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An important current problem is to find the most economical and physically significant method of calcu-
lating nuclear resonant cross sections. Tobocman and co-workers have discussed an R-matrix type of ap-
proach in which the wave function is restricted to be a linear combination of a given finite set of states
associated with the resonances. That work presented several diferent formulas for calculation, leaving un-

certainty as to which, if any, was the best one. This paper gives systematic reasons why one specific formula
should be more accurate than all others. This result applies to any set of states, and is not restricted to the
special set used in the previous work. A curious incidental result in this paper is that the variational principle
for scattering problems introduced by Kohn fails to give a stationary result when applied to the present
problem.

I. INTRODUCTION

N a stimulating set of papers, Tobocman and
. . co-workers' ' have discussed the problem of cal-
culating resonant cross sections. Generally, in this
problem one assumes a given set of states, which
ultimately give rise to the resonances, and enquires
what is the best (i.e., most accurate) form of the
scattering matrix that can be obtained from these
states. In practice these states are shell-model states.
One would like to use harmonic-oscillator states because
of their simplicity, but this is prohibited in most
treatments because such states vanish at infinity.
Tobocman and co-workers have avoided this diKculty
by using the methods of R-matrix theory. Since the
8 matrix is calculated from the finite "internal" region
of space then oscillator states can give meaningful
results.

It remains to specify the precise formula that should
be used for calculating the collision matrix. This is not a
trivial problem. When the given basis is complete,
there are different ways of writing the exact collision
matrix in terms of the basis states. Provided the basis
is complete, all such ways are equivalent and correct,
but this is no longer true when a finite (i.e., incomplete)
basis is used. One must then decide which way is the
best (i.e., most accurate) .

A warning that some choices can be very poor follows
from a simple example. Suppose that, in a one-body
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problem, we have a complete set of states satisfying a
homogeneous boundary condition at a radius just
outside the surface radius of the internal region. Both
the wave function and its derivative can, in principle,
be expanded in terms of this set inside the internal
region and on its surface. However, if we start with a
finite set and add more and more states, the approach
to the exact derivative is slower than that of the exact
function (because the derivative fails to converge at the
boundary radius). Thus any formula for the collision
matrix involving the expansion of the derivative should
be avoided.

Tobocman and co-workers have considered the
special case when the basis states are those defined
inside a boundary larger than the surface of the interior
region. They present several different formulas for the
collision matrix. In the present paper arguments are
given for a unique best formula for the collision matrix.
This formula applies not only to the special states used
in previous work, but to any set of states.

In Secs. II and III we describe an attempt to find a
best formula by use of a stationary principle for
scattering which is closely related to that of Kohn. 4

In Secs, IV and V alternative arguments leading to the
same formula are given. In Sec. VI, the discussion is
specialized to the particular states used by Tobocman
and co-workers, and further arguments, specific to this
class of states, are given in favor of the suggested best
formula.

A curious incidental result is that the stationary
principle fails to give a stationary result in the present
context when the trial functions have the form of linear
combinations of a fixed number of states. Nevertheless,
the principle gives a unique formula which may be
regarded as the best one because of its derivation from
the alternative treatments.
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II. STATIONARY PRINCIPLE FOR
SCATTERING PROBLEMS

Kohn4 has given a stationary principle for one-body
scattering, suitable for the case when the trial functions
are dehned only in the interaction region, i.e., the in-
ternal region bounded by r=a (say). The variation
functional is

( fi'
L(4' )i=8'~(o)] 'I —E(4i) (4i)'] ~

(2m

a

+ «~V (& &)«)—, (2 ~)

where the prime denotes radial diGerentiation and where
the angular part of the trial function has been suppressed
for simplicity. Kohn shows that this functional is
stationary for general variations around the exact
solution of (II E) $=0, —

does not conflict with M being an explicit function of
P&, because f occurs in a combination that only depends
on the known ingoing-wave part of P:

E(Q) '—0 '0'(nP) ] =[I'—0 'O'I] = —2ik/0(a) .
(2 g)

The stationary property of M(f, ) can be checked
directly from the above form. Alternatively, we may
first rewrite M(fi):

