¹⁸N and ²²F Ground States, ²²F Excited States, and T = 2 Analogs in ²²Ne[†]

RICHARD H. STOKES AND P. G. YOUNG Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico (Received 17 June 1968)

Energy spectra of ³He ions from the ¹⁸O(t, ³He)¹⁸N and the ²²Ne(t, ³He)²²F reactions have been measured for a triton bombarding energy of 22 MeV. A proportional ΔE detector and a silicon E detector were used to identify and measure the energy of the 'He ions. From Q-value determinations, ground-state mass excesses (12C=0) were found to be 13.274±0.030 MeV for 18N and 2.828±0.030 MeV for 22F. The 22F mass value is 1.67 MeV lower than the only previously reported value. Other groups in the spectra correspond to the first observation of excited states in 22F. Excitation-energy values for these six excited states are 0.66, 1.36, 1.57, 1.97, 2.54, and 2.91 MeV. Also, spectra from the (p, p'), (d, d'), and (t, t') reactions were measured with a ²²Ne target to search for T=2 analogs to ²²F states. Groups which appeared only in the $^{22}Ne(p, p')$ and $^{22}Ne(t, t')$ spectra have Coulomb-energy shifts and widths which suggest that they are analogs to the ground, second, third, and fourth excited states of ²²F. Based on the measured values of the ¹⁸N and ²²F ground-state masses and the systematics of pairing energy, estimates are made for the masses of the unreported nuclei 22Al, 19N, 21O, and 23F. The last three nuclei are predicted to be stable against neutron decay, whereas ²²Al is estimated to be near the limit of proton stability.

INTRODUCTION

THERE has been considerable recent interest in the isospin-2 multiplets in nuclei with mass numbers 20 and 24. The ground-state masses of the neutron-rich members of these multiplets are well known and many T=2 analog states have been reported and studied.^{1,2} In A = 18 and A = 22 nuclei, the only information available on T=2 states has been a single measurement of the ground-state mass of ¹⁸N and of ²²F. Excited states have not been reported in either ¹⁸N or ²²F, and no T = 2analog states are known in nuclei with mass number 18 or 22. Information on isospin-2 states in mass-22 nuclei is particularly needed to complete the systematic study³ of multiplets in the $d_{5/2}$ shell.

The previous information on ground-state masses of ¹⁸N and ²²F consists of β - γ coincidence observations and measurements of β -endpoint energies. Chase *et al.*⁴ have reported the production of the radionuclide ¹⁸N through the ¹⁸O(n, p)¹⁸N reaction. By measuring the endpoint energy of β radiation emitted in coincidence with ¹⁸O γ rays, the mass excess (${}^{12}C=0$) of ${}^{18}N$ was determined

⁸ J. C. Hardy, H. Brunnader, and J. Cerny, Bull. Am. Phys.

Soc. 13, 561 (1968). ⁴L. F. Chase, Jr., H. A. Grensch, R. E. McDonald, and F. J. Vaughn, Phys. Rev. Letters 13, 665 (1964).

exit window. The entrance and exit windows are made of 2.5- μ m Havar foil which was sufficient to contain gas pressures in the 200-300-Torr range. Three detectors

analog states in ²²Ne.

were used in the counter telescope assembly as shown in Fig. 2. A ΔE proportional counter measured the rate of energy loss of the charged particles emerging from the gas target. The proportional counter gas consisted of a

to be 13.1±0.4 MeV. Likewise, Vaughn et al.⁵ reported

the production of ²²F through the ²²Ne(n, p)²²F reaction.

The β - γ coincidence observations were not as clear in

this case and the authors could not distinguish with

complete certainty whether or not β transitions occurred

to the ground state of ²²Ne. Their proposed decay scheme

together with their β -endpoint energy measurement

provide values which do not depend on interpretation of

decay spectra, we have used the $(t, {}^{3}\text{He})$ reaction on ${}^{18}\text{O}$

and ²²Ne to observe the formation of ¹⁸N and ²²F as

residual nuclei. Ground-state masses were determined

from the measured energy of the highest energy ³He

group. With the ²²Ne target, ³He groups at lower energy

provided first evidence for excited states in ²²F. In

addition, inelastic scattering of protons, deuterons, and

tritons from ²²Ne was studied to search for the T=2

APPARATUS AND PROCEDURE

The 22-MeV triton beam from the Los Alamos 3-stage tandem facility was used to bombard gas

targets of ¹⁸O and ²²Ne, and the energy spectra of ³He

particles were observed in an E- ΔE counter telescope.

