sobiczewski, F. A. Gareev, and B. N. Kalinkin, Phys.

Letters 22, 500 (1966); S. G. Nilsson, J. R. Nix, A. Sobiczewski,
Z. Szymanski, S. Wycech, C. Gustafson, and P. Moiler, Nucl.
Phys. A115, 545 (1968).
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with suitable models for N(r, r') provides nuclear
single-particle Hamiltonians which are quantitatively
almost as useful as the ones mentioned in the Intro-
duction. "Therefore, the HF result, i.e., the result in
the limit where perturbation methods are applicable to
more general many-body formalisms, is sometimes
referred to in the following discussion —although one
should by no means regard the phenomenological
kernel proposed here as being necessarily connected
with a plain HF formalism.

A comparison of (2) with the symmetrical factorized
Van Vleck-type kerneP

E,(r, r') =v(~ r—r'~)N„, (r+r') + (,—md)Eo.„), (3)
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yields upper bound estimates for the "ranges" of u and
v; namely, the range in

~
r —r'

~
should not exceed the

order of the inverse pion mass (1.4 fm) and the function
u should essentially vanish for its argument larger than
nuclear radii (A'" fm) . Therefore, rs is usually taken to
be proportional to the nuclear matter distribution.
Lower limits on the range of the factor v are required,
for instance, in order to reproduce the observed mo-
mentum dependence of local potential ~elis, i.e., the
fact that the e6'ective mass of bound nucleons is not
larger than 0.5 in real nuclei"' As is shown in the
next section, this clearly excludes nonlocality ranges
which are small enough to render a b function for v,
i.e., local potentials a reasonable ansatz. Since the
factorized form (3) also allows for self-consistency, it
would appear to yield the simplest kernel that has a
chance to simulate any realistic nuclear self-consistent
field.

A,. Nonlocality

Figure i show's empirical information on the Fourier
transform of v(~ r —r' ~), i.e. the approximately equiv-
alent (momentum)'-dependent local potential depth
f)(k'), defined, e.g., through

ee(4') = f dr')r(r, r')e(r')

=ee(0) Idr'erp[()r (r —r')] (~r —r'~). (4)

"K.T. R. Davies, S, J.Krieger, and M. Baranger, Nucl. Phys.
84, S45, (1966);W. H. Bassichis, A. K. Kerman, and J.P. Svenne,
Phys. Rev. 100, 746 (1967); D. Vautherin and M. Vdndroni,
Phys. Letters, 25B, 552 (1968); P. Pires, R. De Tourreil, D.
Vautherin, and M. Vbndroni, in Proceedings of the 1968 Inter-
national Symposium on Nuclear Structure, Dubna, USSR (un-
published); A. Faessler, P. U. Sauer, and H. H. Wolter, ibid.

"For some discussion on this particular choice see, e.g., W. E.
Frahn and R. H. Lemmer, Nuovo Cimento 6, 664 (1957); A. L.
Fetter and K. M. Watson, in Advances im Theoretical Physics I,
edited by K. A. Brueckner (Academic Press Inc. , New York,
1965); A. E. S. Green, Rev. Mod. Phys. 30, 569 (1958); K. A.
Brueckner, Phys. Rev. 103, 1121 (1956);J. H. Van Vleck, ibid. ,
48, 367 (1935).

"M. H. Johnson and E. Teller, Phys. Rev. 98, 783 (195S);
V. F. Weisskopf, Nucl. Phys. 3, 423 (1957); Rev. Mod. Phys.
29, 174 (1957);K. A. Brueckner, A. M. Lockett, and M. Roten-
berg, Phys Rev 121, 255 (1961).

c, MOV

Fzo. 1. Depth of the nucleon-nucleus potential as a function
of energy. The solid bars give the limits for regions 1-4 as dis-
cussed in Sec. 1 A.

Therefore, in order to specify reasonably well a non-
locality function v(~ r—r ~)r one needs in addition to
its width in

~
r —r

~
at least one more property like its

asymptotic slope. For example, Yukawa and Gaussian
form factors v(~ r —r'

~) fit the dashed curve in Fig. 1

vs(s) =v(e —vs(s) ), (5)

with widths around 0.8 and 1.5 fm, respectively (cf.
Ref. 14). The most important evidence on vs(s) in
region 1 comes from the (e, e'p) experiments. ss The
data on ~Ca and "As suggest that is protons are bound
by at least 80 MeV in heavier nuclei. Other limits on
vs(s) in this region may be inferred from estimates of
the eGective nucleon mass in nuclear matter. ' "

In region 2, i.e., for e around the Fermi energies,
vs(s) is most accurately determined in absolute mag-
nitud=---via the observed separation energies. But the
slope there is subject to some speculations. One school
suspects an appreciable wiggle there, ' a zero, ur even a
sign change of the slope as indicated by the dotted line
in Fig. 1. However, the arguments presented for such
anomalies are not conclusive yet (cf. Sec. 3 and Ref.
15).