M(4i) =F(k~ 4) —F(4' 4i) —F(A 4) (2 9)
where

F(g, g) —= (fP/2m) E(rp) (rg) ' —0 '0'(rx) ]
+ f «r'P(P —E)x. (2.10)

0

By using the facts that (II E)$=0 an—d

L(fi) —L(f) =second order in (fi f), —
and the stationary value of L(P,) is

L(P) = (A,'o'/2m) f,
wherein f is the logarithmic derivative,

f=[(O)'(4) ']
Using the form of f valid for r&a,

Q =I—UO,

(2.3)

(2.4)

=second order in (P,—P),
so that M is stationary about /&=AD.

Finally, the stationary value of M is

(2.11)

r
a

«r'(4'&4' —4 &4)
0

= (fi'/2m) [(4)'(Oi) —(4) (nh) ']
(2.2)

it directly follows from this form of M that

M(4i) M(4) =—F(4i—4 6 4)—

where U is the collision function, and I and 0 are
incoming and outgoing waves:

I exp( —ikr), 0 exp( +ikr) . (2 .5)

The well-known relation between f and U is easily
derived:

U=L(fI —I') (fo o') '] — (2 6)

Thus L(f,) provides a stationary principle for the
collision function.

The functional L(P&) has the disadvantage that its
quotient form makes it difhcult to generalize it to the
many-channel case. However, it is easy to find another
functional, equivalent to the above, but which can be
generalized:

M(4t) —= (fi'/2m) I (0 ) [(Oi) ' —0 '0'(M~)]
a—2(W)E(W)' —o '0'(4)]} + d V (I'I—E)4

0

(2.7)

This functional has the same basic properties as L(P,):
&t is an explicit function of Pi, it is stationary about

and its stationary value gives the collision
matrix. Further, it can be generalized to the many-
channel case. These properties will now be demonstrated.

The presence of the (unknown) function P in M(f, )

M(P) = —(fi'/2m) I (&)E(~) ' —0-'0'(rP) ]I

=2ikfP[I (u) —UO(a) ]/2mO (a), (2.12)

' A. M. Lane and D. Robson, Phys. Rev. 151, 774 {1MO).

which determines the collision function U.
The extension of the principle to the multichannel

case can be done most simply by switching to the
Bloch 2-operator formalism. ' On delning the operator

Z(b) = (fi2/2mr) b(r —a) E(d/dr) r —b], (2.13)

and writing the operator for the particular choice
b =aO'0 ' simply as 2 (i.e., without argument), we can
rewrite Ii as

F(e, x) = &O'
I
II+&—E

I x), (2.14)

in which angular wave functions are now included. The
dagger on Pt denotes the complex conjugate of the
time-reversed state:

&r I
e') = &r I &14)',

i.e., pt involves the same angular part as @, but the
complex conjugate of the radial part.

The multichannel version of Z(b) is

Z(b) = g I c) (fc'/2m, r,)b(r, —a,) [(d/dr, )r,—b,](c I,

(2.15)
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where b represents the set of numbers b, and
~
c) is the

channel wave function of channel c, i.e., the product of
the internal and relative angular wave functions for the
two particles.

It follows just as before that M(P,) defined by (2.9)
in terms of F given by (2.14) is stationary in the sense
expressed by (2.11). If a, are the amplitudes of incoming
waves,

4,=r I,(r,) ~c)

in P, then f has the asymptotic forms

y —~,it, —P ~,.V„.e,(e,~. -') 'i', (2.16)
f'~00 cI

in which v, are channel velocities, 8, are outgoing waves,

8,=r, 'O. (r.) /
c),

and U., are elements of the collision matrix.
The many-channel M(it, ) given by (2.9), (2.14),

and (2.16) is an explicit function of fi, provided that
H+2, has the Hermiticity property

«'I ~+~ I ~ &=«'I ~+~
I ~&, (2»)

which is valid if f contains no open three-body channels
and the sum over c in 2 includes all two-body channels.
Given (2.17), and using (H —E)/=0, the dependence
of MQ&) on f can be put in the form Z

~
P&. If the n.

are given this is known.
The exact stationary value of M(fi) is

M(y) = —g (a /2~. )

X {['n.I, QU„a. O, (v,e—,.-') 'I'j

XL~.(1.—(O.'/O. )f;)jI,. . (2.18)

The stationary value from the practical use of the
principle will be quadratic in the e. also. Since these are
independent variables, one can obtain the set of matrix
elements U.. by equating coeKcients.