Figure 1 is a schematic drawing of the scattering geometry. The gas target consisted of a 3.8-cm-diam chamber with a flat entrance window and a cylindrical

In order to obtain more accurate mass values and to

gives a mass excess of 4.5 ± 0.6 MeV for ²²F.

[†] Work performed under the auspices of the U.S. Atomic Energy Commission.

 $^{^{1}}A = 20$: J. Cerny, R. H. Pehl, and G. T. Garvey, Phys. Letters 12, 234 (1964); Phys. Rev. Letters 13, 548 (1964); P. Loncke and J. Pradal, Phys. Letters 22, 320 (1966); E. Adelberger and A. B. McDonald, *ibid.* 24B, 270 (1967); H. M. Kuan, D. W. Heikkinen, K. A. Snover, F. Riess, and S. S. Hanna, *ibid.* 25B,

Heikkinen, K. A. Snover, F. Riess, and S. S. Hanna, *ibid* **25B**, 217 (1967). ² A = 24: M. G. Silbert and N. Jarmie, Phys. Rev. **123**, 221 (1961); G. T. Garvey, J. Cerny, and R. H. Pehl, Phys. Rev. Letters **12**, 726 (1964); D. H. Wilkinson, Phys. Letters **11**, 243 (1964); F. G. Kingston, R. J. Griffiths, A. R. Johnston, W. R. Gibson, and E. A. McClatchie, *ibid*. **22**, 458 (1966); R. L. McGrath, S. W. Cosper, and J. Cerny, Phys. Rev. Letters **18**, 243 (1967); E. Adelberger and A. B. McDonald, Phys. Letters **24B**, 270 (1967); F. Riess, W. J. O'Connell, D. W. Heikkinen, H. M. Kuan, and S. S. Hanna, Phys. Rev. Letters **19**, 367 (1967).

⁵ F. J. Vaughn, R. A. Chalmers, L. F. Chase, Jr., and S. R. Salisbury, Phys. Rev. Letters 15, 555 (1965). 1789

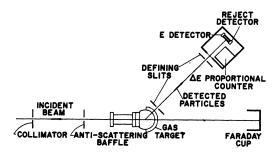


FIG. 1. Schematic diagram of the scattering geometry.

mixture of argon plus 10% CO2 and had an equivalent silicon thickness of 15 to 22 μ m at the two operating pressures used in the experiment. The 2.2- μ m Havar foil entrance window of the ΔE counter is equivalent to $6 \,\mu m$ of Si. Thus, the ΔE detector for measurement of the lowest-energy ³He spectra had an equivalent silicon thickness of 21 μ m. The full aperture of the ΔE counter was 1.27 cm in diameter. Use of a proportional counter was necessary in order to provide a sufficiently thin detector which would permit low-energy 3He ions to be identified. At the time of the experiment commercially available silicon ΔE detectors were not sufficiently thin and uniform over the required areas. In spite of improvements in silicon detectors it seems likely that proportional detectors will continue to be useful for ΔE measurements of particles with high rates of energy loss. When very small areal density is required, a proportional ΔE detector becomes an attractive choice to complement the use of silicon detectors in a range of greater thickness. The foremost advantages of a very thin ΔE proportional detector are: great uniformity of areal density, ability to change the areal density easily by changes of gas pressure, and freedom from radiation damage. This detector has been previously used in several other experiments⁶ which required good ΔE measurements of low-energy hydrogen or helium ions.

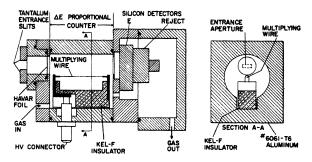


FIG. 2. Detector assembly. The multiplying wire of the ΔE proportional counter is parallel to the trajectory of detected particles.

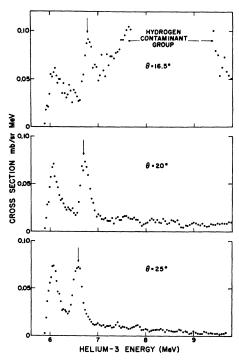


FIG. 3. ³He energy spectra from the ¹⁸O(t, ³He)¹⁸N reaction for three laboratory angles. Arrows designate the ground-state group. The contaminant group from the ¹H(t, ³He) reaction has a kinematic limit of 18 deg and thus does not appear in the two lower spectra. Events below 6 MeV are rejected by the electronic logics as discussed in the text.