In regions 3 and 4 the evidence comes mainly from
fits of nucleon-nucleus scattering. '~' Although one
cannot completely disentangle the energy dependences
of real and imaginary parts, there is general agreement

"For results on "As, see U. Amaldi, Jr, , G. C. Venuti, G. Cortelee
lessa, E. De Sanctis, S. Frullani, R. Lombard, and P. Salvadori,
Accad. Naz. Lincei-Rend. Sc. 6s. mat. e nat. Serie VIII, XLI,
fasc. 6 (1966) for results on ~Ca, Phys. Letters 22, 593 (1966)."G. E. Brown, J.H. Gunn, and P. Gould, Nucl. Phys. 46, 598
(1963)."P.E. Hodgson, The Optica/ Model of E/astic Scattering (Ox-
ford University Press, New York, 1963).~ F. G. Percy and B. Buck, Nucl. Phys. 32, 353 (1962};H.
Schule snd H. Wiehiche, Phys. Letters 21, 190 (1966).

~' L. Rosen, J. G. Beery, A. S. Golaber, and E. H. Auerbach,
Ann. Phys. (N.Y.) 34, 96 (1965);R. L. Cassola and R. D. Koshel,
Nuovo Cimento 53B, 363 (1967).

'7 F. G. Percy, Phys. Rev. 131, 745 (1963}.
sr Cf., for ex(unple, A. Watt, Phys. Letters 2'1B, 190 (1968).
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TAELE I. The two parameter sets used in the present calculation.
Except for Table II all results refer to parameter set A.

y (Me&) u (fm) ~ (fm ') a (fm~)

Set B

391.3

289.0

0.8
0.9

0.3
0.4

0.5
0.5

0.3
0.3

now that the real part has the minimum decrease, with
energy indicated in Fig. 1 for the well-analyzed 10-
MeV region. Straightforward use of the real part of an
optical-model fit did exactly yield the shell structure. »

However, the nonlocality there did correspond to the
lower limit for the slope indicated in region 3 (derived
from Refs. 25 and 26) and gave only about half the
total binding energy. "Therefore, the stronger energy
dependence indicated by other optical-model fits'~

is favored from the bound-state fits—if one excludes a
strong curvature of t)()(e) for e(0. No appreciable
energy dependence is established for the 100-MeV
region; eo may essentially become a constant there. "'

The dashed curve in Fig. 1 corresponds to a Yukawa
nonlocality function with the width used here (cf.
set A of Table I). This simple form can account quite
well for the data. Superpositions of several Yukawas
that did, for instance, give a wiggle in region 2 were
found to be unnecessary at this stage of the phe-
nomenology. A Yukawa, i.e., an SS potential-type
function is suggested from the Van Vleck kernel and
seems to fit the curvature in Fig. 1 a little better than
a Gaussian.

3. Saturation and Density Dependence

The real part of I in Van Vleck-type kernels is usually
taken to be similar to the matter density p.~'~ Taking
literally N=p($(r+r')) is, of course, not consistent:
The output p from a bound-state calculation has a
smaller rms radius than the input. This self-consistency
problem can be solved by adding to the width function
e, the "interaction" in the Van Vleck kernel, some
density dependence such as

n(r —r')
I 1—ps()(r+x') )—~ ~ j, (6)

with a, P)0. The resulting kernel e(1—(rps) gives a
sum of terms proportional to p'(r, —p, and pt+& for the
energy —readily seen from the Thomas-Fermi ap-
proximation. One can therefore make it stationary at
the observed nuclear saturation densities. ln this class
is, for instance, Bethe's recent proposal for the e8ective
I)/E interaction~: e(1—ap'(') . A similar term appears in

~ R. D. Koshel, Phys. Rev. 144, 811 (1966).
l H. A. Bethe in Procee4egs of eke Igtcreatiosal Coefereme ~

Reclean Physics, Gatlisburg, Teegegsee, 1N7 (Academic Press
Inc. , New York, 1967);see also A. Lande and J.P. Svenne, Phys.
Letters 258, 91 (1967); and A. M. Green, Phys. Letters 248,
384 (1967). Introducing this term as an explicit density depend-
ence of the two-body potential would modify the relation used
here PEq. (18}g for the total binding energy. I am grateful to
Professor K. A. Brueckner for discussions on these questions.

HF-type formalisms as a first-order correction for non-
locality of the two-body potential. This is seen from the
analogous formula to Eq. (4) for a nonlocal EX po-
tential. The equivalent momentum-dependent potential
derived in this way is a local one multiplied by the
usual power series in momentum operators squared —if
the kernel is symmetric:

r)(2 apt—bp'—~ ~ —.) .

and Eq. (6) follows from the statistical approximation
p p'". The particular power P is therefore suggested
from such considerations and used in the model below.
The choice is not critical as long as P= 3 is not very dif-
ferent from this value. Some variations in the range
0.3&P&1 with adjustments of other parameters left
results practically unchanged.