Practical Use of a Stationary Principle

The motive in using a variation principle, whether
minimum or merely stationary, is to 6nd the best value
of the collision matrix by making use of the functional
M (if,) which is stationary at that value for variations of
f, about the exact solution f. In practical cases, the set
of trial functions f, that is used will not, in general,
include the exact solution f.The standard procedure in
using a stationary (as opposed to minimum) principle
is to assstme that the function (f&e, say) obtained as the
stationary point of M(f, ) for restricted variations gives
a good value { viz. , M(f,e)j for the exact stationary
quantity M(P). This is the only evident systematic
procedure for obtaining a best value. If the set fi
includes the most significant variations about P, it will
be a sound set of trial functions. Even when this is not
true and f« is not very close to P, then the value for

A =H+Z —E.
The stationary condition is thus

&A4, ' I
a

I P„4&+&4
—„' 4'

I
X —

I
A4, &

=0
or

(2.21)

(2.22)

&0'i i
~

I ko —0'&+ &0'iot —4't
i
& { P,)= const (C, say),

(2.23)
for P, near &,0.

III. DERIVATION OF THE BEST FORMULA
FOR U USING THE STATIONARY PRINCIPLE

When f, is restricted to be a linear combination of a
given set of functions

A= Zd-k-, (3.1)
n~1

then the stationary condition (2.23) gives, on varying
the d„one at a time,

&&-' I
~

I Ao O&+ &yio'—y' { a
)
4—„&=0, (3.2)

for all m. Qn inserting the form

Oio= PdW. , (3 3)

we get the solution

d = (A+Ar) -'g (3 4)

where g is the column vector with elements

(3.5)

and A is a square matrix with elements

a„„=Q„' { A { y.&. (3 6)

It is easily checked, from (2.9), (2.14), and (3.4), that
the stationary value is

M (fe) = —-', gtr(A+Ar) 'g. (3.7)

M(fz) may still be good, since M is stationary at
U.nfortunately, there is no way of estimating the

error. This is the basic weakness of a stationary prin-
ciple as opposed to a minimum one where f,e does
definitely give the best (i.e., least) value for M(P)
obtainable amongst a restricted set Pi.

From this discussion, we will assume that the best
value for M(f,) is obtained as M(f~o), where f,e is such
that

M(f,) —M(pie) =second order in (Pi Pei)—, (2.19)

for variations in the restricted set of fi. From the
definitions (2.9) and (2.14), and the Hermiticity
relation (2.17), if Af, =P, Pio, —

M(4«) —M(A.) =«4«'I~ I4o—4&

+&4 o' —4' { ~ [ ~4 &+(&A'
(
&

( AP &, (2.20)

where for brevity we have written
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wi th
g„= 2(fPa/2m) "'(I'—0 'O'I) (3.8)

'r„= (ftou/2m) 't' P„(a). (3 9)

Using the exact stationary value (2.12), we find for the
collision function

U=0 'I+2ikaI 0(a)j oR,

where E is defined as

(3.10)

R=2 Ir (A+Ar) (3.11)

Equation (3.10) has the form of the Kapur-Peierls
collision function where the resonances arise from the E
function defined in (3.11). Equations (3.10) and
(3~ 11) represent the result in the one-body case, i.e.,
given a set of functions p„ the best form of the col-
lision matrix is obtained by constructing the matrix A
and vector y from (3.6) and (3.8), then forming R via
(3.11) and inserting this in (3.10) ~

A wide range of diGerent, but equivalent, forms of U
may be obtained by algebraic manipulations, using the
fact that the matrix 2 „contained in A has the simple
form of a sum of two products:

e0-= (~.' I
ec

I ~-&

The various forms of U are described in Appendix A.
Using these forms, one can show that the form (3.10)
for U differs from that obtained using (2.6) and an
evaluation of the logarithmic derivative f by dif-
ferentiating (3.3) . In the special case when the @„
satisfy the same fixed boundary condition at r =a, say
(rctc„) '/(rctc„) =b, then f obtained from (3.3) equals the
constant b, and so is an arbitrary value depending
entirely on the basis chosen. Thus, in this case, one has a
check on the assertion that (3.10) is superior to some
other formulas for U.