To measure the residual energy E, a 980- μ m-thick silicon surface-barrier transmission detector was used. Following the E detector, a second silicon detector was used to provide a reject pulse for the more penetrating particles which passed through the previous detectors. A pair of tantalum collimators 0.16 cm wide, spaced 9.2 cm apart, was used to define the axis of the detected particles.

Data were collected with an SDS-930 on-line computer in an E by ΔE array of 128 by 64 channels. The analog-to-digital converters at the computer input were gated by a coincidence between E and ΔE . Curve-fitting

TABLE I. Excited states of ²²F.

Excited state	Excitation energy (MeV)	
1	0.66±0.025	
2	1.36 ± 0.025	
3	1.57 ± 0.025	
4	1.97 ± 0.025	
5	$2.54{\pm}0.060$	
6	2.91 ± 0.060	

⁶ R. H. Stokes and P. G. Young, Phys. Rev. Letters **18**, 611 (1967); P. G. Young, R. H. Stokes, and G. G. Ohlsen, Phys. Rev. **173**, 949 (1968); G. G. Ohlsen, R. H. Stokes, and P. G. Young (to be published).

techniques were used to sort the E by ΔE two-dimensional arrays and to distinguish between the desired ³He spectra and the more intense α -particle spectra. Finally, $E + \Delta E$ spectra were generated for each particle species. Cross sections of the $(t, {}^{3}\text{He})$ reactions are very low. The intensity of the ⁴He spectra which must be rejected was typically a factor of 50-200 greater than the peak intensity of the desired ³He spectra. A parallel electronics system containing an analog particle identifier and a 400-channel analyzer was used to monitor the ³He energy spectra during data accumulation.

Data collection of the ¹⁸N and ²²F spectra was interspersed with the collection of data used to establish the ³He energy scale. Energy calibrations were obtained by using a triton energy of 22.0 and 17.0 MeV and observing ³He groups of known Q value from the ¹⁴N(t, ³He)¹⁴C reaction. During all data collection a stable pulser was connected through the complete electronic system and the pulser peak recorded in the computer. The pulser group showed no appreciable shift throughout the experiment. Background runs were

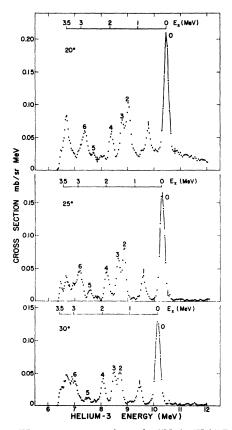


FIG. 4. ³He energy spectra from the ²²Ne(t, ³He)²²F reaction for three laboratory angles. The ground-state group is labeled 0, and the excited-state groups are labeled 1-6. Each spectrum has a scale of ²²F excitation energy at the top. The cutoff near 6 MeV is caused by the electronic logics.

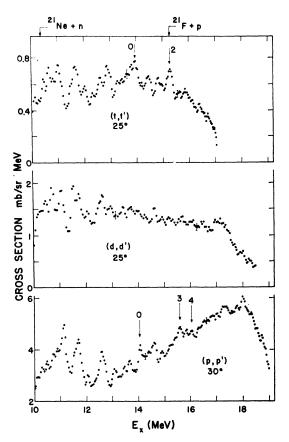


FIG. 5. Spectra from inelastic scattering with a ²²Ne target. The bottom scale is the excitation energy of ²³Ne as determined by measurements of the energy of the detected proton, deuteron, or triton. The vertical scales give the laboratory cross section. In all cases the bombarding energy was 22 MeV. The cutoff at the upper end of each spectrum is caused by the electronic logics.

taken with air, carbon dioxide, and nitrogen gases in the target. Groups from hydrogen contamination had an upper kinematic limit of 18° laboratory angle. The groups assigned to ¹⁸N and ²²F were distinct from the particle groups which appeared in the background runs.

For the inelastic-scattering measurements, proton, deuteron, and triton beams of 22-MeV energy were used with the same apparatus and techniques described above. Energy calibrations were obtained using the ${}^{4}\text{He}(t, p){}^{6}\text{He}$, ${}^{3}\text{He}(d, d){}^{3}\text{He}$, and ${}^{3}\text{He}(t, t){}^{3}\text{He}$ reactions.