Similar arguments hold for the simplification
of taking p(g(~ x (+~ r' ~)) instead of p(-', (r+r'))=
p(xe(~ r+r ~) ) for the spherical density distributions
considered here (for nonspherical p see Sec. 5). Both
choices should give essentially the same fits to the data
up to some parameter renormalization.

A summation of the preceding considerations there-
fore yields as the most straightforward model of a
nudear kernel:

X(r, r') =e(~ r —r'
~) f1—Lp(x)/prjr(r)p(x),

x=&(~ r ~+~'~) (»
This will be adorned by two "fine-structure" terms
discussed in Secs. 1 C and 1 D.

C. Isospin Dependence

Conventionally, the isospin dependence of nuclear
single-particle Hamiltonians is introduced via a Lane
potentiap

t T/A, (9)
where t and T are, respectively, the isospins of the
nucleon and residual nucleus in question. However, this
term yields the wrong isotopic variation of rms radii of,
e.g., Ca isotopes if it is used with the strength necessary
in optical-model fits or as required to fit the
neutron/proton ratio in heavy nuclei. Only an in-
consistently small strength parameter could reproduce
the data. ~

Considerations similar to the ones that led to the
kernel (8) would suggest the use for the effective p of
an appropriately weighted average of the densities
p(~~~2) corresponding to neutrons and protons, namely,

pm&
~ p(-sag) + &p(sag) (10)

with a dimensionless parameter v&1. This can be
interpreted as assuming that only a fraction of the like
nucleons interact with the particle in question, or that

» A. M. Lane, Nucl. Phys. 85, 676 (1962).~ B. F. Gibson and K. J. van Oostrum, Nucl. Phys. 90A, 159
(1967);cf. also A. Swift and L. R. B.Elton, Phys. Rev. Letters
1V', 484 (1966).
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FIG. 2. Proton eigenvalue spectra
for spherical nuclei close to the line
of P stability. Eigenvalues with equal
quantum numbers are connected by
straight lines (to guide the eye) .Note
the somewhat Quctuating results as
compared to the smooth curves of
non-self-consistent calculations (Ref.
13).
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they are felt by the particle to be as attractive as the
unlike ones. One can therefore account for eGects of
the Pauli principle as well as for isospin-dependent
terms in the EE interaction. It is only the latter that
led to the assumption of the Lane potential. In the
statistical limit, where surface terms are neglected,
a simple exercise shows the present ansatz (10) to be
completely equivalent to Lane's term p(1+at T/A).
However, Eq. (10) can reproduce satisfactorily the
neutron/proton ratios or optical-model results as
well as the isotope shifts in rms radii. Recent 6ne-
structure investigations of the isospin dependence
also seem to favor a term like (10).

D. Spin-Orbit Interaction

A single-particle spin-orbit term of the type

s lr '(dp/dr)

can be derived from HF-type formalisms~ and now
even its strength appears to be understood in this
framework. ~ About equally satisfactory seems to be
the pragmatic introduction of this term as the simplest
invariant (with respect to rotations and inversions)
proportional to p, s, and Vp, namely, x (pxs) ~ Vp.
This gives Eq. (11) for spherical nuclei. However, the
present calculations with such a term did not show very
clearly the shell structure for heavy nuclei, as seen,
e.g., from the results of Sec. 2. One reason seems to be
the factor r 'dp/dr which emphasizes the influence of
wiggles in the inside density distribution. This did not

~ P. C. Sood and H. G. Leighton, Nucl. Phys. lllA, 209 (1968).~ K. A. Brueckner, J.L. G&mmel, and H. %eitzner, Phys. Rev.
110, 431 (1958).

~ J. B. Law and D. W. L. Sprung, in Proceedings of the 1968
International Symposium on Nudear Structure, Dubna, USSR
(unpublished) .

~Cf. for example, V. A. Chepurnov and P. E. Nemirov&y
Nucl. Phys. 49, 90 {1963).

show up in similar but non-self-consistent models
where the density (or potential) was proportional to
the usual Fermi function which is practically constant
inside. Therefore, a form

r'(p x s) Vp

might improve the results.

(12)

2. PARLMETRIZATION

A. Five-Parameter Kernel

z= g (r+r'), y=[r —r'
f,

& Fermi

p(-,)= 2 l(r.-, I'

for the self-consistent field model (1) of spherical
nuclei. The electromagnetic part is assumed to be given

by the static Coulomb potential V&,„& of the proton
density p( ((» normalized to Z—1; t cf. Eq. (17)j.

(1) The parameter v simply determines the energy
scale and was adjusted in all computations to give
(within 0.3 MeV) the total binding energy for Pb~.