General Many-Body Case

Formulas (3.1) to (3.6) apply to this case, but now
(3.7) becomes

I
on using (2.16)7

g„= Q co, (fi'a, /2m, ) '"(I,' —0,—'0, 'I,)„.r„„(3.13)

wherein

= (fca /2m, )'"(r~b(rc —ac) (e I y„). (3.14)

On equating the stationary value (3.7) to the exact
form (2.18) and using (3.13) we obtain for the best
calculated value of the collision matrix

2i(k.k..a,a, ) '"U,.= (0, 'I, )„, .b..+ R„, (3.15)
Oc ac Oc' ac'

One-Body Case

In this case, g„ is simply related to the reduced-width
amplitude

in which

R..=2y, r(A+Ar) 'y . (3.16)

This is the main result of the present work. It is a
unique explicit formula for the collision matrix when the
trial functions are linear combinations of a given set of
function

(4„ I
A

I 4 „—y &
=0. (3.17)

It then follows from the definition (2.9) and (2.14) of
M (P,) that

M(4«o) M(tp) =—(4,o' O'
I

A
I

—4«o

(3 18)

The last line is explicitly first order in (/co —f)
I
because it contains (/co —f) evaluated at the surface so

tb at no integral cancellation can occur j. Thus, the
apparent second-order quantity Q co

—O'
I

A
I 4'co —4'&

is actually first order. The only evident explanation of
this paradox is that the surface derivative in the matrix
element, which appears with a 8 function and. so con-
tributes finitely, is not first order but zero order. That
this is the correct interpretation is strongly suggested
by the special case when all p„satisfy a fixed boundary
condition (rctc„) '(rctc„) ' =b/u at r =a; in this case
(+co) '—(+) ' is trivially of zero order, since

(Wco) '(Mco) ' =b/a.

Another special feature of the case of linear combina-
tions is as follows. Keeping to the one-body case for
simplicity, Mgc) gives a stationary principle for P(a)
as is evident from (2.12) with (2.4) . The "stationary"
value M(/co) for the case of linear combinations is of
exactly the same form:

M(/co) = (boa/2m) 2Li k/0(a) ]/co(a) (3.19)

Lsee (3.7) and (3.3) with (3.4) ].It should be stressed
that the failure of the stationary condition is specific to
linear combinations. Neither (3.17) nor (3.19) is valid
for general trial functions.

Failure Of Stationary Property

It is a remarkable fact that the stationary principle,
described in Sec. II, actually ceases to be stationary
when it is applied to trial functions which are linear
combinations, as we have just done above. Since the
application of the principle above appears to be quite
straightforward, and leads to a unique result, without
anything "blowing up", this fact is unexpected. In fact,
in using this principle (2.1), Kohn applied it to linear
combinations without observing that it failed to be
stationary. However, it is easy to demonstrate. From
Eq. (3.2), it follows that the constant C in (2.23)
vanishes, so that
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The fact that a stationary principle can fail to be
stationary when used with a particular class of trial
functions is not usually mentioned in standard texts on
quantum mechanics, but is discussed in more specialized
and mathematical texts. The failure of the stationary
property means, of course, that we must be more
cautious in claiming merit for the result (3.10) Lor
(3.15)].

The question which remains is whether this result has
any claim to be "best" in view of the failure of the
stationary property. We contend that it does. The
mere fact that the principle yields a unique result
suggests that there is something special about it. In
Secs. IV and V below, essentially the same result is
derived via other methods. In Sec. VI further argu-
ments are given for the particular class of functions qh„

used by Tobocman and co-workers.