DATA

The ground-state mass of ¹⁸N was measured using the ¹⁸O(t, ³He)¹⁸N reaction. The target gas (obtained from the Isotopes Division of the Oak Ridge National Laboratory) was enriched to 99.3% in ¹⁸O. ³He spectra were measured at several laboratory angles in the range 12–25 deg. Figure 3 shows sample spectra for laboratory angles of 16.5°, 20°, and 25°. Only the ground-state group appears above the ΔE -counter cutoff at 6-MeV ³He energy. This cutoff occurs when the ³He ions

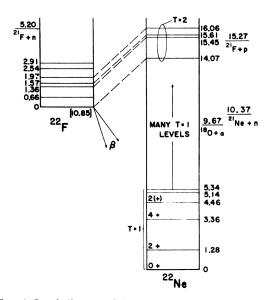


FIG. 6. Level diagram of ²²F and ²²Ne. The ²²F ground and excited states are shown along with the proposed T=2 analog states in ²²Ne. Data for the low excited states of ²²Ne were taken from Ref. 8.

have such a low energy that they do not pass through the ΔE detector and consequently no E pulse is generated to satisfy the coincidence requirement. The peak near 6-MeV ³He energy arises from the combined effects of the ΔE cutoff and the background from neutrons and γ rays. Corrections for background have not been made to any of the spectra. The low level of the background is illustrated by a comparison with the 6.7 μ b/sr value of center-of-mass cross section determined for the ¹⁸N group at a laboratory angle of 20°. The measured Qvalue of the ground-state group is -14.038 ± 0.030 MeV, corresponding to a mass excess $({}^{12}C=0)$ of 13.274 ± 0.030 MeV. This value falls within the quoted errors of the previously measured value⁴ of 13.1 ± 0.4 MeV. Our quoted error (standard deviation) results from nearly equal contributions from uncertainties in determining peak location, energy loss in the target gases, and the energy calibration. Values of cross section given in Fig. 3-5 have an estimated absolute error of $\pm 15\%$. This error results principally from uncertainty in the value of the detector solid angle.

The ground-state mass of ²²F was measured using the ²²Ne(t, ³He)²²F reaction. The target gas (obtained from the Mound Laboratory of the Monsanto Research Corporation) was enriched to 99.7% in ²²Ne. ³He energy spectra were measured at laboratory angles of 20°, 25°, and 30°. Figure 4 shows these spectra. From the measured energy of the highest ³He group the ground-state Q value was determined to be -10.834 ± 0.030 MeV, corresponding to a mass excess of 2.828 ± 0.030 MeV. This value differs markedly from the only previously proposed value⁵ of 4.5 ± 0.6 MeV.

Evidence for excited states in 22 F was obtained from the other ³He groups in the spectra. These excited-state groups are shown in Fig. 4 labeled 1–6. Table I lists the measured value of excitation energy and the assigned errors.

Energy spectra from the ${}^{22}\text{Ne}(p, p')$, ${}^{22}\text{Ne}(d, d')$, and ${}^{22}\text{Ne}(t, t')$ reactions were also measured to search for T=2 analog to ${}^{22}\text{F}$ states. The proton and triton reactions are allowed to form T=2 states, whereas the deuteron reaction is forbidden by isospin conservation. The deuteron spectra can be used as a guide in identifying peaks from T=1 states which will appear along with the T=2 states in the proton and triton spectra. Figure 5 shows these inelastic spectra as a function of ${}^{22}\text{Ne}(z, t')$