(2) According to the discussion in Sec. 1 3, the non-

locality range should be 0.7 &u &0.9 fm. An increase in
a widens the level spacings, i.e., decreases the eGective

The accumulation of all essential pieces from Sec. 2

yields the Ave-parameter kernel

E', (r, r') =we~I~/(y/a) D —(p , (z) /p() 2(31

X[1—( /*) s ~ l(did*) j~,(*)+&(y)L' — j~ ..(*),
(13)

with

p, =[j ( ,)+rp(, )j(1-+r) '
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Fyc. 4. Upper and lower solid
curves give the density distribu-
tions of protons and neutrons for
some nuclei on the P stabiTity line.
The dashed curves are the nuclear
charge densities calculated with
Eq. {24) from the corresponding
(bare) proton densities. Examples
of Fermi function fits to electron
scattering data are shown as thin
dashed curves. The different fits
of Ref. 44 are practically indis-
tinguishable in this figure.

O. I

0.08

1

10
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0.04

0.02

I I I I I

0 I 2 5 4 5 6 7
r, fm

just the one parameter set A of Table I; i.e., everything
is computed with simply the rough center values of the
above estimated parameter regions. In view of this
fact, the general agreement with data throughout the
periodic table is surprisingly good. Absolute values for
masses, radii, and is proton levels are reproduced
within a few percent. The mass- and radius-difference
data are quite satisfactorily reproduced, normally within
30%. Even the higher-order difference quantities such
as rearrangement energies or isomer radius shifts seem
to result with the correct order of magnitude.

Figure 4 shows density distributions of protons and
neutrons (lower and upper solid lines). One point of
recent interest is the "neutron skin" of heavy nuclei, N ~
the Johnson-Teller effect.4' In the case of '~Pb, for
example, the results of pionic scattering and isobaric
analog-state analyses seem to disagree signi6cantly
with p or E mesic experiments. There are two percent
rms radius diHerences between neutron and proton
densities deduced from the former type of data, '~~
whereas a difference of more than 10% is reported from

atoms and E capture, as well as from some optical-

~ D. H. Wilkinson, in Proceedings of the 1968 International
Symposium on Nuclear Structure, Dubna, USSR; Comment
Nucl. Part. Phys. I, 80 (1967) .' L. R. B.Elton, Phys. Letters 26B, 689 (1968);G. W. Green-
less, G. S. Pyle, and Y.C. Tang, Phys. Rev. Letters 17, 33 (1968);
B. Holmquist and T. Wiedling, Phys. Letters 27B, 411 (1968);
H. A. Bethe and P. J. Siemens, ibid. 27B, 549 (1968).

'9 S. A. Nolen, Jr., J.P. SchiGer, and N. Williams, Phys. Letters
273, 1 (1968).

~ E.H. Auerbach, H. M. Querski, and M. M. Sternheim, Phys.
Rev. Letters 21, 162 (1968)."Cf. M. H. Johnson and E. Teller, Phys. Rev. 93, 357 (1954).

TABLE III. Binding energies and rms radii for some spherical
nuclei. Additiona. comparisons with experimental data give, e.g.,
for the is proton level in ~Ca: experimental 77~14 MeV, calcu-
lated 79 MeV.

Binding energy Calculated
(MeV) rmsradii(fm)

Experi-
Nucleus mental Calculated (r')'",h~«, (re }1»„(9}'»„

40Ca

44Ca

48Ca

88Sr

118Sn

140Ce

$08Pb

342.0 339.4

380.9

416.1

768.5

380.3

426.6

777.5

1004.8 1017.9

1172.8 1189.0

1636.4 1636.4

2140.5

3.15

3.22

3.29

4.02

4.50

4.74

5.44

6.26

3.06 3.02

3.13 3.20

3.20 3.34

3.95 4.02

4.43 4.47

4.68 4.73

5.38 5.45

6.21 6.24

~ Reference 22.

~J. Bellicard and K. J. van Oostrum, Phys. Rev. Letters 10,
242 {1967).

and shell-model analyses. ~ The present self-consistent
model gives rms(e) —rms(p) =0.07 fm (see Table III)
in excellent agreement with the value 0.07+0.03 fm
due to an analysis of the isobaric analog state" which is
consistent with recent x+-Pb scattering data. ~ In
addition, the absolute magnitude of the '~Pb rms
charge radius given in Table III agrees perfectly with
elastic electron scattering experiments yielding the
value 5.42&0.03 fm.~ One should notice the neutron
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I'IG. 5. Isotopic variation of charge density distributions for
~ 44'SCa and '~ "'~4Sn; cf. Table IV for rms radii.

skin or halo of '-~Pb shown in Fig. 4 which looks
surprisingly large in view of the small rms radius dif-
ference. In the case of ~Ca, the eGect is reversed.
According to the present calculation, the rms radius of
neutrons is 0.04 fm smaller than that of the protons, in
qualitative agreement with a recent optical model
analysis. ~

Figure 5 and Table IV give calculated isotopic vari-
ations of charge densities for some Sn and Ca isotopes.
For example, the calculated '4Ca to ~Ca rms charge
radius difference agrees well with experiments. "
Use of the standard (X—Z)/A term from optical-
model fits Dnstead of the term (10)] would yield the
wrong sign for this shift.