IV. DERIVATION OF THE BEST FORMULA
BY TRUNCATING THE SOLUTION OF

THE DYNAMICAL EQUATION

The exact dynamical equation for the wave function

Hermitian in the set @„.This will be so in practical
calculations, usually exactly, since it requires only that
the set p„should be expressible in terms of two-body
break-up channels only. (This is trivially valid for the
one-body case) . Thus, for practical purposes, the
present derivation gives the same collision function as
the one found from the stationary principle, viz. ,
(3.15) .

V. DERIVATION OF THE BEST FORMULA
BY USE OF AN EFFECTIVE UNIT OPERATOR

The derivation in the last section may be rephrased
by introducing the truncation of the set p„ in the form
of an effective unit operator.

The collision matrix U is expressible' in terms of
matrix elements of g—=A ' taken between known states.
Thus the problem of giving an explicit form of U in
terms of a given complete set p (@=1,2. .. ~) will
be solved once we have a unit operator in terms of the
@n~ say,

1= Z Z I 4.)&--Q-'1
is'

(II+~-E)
I
a&=~

I O&

=z1+ ap. &.

since then,
(-y),

(4.1) g=lxgx1= g 1q„&A„„~„.,X„„.-&y„.t1

(5.1)

If the states p„(n =1, 2, ~ ~ ~ ) form a complete set, then
an equivalent statement is =

I
e)N-GN"(e' I, (5 2)

Q.' I
~+~-E

I &)= (e.' I
~

I &&,

for all n On expa.nding f in terms of the P„,

(4.2) where G is the matrix Lg .].
In practice, the given set of states p„ is finite (i.e.,

incomplete), so we wish to form an approximate
(effective) unit operator for this case. To do this, we

(43) first shows that the exact unit operator may be given
the form

and inserting this in (4.2) gives:

Ad=kg,
so that

d=~~A 'g (4.4)

1= 214.»-&4-'1+ Z 1~ ».&~.t,
n, sn 1

= 14&~N(4' 1~+14)x&0'1 (5 3)

which is quite similar to, but not quite the same as, the
stationary-principle result (3.4). The two forms are
identical if A is symmetrical, i.e., if H+Z, is Hermitian
in the sense (2.17) for the basis p„. Actually, the left-
hand side of (4.2) can be reversed, p„t~t, P~„,
because of (2.17), and this leads to (4.4) with Ar in
place of A. Clearly (4.4) can be replaced by

d =xs[aA+ (1 'n) Ar]-'—g (4.5)

where the right-hand side must be the same for all 0..
In practice, the given set of states $„ is finite (i.e.,

incomplete), say n = 1, ~, M. On restricting e in (4.2)
and (4.3), we get an approximate solution of the form
(4.5) where the dimensions of A, d, g are M XM, 1XM,
and 1XM, respectively. This approximate solution will
depend on a unless A is symmetric, i.e., unless (B+2,) is N=O~~-'. (5 4)

in which 1f)~ is a row vector 14,& ~) ~ ~ pm), and
4)& (r=remainder) is the row vector p~+, & &jr+,) ~ ~ ~

4„).We fix N by the condition that the first term is
the exact unit operator within the subspace of terms
n=1, 2, ~, M. That this choice is possible and con-
sistent is checked by the fact that it leads to a solution
for both N and X as we shall now show.

Writing O~, for the matrix (p 1@~& with m in
1, ~ ~, M and l in M+1, ~ ~, ao, and similarly for
O&~, O~~, O~, we have

O~~ ——0~~NO~~,

O~QO, m =0.

From the hrst relation it follows that
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To solve for X, we form other matrices O,~, etc.,
with the unit operator and get

whence
Oar =O.sfNO~ jr+0 XO,~,

0 XQ„~=O,
and similarly

Finally,
O~,XO =0.

0 =O,~NO~„+O„XO„.

Provided that 0 ' exists, a unique solution for X
exists, i.e.,

0 —c 0 -cO,~NO~ 0 (5.5)

O.~=O,~NO~rOrr 'O,M. (5.6)

As shown in Appendix II, all these relations are con-
sistent with the properties of 0 provided 0'=0, which

is the property consistent on completeness of the P„ for
m=1, ~, ~].Thus the form (5.3) of the unit operator
is permissible; further, the choice N=O~~ ' is unique
since it makes the erst term in (5.3) the exact unit
operator in the subspace p~, ~, p~.