DISCUSSION AND CONCLUSIONS

The present measurements of the ground-state Q value of the ${}^{22}Ne(t, {}^{3}He){}^{22}F$ reaction result in a ${}^{22}F$ mass 1.67 MeV lower than the value previously reported.⁵ The previous result was based on the measured β -ray endpoint energy $(11.2\pm0.6 \text{ MeV})$ for the decay of ²²F to ²²Ne and the conclusion that the 11.2 MeV decay goes to the 1.28 MeV first excited state of ²²Ne. Thus, the sum of these two energies (or $12.5 \pm 0.6 \text{ MeV}$) was reported for the ${}^{22}F - {}^{22}Ne$ mass difference. On the basis of the coincidence observations of Ref. 5, however, one cannot exclude the existence of a direct β transition to the ²²Ne ground state. Further, our measurement of 10.853 ± 0.030 MeV for the ²²F-²²Ne mass difference is contained within the errors of their measurement of 11.2 \pm 0.6 MeV for the β endpoint energy (see Fig. 6). This suggestion that the 11.2-MeV β branch proceeds to the ²²Ne ground state in turn revises the previous tentative assignment⁵ of 3⁺ to the ²²F ground state. The log ft value (6.4) of the 11.2-MeV group⁵ lies within the empirical range for allowed transitions. An allowed β transition to the O⁺ ground state of ²²Ne would suggest an assignment of 1⁺ for the ground state of ²²F. Since ²²F is probably a strongly deformed nucleus, a spin of 1+ for its ground state could be explained as resulting from parallel coupling of the Nilsson⁷ orbitals $\frac{1}{2}$ +[220]_p and $\frac{1}{2}$ + [211]_n, which are reasonable state assignments for the odd proton and odd neutron, respectively. If the 1+ assignment for ²²F is correct, it follows that the suggested⁵ β branch to the 3.36-MeV (4⁺) level of ²²Ne does not exist. It is therefore possible that the ≈ 2.08 -MeV γ rays reported to accompany the ²²F decay⁵ arise from the β population of a higher-lying state of low spin, with subsequent de-excitation through the 3.36-MeV level. For example, population of the 5.52-MeV level of ²²Ne, which is known to de-excite⁸ mainly through a 2.16-2.08-1.28-MeV cascade, would give rise to a

⁷S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd. 29, No. 16 (1955).

⁸ W. Kutschera, D. Pélte, and G. Schrieder, Nucl. Phys. A111, 529 (1968).

=

2.16-2.08-MeV doublet that might be responsible for the peak at about 2.1 MeV observed by Vaughn et al.⁵ This suggestion, however, requires the spin of the 5.52-MeV level to be 2^+ , in disagreement with the tentative conclusion of Ref. 8 that the spin is (3, 4, 5, 6). It is conceded that there may be other ways of reconciling the present data with the results of Ref. 5. It is also clear that the various questions raised above cannot be answered in detail until more complete information exists on the ²²F decay.

Except for the ¹⁸N ground state, no isospin-2 states are known in nuclei with mass number 18. The more accurate mass value from the present experiment will furnish a basis for productive future searches for mass-18 analogs. Likewise, in nuclei with mass number 22, the only T=2 states known are the ground state and the excited states reported here. With the accurate location of the low-lying states in ²²F, it is now possible to proceed with a search for their analogs.

In order to estimate the Coulomb-energy differences in A = 22 nuclei, we use the expression derived from the Coulomb energy of a uniformly charged sphere of radius $r=r_0A^{1/3}$. The Coulomb-energy difference between a member of an isospin multiplet of mass number A and charge Z and the adjacent member of the multiplet of charge Z+1 is $\Delta E_c = KZ/A^{1/3}$ MeV, where $K = 1.73/r_0$ and r_0 is in Fermis. Table II lists information from various known isospin multiplets in the vicinity of A = 22 and the values of K derived from each. The range of values is small and centers about K = 1.22 ($r_0 = 1.42$ F). This value can then be used to calculate the energy difference between the ²²F ground state and its analog in ²²Ne as $\Delta E = \Delta E_c - 0.782$ MeV where 0.782 MeV is the ${}^{1}H-n$ mass difference. The result is that the lowest T=2 state in ²²Ne should occur near an excitation energy of 13.99 MeV above the ground state.

TABLE II. Coulomb-energy data. For mass numbers 20-24 Coulomb energy shifts have been calculated for the highest isospin multiplet in which two or more members are known. Single for repeated application of the formulas $\Delta E = \Delta E_e - 0.782$, and $\Delta E_e = KZ/A^{1/3}$ were used to derive values of K. See the text for notation. Except as noted, the values of mass used to determine K were taken from Thiele and Wapstra, and Maples et al."

A	Т	Nuclei used	Reference	K
20	2	²⁰ Ne- ²⁰ O	Ъ	1.19
21	32	²¹ Mg_ ²¹ F		1.20
22	1	²² Mg-22Ne	с	1.23
23	1	²³ Mg-23Na		1.25
24	2	²⁴ Mg- ²⁴ Ne	b	1.23
			Average <i>k</i>	K=1.22

^a See Ref. 11.

^b E. Adelberger and A. B. McDonald, Phys. Letters 24B, 270 (1967). ^o A. B. McDonald and E. G. Adelberger, Bull. Am. Phys. Soc. 12, 1145 (1967).