3. RE)QUAL, NGEMENT EFFECTS
In any HF-type many. -body formalism, the kernels

depend on the occupation functions, which are, e.g. ,
for the ground state, e(e„,—c„) in the HF formalism,
and q{1+(c.,—e.) /L(e.,—e.)'—6']"'I in Hartree-Bogo-
liubov-type formalisms. The e6'ective force acting on a
single nucleon will therefore change when diferent
states (orbits) are occupied by the other particles, i.e.,
when the residual nucleus rearranges. The correspond-
ing orbital rearrangement energies have been discussed

4' N. Berovic, P. M. Rudolph, and S. M. Scarott, Phys. Letters
2TB, 477 (1968).

44 K. J. van Oostrum, R. Hofstadter, G. K. Noldecke, M. R.
Yearian, B. C. Clark, R. Herman, and D. G. Ravenhall, Phys.
Rev. Letters 10, 528 (1966); R. D. Ehrlich, D. Fryberger, D. A.
Jensen, C. Nissim-Sabat, R. J. Powers, V. L. Telegdi, and C. K.
Hargrove, Phys. Rev. Letters 18, 959 (1967).

TAM, E IV. Some calculated isotope shifts of rms radii. Within
the accuracy of the calculation, the charge radius di8erences are
equal to the corresponding proton results and the ~ ~Sn, ~~Sn,
and "I "iISn, as well as the 11 114Sn di8erences are all equal to
the ~'"Sn shift. Note the large calculated neutron rms radius
diGerence for 4~~Ca.

g (FR )115~

(fm)
g (P }1/II

(fm)

44Ca-~Ca

48Ca 44Ca

LNSnM18Sn

114$n 1uSn

0.08

0.08

0.04

0.01

0.08

0.15

0.06

0.01

4I' D. Quitmann, of the Lawrence Radiation Laboratory, Uni-
versity of California at Berkeley (private communication) .

with this model in some detail elsewhere. "They were
shown to be comparable to eigenvalue-differences in
local (Woods-Saxon —type) potential wells. Hence, it is
an unjustified simplification to identify such level

spacings with the ecass differences observed, e.g., in
nucleon transfer reactions. Parameter set A of Table I
gave a good fit to all difference data in the Ca region.
One typical example is the first neutron-hole state for
4'Ca: The observed mass difference to the ground
state of about 2.6 MeV is reproduced by the present
single-particle Hamiltonian that gives at least 6 MeV
for the corresponding level spacing; i.e., more than 3.4
MeV result from orbital rearrangement (cf. Ref. 15).

The agreement with the mass data is also excellent
for the ~ca& (one nucleon) differences (see Table
V). For this example another type of rearrangement
eHect is revealed in Fig. 6. Conventionally, the eigen-
values were fitted to the experimental total binding
energy diAerences; i.e., rearrangement was totally
neglected. Of course, one could not do better in cal-
culations that had no chance to get the right order of
magnitude for the total binding —as in local potential-
model fits. Here, in Fig. 6, the observed binding energy
differences are reproduced within 0.2 MeV. However,
due to rearrangement, they dier up to 6 MeV from
the corresponding eigenvalues.

It might be argued that for some reason this model
strongly overestimates rearrangement eGects. But the
magnitude of this model's rearrangement response can
be checked to some extent by a comparison with the
calculated isomer shifts due to single-particle excita-
tions (Table VI). Their order of magnitude seems to
be confirmed by some relevant data. 4' This corrobor-
ates the present results on rearrangement energies
because of the well-known radial and eigenvalue shift
correlation for single-particle potential models.

This observation also casts doubts on shell-model
calculations that use the observed total binding-energy
differences (of A&1-nucleon systems) as the eigen-
values for one constant single-particle Hamiltonian.
Rearrangement destroys the orthogonality of the wave
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ALE V. Rms radius and binding-energy di8erences at closed shells&one nucleon for established magic numbers and for Z=114.
The pairing correction is assumed to be (25/A'") MeV. ' The energies are calculated with an accuracy of about 0.2 MeV; the radii
wiAm about 3X10 ' fm No radius difference is reported for cases where the result was smaller 1»n this error The calculated abridge
radius differences agree with the corresponding proton results within the numerical accuracy.