Using the unit operator (5.3), g has the form

g=
l
P)~NGN(yt l~+ l

y&srNGX&y' l,

Even if 0 ' does not exist at least one solution for X
can easily be found (Appendix 3) . [Note that we also

have

XO,~=0~,X,

which when combined with (5.5) yields a relation
involving the 0 matrices only:

(6.1)

are
d-= &4.' I &&'+(4-'18&.". (6 2)

On inserting the expansion of f in the right-hand side of
(6.2), we get

VI. ARGUMENTS FOR THE SUPERIORITY OF
(3.15) IN THE SPECIAL CASE OF

TOBOCMAN'S STATES

Tobocman and co-workers have set up a number of
diferent formulas for the collision matrix from a given
set of states. Tobocman and Nagarajan' (called TN)
give two results, viz. , (20) and (21); Nagarajan, Shah,
and Tobocman' (NST) give three formulas corres-
ponding to their Green's functions Gg, G~, and Gj,
and PurcelP gives one formula. G~ of NST and (20) of
TN are the same. G~ of NST corresponds to the result
of the present work, specialized to the particular states
p„used by Tobocman and co-workers, viz. , a complete
orthogonal set in a region larger than and enclosing the
integration region. In the particular case when P„have
this character, it is possible to give further arguments
in favor of the result (3.15).

Let us consider the one-body case for definiteness and
denote matrix elements over the inner, outer, and total
regions by ( &p', ( )P, ( )P, respectively (R)a). We
can regard the various formulas as corresponding to
various extensions of the expanded function P into the
outer region. Let us call the extension, defined in the
outer region (u, R) only, 8(r) . Since

l P„& are orthogonal
in (0, R), the coefficients in

+ I 4&.XGN&4' l~+ le&.XGX&4' I' (5 7)

Inserting the unit operator in gA = 1 yields

(NGN) A~~+ (NGX) A,~=NO~jr ——1 (5.8)

d=Od+e,

where e is the vector with elements

-=(4-'
I 8&.".

(6 3)

and three similar equations.
Truncation to the finite set m=1, 2, -, M is equiv-

alent to replacing the exact unit operator by the
approximate or "effective" one:

It follows that

(1—0)d=e

Oe=0.

(6.4)

(6.5)

"1"=14&~N&4' l~,

i.e., ignoring X everwhere. This gives

(5.9) The second equation is expected since

(Oe)„= g &~ 14„&;&4„'I8&.'

so

g= l 4&~NGN&4' lw

(NGN) A~~ 1,

g= I 4&~A~~ '(0' l~.

(5.10)

(5.12)

=0

g 4„(r)4„(r') =3(r—r').

When this approximate form of g is inserted in the
collision matrix, the resulting form is identical to that
following from the solution (4.4) of the dynamical
equation in Sec. IV.

The erst equation cannot be solved for d since (1—0)
for Tobocman states has no inverse. This is also
expected, since no dynamics have been introduced. The
relation ()—0)d=e is merely a condition on the
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solution d obtained from the dynamical equations

&e'
I
H+~ E-I ~.&"=9-'

I «&",
whence,

(E--E) &~-'
I ~&"+8" I

H'+~
I

~-&o.

From this analysis we may conclude that the latter
choice gives better results than the former, since the
choice 8(r) =0 implies a discontinuity at r=a in +,
and any finite series for + will be distorted by this dis-
continuity. (The value of 4' will be particularly poor
near r =e because it will tend to have the mean of the
two values at the discontinuity) . In contrast, the latter
choice of8(r) makes+(r) smooth across r=a. Infact, it

—&y„t
I
g

I
&p)0o is the smoothest possible systematic choice In. this sense,

roe suggest that there is no systematic reci pe for U that is
where (H —H') is the Hamiltonian of the p„, so better than the stationary form (3.15) .