TABLE III. Tentative locations of T=2 states in ²²Ne. Excitation-energy values E_x , are listed for the T=2 states of ²²Ne identified through the ²²Ne(p,p'), ²²Ne(t,t'), and ²²Ne(d,d') reactions. For states 0, 3, and 4, the values of excitation energy were derived from the ²²Ne(p,p') data for which the energy calibrations [from the ⁴¹He(t,p)⁴He reaction] were done most accurately. curately. The energy of state 2 was determined by using the 0-2 energy difference from the ${}^{22}Ne(t,t')$ spectrum. State 0 is within 0.08 MeV of the estimate (see text) of the position of the analog to the ²⁹F ground state. The column labeled ΔE is the energy difference between the three higher states and state 0. The numbers in parentheses are excitation energies of the cor-responding ¹²F excited state.

State number	E_x (MeV)	ΔE (MeV)	
0	14.07±0.040		
2	15.40 ± 0.050	1.33 (1.36)	
3	15.61 ± 0.060	1.54 (1.57)	
4	16.06 ± 0.060	1.99 (1.97)	

Figure 6 summarizes the energetics in ²²Ne and shows the energy of the lowest particle breakup threshold through which a T=2 state is allowed to decay. The predicted energy of the lowest analog (13.99 MeV) is 1.28 MeV below the lowest T=2 breakup threshold $({}^{21}F + p)$. If the analog state has high isospin purity, it should not be broadened by the T=1 decay channels with thresholds which lie below, and it should be possible to observe it as a narrow state lying on a dense background of T=1 states. Possibly this analog state had not been searched for previously since the former mass value of ²²F would have put it above the ²¹F+pbreakup threshold, and the state would be expected to have a large width.

In Fig. 5 both the ${}^{22}Ne(p, p')$ and the ${}^{22}Ne(t, t')$ spectra have a peak (designated by an arrow marked 0) occurring near 14-MeV excitation energy. A peak does not appear at a similar excitation energy in the $^{22}Ne(d, d')$ spectrum, a behavior which is consistent with isospin conservation for a T=2 state in the final nucleus. The value determined for the excitation energy of this state is 14.07 ± 0.04 MeV. This measured energy differs by only 0.08 MeV from the value of 13.99 MeV which was predicted for the lowest T=2 state in ²²Ne. The predicted value was derived from values of K(Table II) which have a full range of ± 0.03 . To estimate reasonable outer limits of the Coulomb-energy shift, a range of K values with *twice* this spread or 1.22 ± 0.06 will be assumed. These limits correspond to a range of excitation energy in ²²Ne of 13.80 to 14.18 MeV. In the (p, p') spectrum of Fig. 5 the only peak in this range is the one at 14.07 MeV. Further, this peak has an observed width only slightly greater than that of the measuring system (0.15 MeV), and thus corresponds to a state whose width is much less than this value. The width of peak 0 can be compared with that of known

178

T=1 states which appear in the ²²Ne(p, p') spectrum. For example, we observe a peak which results from a known state⁹ at 12.63 MeV in ²²Ne. This state, which we expect to have T=1, lies 3 MeV above the lowest T=1 breakup threshold (¹⁸O+ α) and 2.3 MeV above ²¹Ne+n. The observed width of this peak at 12.63 MeV is 0.3 MeV or twice the width of the experimental system alone, and thus it exhibits considerable broadening as expected for T=1 states which are heavy particle unstable to T=1 decay modes. As mentioned above, the ²²Ne(p, p') peak marked 0 is observed to have a width appreciably less than 0.15 MeV. If we assume that state 0 has T=2, then even though it lies 4.4 MeV above ¹⁸O+ α (and 3.7 MeV above ²¹Ne+n) it should not be greatly broadened since it lies 1.2 MeV below the lowest T=2 decay threshold $({}^{21}F+p)$. Finally, the peaks marked 2, 3, and 4 are spaced in energy with respect to peak 0 by amounts which are close to the measured spacing for the second, third, and fourth excited states in ²²F. This is summarized in Table III where the energies and assigned errors are listed for peaks 0, 2, 3, and 4. In summary, we believe that the data on isospin conservation, Coulomb-energy difference, the observed energy widths, and the observed energy spacings of peaks 0, 2, 3, and 4 suggest that they are analogs to the ground, second, third, and fourth excited states in ²²F. In the future, it would be valuable to confirm these tentative assignments by direct reaction studies which measure the complete angular distribution of the inelastic spectra.