Magic
number Nuclei

Binding-energy differences
(MeV)

Experimental Calculated

Calculated radius di8erences
(fm)

g (P )1/S g (P)l/8

X=20

Z= 20

X=28

Z=28

Z=82

X=226

Z= 214

41Ca-40Ca
40Ca-NCa

41Sc 40Ca
40Ca~K

49Ca-4sCa
40Ca-4~Ca

03Cu-I'¹i
0 Ni~Co

89Sr~Sr
ISr~Sr
"NS~Sn
11sSn-11'In

141C~40Ce
40C- '-Ce

~Bibb
s0'Pb-~Tl
@Pb-N Pb

aepb sePb

~22~214
'80224-1 223
3 '22~214
~22~223

8.4
15 ~ 6

1.1
8.3
5.0

10.1

6.1
11.1

6.8
11.1
5.2
9.9
5.5
9.1

3.8
8.0
3.9
7.4

8.4
15.3

1.1
8.0
0

13.3

2.7
13.9

5.3
12.7
2.3

20. 7

3.3
8.6
3.3
5.5
3.2
5.4
0
3.4
0.1
5;2

0.019
0.006

0.051
0.021

0.010
0.020

0.021
0.033

0.007
0.004

0.008
O. 004

~ ~ ~

0.005

0.008
~ ~ ~

0.004
0.004

0.048
0.005

0.022
0.021

0.042
0.034

0.003
0.027

0.013

0.007

~ ~ ~

0.006

~ P. E. Nemirovsky and Yu. V. Adamchuk, Nucl. Phys. 89, 551 (1962); for experimental rms charge radius di8erences, cf.. for example, D. Quittmann,
Z. Physik 206, 113 (1967).

4. MAGIC PROTON NUMBER i&4

The charge spectrum of cosmic-ray nuclei indicates
the existence of nuclei with Z&110.~ An increasing

39K 40CO 41 S 39 Ca 40C 4'Co

4.1
"ri24.0 11.5 .l2.0

functions for single-particle states of nuclei with dif-
ferent excitations and/or nucleon numbers.

amount of experimental effort is spent now to produce
such superheavy nuclei. 47 For some time, 2=126 was
the main theoretical candidate for a relatively stable
superheavy nucleus. This belief, based on a simple-
minded shell-model picture that did not differentiate
between protons and neutrons, thus assumed a repeti-
tion of the %=126 shell in Z.

Shell closures, i.e., structure-dependent tendencies to
prefer spherical shapes, have been shown to be of prime
importance for the spontaneous-6ssion half lives of

10.2
!08 11 0

18.2
2$

19.3
19.8

331.4 337.0 340.5 g 324.1 337.0 347.8
-hE Qs~jl (Q5 -hE 12. Clio. I

FIG. 6. Example for rearrangement effects: N=Z=20 shell&
one nucleon. Compare the eigenvalues (in MeV) (arrows) with
the circled total binding-energy differences hE (also in MeV) . An
excellent fit to the data results (cf. Table V) when a pairing
correction of 2.4 MeV is added to 40Ca. Conventionally, the eigen-
values are identified with total binding-energy di6erences; cf.
Sec. 3.

P. H. Fowler, University of Bristol, %ills Physics Laboratory
Report (unpublished); I am grateful to Professor N. Flerov for
drawing my attention to this work.

47Ca~-4~Ca

Tl'-~Tl
20'Ipb~~Pb

g (P )1/s

(fm)

0.012

10 4

g (P )1/8

(fm)

0.037

10 '

4~ S.G. Nilsson, S.E.Thompson, and C. F.Tsang, Phys. Letters
&88, 465 (1969); S. G. Thompson, of the Lawrence Radiation
Laboratory, University of California at Berkeley (private com-
munication); N. Flerov, in the Proceedings of the 1968 Inter-
national Symposium on Nuclear Structure, Thibna USSR
(unpublished) .

TAmE VI Examples of rms charge radius differences between
the first one-neutron-hole excitation and the ground stab.'. Ex-
cept for the case of Ca, the amount of computer time inve. ted
here did not allow checking for more than the orders of magnitude.
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superheavy nuclei. '7 The contribution to the barrier
height due to shells is negligible at the proton number
Z=50 and is about 30% of the total for Z around 82
near the P stability line. In the region beyond Z=110
the average value, or liquid-drop-model barrier, be-
comes practically neghgible, since it is quite small as
compared to the present uncertainties about structure-
dependent contributions there.

About four years ago, calculations of this author
showed Z=114, %=184 to be a clearly preferable
candidate for a rather stable superheavy nucleus. "
This has since been confirmed by many independent
computations"" and is widely discussed now. ~ The
extrapolations were based on single-particle potential
fits that showed a shell structure in the eigenvalues
similar to the one observed in the experimental mass
defects. Fluctuating rearrangement eGects were totally
neglected. Most authors used the questionable pro-
cedure of identifying eigenvalue spacings with mass
differences (cf. Sec. 3).