From the mass of ²²F and the Coulomb-energy relations used above, it is possible to predict a mass for ²²Al, the unreported proton-rich mirror of ²²F. The value K = 1.22 gives a mass for ²²Al which is 0.08 MeV above the ²¹Mg+p breakup threshold. This estimate shows that ²²Al is very near the proton-stability limit, whereas the previously accepted ²²F mass⁵ indicated that ²²Al would certainly be unstable to proton decay.

Knowledge of the ground-state masses of ¹⁸N and ²²F also leads to conclusions regarding the neutron stability of the unreported nuclei ¹⁹N, ²¹O, and ²³F. On the basis of the systematics of nucleon pairing energies,¹⁰ limits can be set on the ground-state mass of these three nuclei. For ¹⁹N, the definition of neutron-pairing energy of the last two neutrons results in the expression NPE(¹⁹N) = $2M(^{18}N) - M(^{17}N) - M(^{19}N)$, where M is

the mass or mass excess¹¹ of the nucleus indicated. The neutron-pairing energy for a given number of neutron pairs has a consistent oscillatory behavior as protons are added.¹⁰ This behavior enables one to state that the value of NPE(19N) is less than the known value of NPE(²⁰O), which is 3.67 MeV. Also, the pairing energy is not less than zero. These considerations determine that $B_n(^{19}N)$, the neutron binding energy, lies between 2.7 and 6.3 MeV, and thus ¹⁹N is predicted to be neutron stable. Calculations based on the independent-particle model by Garvey and Kelson¹² predict a value of $B_n = 5.0$ MeV for ¹⁹N. Because of the factor of 2 in the NPE relation, the predicted mass of ¹⁹N is particularly sensitive to the mass value of ¹⁸N. This is also true for the mass value of ²²F in the predictions which will be made concerning ²¹O and ²³F.

Limits can be set on the mass of ²¹O by use of the analogous relation for the proton-pairing energy of ²³Ne, that is, $PPE(^{23}Ne) = 2M(^{22}F) - M(^{21}O) - M(^{23}Ne)$. If the value of PPE(²³Ne) is taken to lie between 0 and 4.13 MeV (the value of PPE for ²²Ne), a range of 1.1-5.2 MeV results for the neutron binding energy of ²¹O. Thus, ²¹O is predicted to be stable to neutron emission, whereas if the former mass for ²²F is used, the limits set do not preclude neutron instability.¹³ This result is also consistent with the predictions of Garvey and Kelson¹² who obtain $B_n = 1.2$ MeV for ²¹O.

Finally, from the relation $NPE(^{23}F) = 2M(^{22}F) -$ $M(^{21}\text{F}) - M(^{23}\text{F})$, limits can be set on the neutron binding of ²³F. In this case we take NPE(²³F) to lie between 0 and 3.68 MeV (the value of NPE for ²⁴Ne). This gives a range of $B_n = 5.2-8.9$ MeV, indicating that ²³F is also neutron stable. These predictions are generally consistent with previous evidence,14 which indicates that many more neutron-rich light nuclei will be discovered before the limits of neutron stability are reached.

ACKNOWLEDGMENTS

We wish to thank R. L. Henkel and R. Woods for their cooperation in furnishing the triton beam. We also wish to thank M. E. Bunker for his assistance in interpreting the ²²F results.

⁹ F. Ajzenberg-Selove and T. Lauritsen, Nucl. Phys. 11, 1 (1959)

⁽¹⁵⁰⁹⁾. ¹⁰ V. I. Gol'danskii, Zh. Eksperim. i Teor. Fiz. **38**, 1637 (1960) [English transl.: Soviet Phys.-JETP **11**, 1179 (1960).]

¹¹ Values of mass excess have been taken from J. H. E. Mat-tauch, W. Thiele, and A. H. Wapstra, Nucl. Phys. **67**, 1 (1965), or from the supplemental and revised list given by C. Maples, G. W. Goth, and J. Cerny, Nucl. Data Sect. A **2**, 429 (1966). ¹² G. T. Garvey and I. Kelson, Phys. Rev. Letters **16**, 197 (1966).

^{(1966).}

¹³ Recent measurements reported by T. D. Thomas et al., in ¹⁴ A. M. Poskanzer, S. W. Cosper, E. K. Hyde, and J. Cerny, Phys. Rev. Letters 17, 1271 (1966).