The present calculations check the real shell eGects
in the nuclear masses. As can be seen from Table V,
the partial derivative BE/8Z of the total binding energy
(mass) changes considerably at the proton number
Z=114 when parameter set A of Table I is used for
superheavy nuclei. The present calculations for E=172
and 186 show the expected decrease of the shell e6ect
for isotopes far from the extrapolated beta stability
line. At X=172 and Z=114, the lack of neutron
excess seems to smooth the step in the mass function
to an insignificant wiggle. For 186 neutrons the shell
eQ'ect has the magnitude observed at established magic
numbers. Therefore, experiments on Z = 114 should aim
for compound nuclei with mass numbers around 290 or
higher.

5. DEFORMED NUCLEI AND FISSION

It is rather straightforward to extend the model given
by Eqs. (1), (13), and (14) to nonspherical, in par-
ticular axially symmetric, density distributions. Present
computer sizes, ho~ever, seem to require some sort of
"local energy approximation" to the nonlocality
problem. For this case, most aspects of the resulting
numerical work have been investigated recently. "
The present Hamiltonian is, in such an approximation
for axial symmetric cases (cf. Ref. 49, Eq. 2.8),

&,= (p'/2~)+z(" -,) I1—
Ep. (z, b)/p~j'"I

X[1—(e'/5) (p + a) '&jp, (z, b)+($—tt4)~e(z, b),

(15)

where cylinder coordinates (z, b) are introduced,

~ A. M. Weinberg, Phys. Today 20, 23 (1967); C. Y. Wong,
Phys. Rev. Letters 19, 328 (1967); see also G. T. Seaborg, Ann.
Rev. Nucl. Sci. 18, 53 (1968).

49 F. Dickmann, Z. Physik 203, 141 (1967).

&=@'+y', and p, is the effective density calculated
according to Eqs. (13) and (14). Two methods are
mainly used for the computation of the energy-de-
pendent local potential that corresponds to a given
Van Vleck-type kernel. In bound-state calculations the
simple technique of using the Fourier transform ac-
cording to Eqs. (4) and (5)

z(e) = jl+(2yg/fP)g'Pe —v(e)])—~ (16)

is probably as good~ as the fancier LEA. Equations
(15) and (16) give a framework for self-consistent
calculations of nuclear single-particle data. The
problematic boundary condition of "volume conserva-
tion" in equipotential contours, for example, is com-
pletely avoided here. In fact, most of the classical dif-
ficulties" of the Nilsson-type models for deformed
nuclei and adiabatic fission computations do not arise.

6. CONCLUSIONS

~ M. Krell, Z. Physik 205, 272 {1967).
"Cf., for example, H. Meldner and G. Suessmann, Z. Natur-

forsch. 2Da, 1217 (1965); H. Fiedeldey, Nucl. Phys. 77, 149
(1966).

~3 L. Wilets, Theorks of Nuclear Fission (Clarendon Press,
Oxford, England, 1964), Chap. 4.3.

The final remarks of Sec. 5 reveal the main reason
for the computations done so far, namely, a check of
the qualities of the proposed model that is designed to
work for a much wider range of applications. Already
here, the proposed Hamiltonian was used for the cal-
culation of more independent data than was conceivable
with previous models. For spherical nuclei, one constant
set of five physical parameters allowed satisfactory
reproduction of

(1) charge density distributions, including isotope
and isomer shifts,

(2) 1s proton levels as measured in (e, e'p) scatter-
ing

(3) total binding energies of nuclear mass defects,
and

(4) the shell-model spin assignments and mass
structure

throughout the periodic table. Hence, it seems that all
future work in this direction has to confirm qlanti-
tatieely the essential features of a nuclear kernel de-
termined here, particularly the nonlocahty and re-
arrangement eGects. The present concept works quanti-
tatively well enough to allow predictions such as the
proton shell 114.

Equation (1) was solved (numerically) exactly. The
results can therefore be used to check approximations
that might be necessary for deformed and fissioning
nuclei.

Naturally, there are many improvements to be con-
sidered, such as those mentioned in the discussion
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about the spin-orbit term. Some residual interaction
eGects of the pairing type, for instance, could be taken
into account by appropriately smoothing the step
function used in Eq. (14) for the occupation prob-
ability distribution.

atory and of the University of California Physics
Department. I am indebted to many members of both
institutions for helpful discussions. This lengthy in-
vestigation would have been impossible without the
generous support of Professor S. G. Thompson.
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[(}}'P/2'){d2/dr' Pl(1+1)—/r ]} e —tg„e]f4„}g„e(r)= v drrhg(rp r') {1—Q„(ex)/~] 2}}

d-() —»»)(}Z—g)/Z)ee r 'f dr'r"p(»)}r')+f dr'r'pt »)}r')»,i», }r),
0 r

where x=$(r+r'), rt denotes the radial, l denotes the orbital-angular momentum, j denotes the total-angular-
momentum quantum number, and m& denotes the isospin 3-component for the nucleon in question; p' is the
derivative of p with respect to the argument and e'= 1.4368 MeV fm. The h& are the partial-wave projections of the
width function r(~ r —r' ~).

The single-particle equation is assumed to emerge from pure two-body internucleon forces. The total binding
energy is therefore

d'. = g e;—e Pe»;= e P;+f dr» }r)e}r)p;}r)
i &gi

where the sums extend over the occupied levels; I; is for the spherical cases

t„},„,= (ft2/2~) dr {D(l+1)/r']I };,'(r) + (r(d/dr) L „}}tg(r)/ ])'r}.

Eigenstates in Strongly Ãonlocal Potentials

The computer problem is to find the first few eigenvalues e and eigenvectors u of an integrodiGerential equation

}(dr/dr') —
} e+C(r)]}»}r)+f dr'g}r, r')»}r') =0

0
(20)

for boundary conditions of the type lim, 0 N(r)~r}+' and lim N(r) expL —r(e)'~']. Selecting an appropriate
finite integration interval (0, R) divided into N parts and with s =R/1V, c, =C(is), and gg=g(is, js), one gets the
corresponding diiference equation (h —e)I=0 with a symmetric matrix

sg&q
—Cq 2/s

sg2g+ 1/s

Sg12+ 1/S

Sgms
—C2—2/S

gee ~ ~ ~ Sgur

Sgsl

»

SgN1 sg}}}N—C» —2/s'J
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A good approximation I&" to I is obtained, e.g., from a Also from Ref. 55, p. 80,
Z.EA programs' The vector e& ' ful611s approximately
the same boundary conditions as I and has the same I&+i~2(x)K&+&~2(x) =xz(xx') "'Lc' g (—)~T&a(x)
number of nodes. An appropriate iteration program is
the following: L

Start with i=0.

(1) Normalize by replacing e&'& with I&"(1/I&"ru&e) .
(2) Compute e&" =I&'&rkN&'&.

(3) Solve I&'+'&=(h —e&4&) 'I&'& with some standard
inversion program. ~

(4) Replace i with i+1; go to (1)
unless

I
e&'+u —e&' I/I e&' I«1.

This "%ielandt inverse iteration"~ works as follows:
Let z be the exact solution, i.e., (h —e )z„=O. Then,
step (3) is in spectral decomposition

Q c„&'+'&&&„=(h —c&*&) ' Q c &'&&&„

—(—) 'e-~ Q T&k(x) ]e-*' Q T„(x'),

with T», (x) =(l+k)!/(k!(f—k)!(2x)z). The following
formula is feasible for computations:

h7 (r, r') =2xa'I e"&' g ( —)~T&~ (r/a)

—(—) 'e"'~ g Ta(r/a!]c "o P Ta(r'/a)

for r(r', (22)

so that ho(r, r') =2''(e"~' —e 'I') e "'&' etc.
= Q Lc *'/(e —e&')]» (21)

Charge Density and Proton Form Factors

so that
&&+&& —c &o/(c c&o)

h&(r, r') =2xrr' e
—

I r—rI I/a
dz P&(z)

with r =
I
r I, z =rr'/rr, since~

expL —(1/a) (r'+r" 2rr'z) "]-
(r'+ r'-" 2rr'z) '&'—

Therefore, the iteration converges to the nearest eigen-
vector e which is picked out via the above pole.

Partial-W'ave Projections of Yuhawa Functions

The above h~ are

The nuclear charge density p,b is obtained by folding
the proton probability distribution with the electric
proton form factor f

p" (z) = «'
I &r . »2 I'f(l z-z'

I-) (23)

The p„, &/2 are properly normalized single-particle wave
functions and the sum extends over all occupied proton
levels. The best phenomenological proton form factor
appears to be an exponential~

f(r) = (a'/Sx) e&- "&

n= (12/(r')) '&' and (r') = dr r'f(r) .
= g (2l+1)P&(z) (rr') '&2K&+&~z(r'/a) I&+&~2(r/a),

l~ For spherical symmetric p = g I &&& I' one has

one has

4.s(„& I „.&/a&X„=„.&i&s& for r&r '&'&=& 4' I '"'&"&« ~'-"&+'&'' "'
0

~ K.g., the Fortran routine x.tNn of the Lawrence Radiation
Laboratory, University of California at Berkeley, Computing
Center.

~ H. %'ielandt, Report No. B44jJj37, Aerodyn. Vers. -Anstalt
Cottingen, 1944 (unpublished); J. H. Wilkinson, The Algebra@
Ef'gemeelee Problem (Clarendon Press, Oxford, England, 1965),
p. 321.

~' G. N. Watson, Theory of Bessel Femckioms {University Press,
Cambridge, England, 1962).

—
I a(r+r') +1]e '+"'&]. (24)

The present calculations were done with the value
(r )'"=0.75 fm (cf. Ref. 56) .

~ F. Burmiller, M. Croissiaux, E. Dally, and R. Hofstadter,
Phys. Rev. 124, 1623 (1961);for a comparison with other form
factors see P. Hofstadter, Rev. Mod. Phys. 30, 482 (1958).