2 L(E- E)b--+&~' I
H'+~

I ~.&o]&.

in the second equation, viz. ,

A„d=~g, (6.7)

where A„ is the complete matrix of A=—(H+2 —E).
Since this equation contains no reference to 8 or e,
whereas we know that the solution d depends on 8, we
conclude that A has no inverse, so that this last
equation has many solutions d. )In the case when the
@„are eigenstates of II, this is obvious, since A g
contains the inverse of (H —E) =O(8—E) and 0 '
does not exist.]

While all solutions d corresponding to all forms 8(r)
must lead to the same results for U when all states are
retained, this is no longer true when sums are truncated.
In this case, diff'erent choice of 8 give diferent results,
and it is important to choose the best form.

=kg.+(E-—E)e«(6 6)

Depending on the choice for 8(r), i.e., for e„, these
equations can be solved for d„. On using d=od+e, it
can easily be seen that this set of equations is equal to
the set obtained by direct substitution of

e= gd.@.

Statement of Relative Merits in Terms of
Green's Functions

LH, +2'a&(b) —EjG&e&(r, r') =r 'b(r r') (6.10—)

or

(&&& ~ g (» I 4 x & &4 x
(6.11)

where the states
I pq& are eigenstates of H+2'"&(b).

The discontinuity in the derivative stems from the
source 8 function, and has magnitude

PurcelP has noted an aternative view of the choice
8(r) =0. This stems from the observation that the
expansion of the wave function may often be stated in
terms of Green's functions. Since Green's functions are
such that they have a discontinuity in derivative at the
point when the two arguments are equal, it follows that
theories involving such equal-argument derivatives will

be inferior to those that do not.
We define G'"&(r, r') as the Green's function corres-

ponding to the operator G~"&=PH+Z~"&—(b) E7 ', —
where superscript (R) on Z denotes that 2 contains
g(r —R), and superscript (R) on G&s&(r, r') denotes that
it applies to all r, r'&R. We have

Properties of Truncated Forms
dG(B)

(r, r')
dr

(6.12)

The choice of 8(r) implicitly made in TN (20) and
in G~ of NST is 8(r) =0, i.e., e=0. The choice of 8(r)
corresponding to the stationary form (3.15) of the
present paper (which coincides with G» of NST) is that
8(r) should be the extrapolation of the finite-series
approximation for 4' (viz. , 0'=g &d„@„) into the
outer region. This means

we now discuss four theories in the light of this criterion.
Example 1: An example of a recipe which is poor in

terms of the present criterion is that of TN (20) or,
equivalently, G& of NST. This G& is, in fact, equal to
G&e&. When 8 =0, the extended wave function &p may be
written Lsee (20) of TN]

..= gd. &e.'Ia&."

=d„—P d„O.. (6.8)

(2M, dG&~&

I&&, , 4(r') =4(a)
d

(», r')

-L(0)'j G"'(a, r') (6 13)

It directly follows that the above equation for d
reduces to the variation-principle form

A~~d =-,'g.

One sees that the discontinuity in the derivative of G
is directly responsible for the discontinuity in &p(r') at

(6.9) r'=a The collision . matrix is obtained by evaluating
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ip(a) on putting r'=a, so we see that the "dangerous"
quantity [(dG/dr) (r, a)] o occurs.

Equation (21) of TN is even worse, since it involves
differentiating this formula for (P(r') at r'=a W. hile

(20) is poor for a truncated series, it is exact for an
untruncated case provided dG/dr is evaluated from
inside r =a. In contrast (21) fails even for the untrun-
cated case.

Example 2: R-matrix theory, where there is no outside
region, i.e., R=a. In this case, the standard result of
R-matrix theory may be stated:

4 (r) = (f('a/2m) G"(», a) [(4)'-—V(a)], (6 14)

where

G(') (r, r') = &r I
[H+g(') (b) —E] '

I
r')

"
& I~.}&~ 'I")

tinuity in dG/dr. We have

(,) ( )] (,) ( }
b(P(a) (2m/fPa)

dr o (~) ' —b(p(a)
'

(r)P) ~(2m/fPa)
« = (W)'- —bP(a)

The difference is the expected value 2—m/fi2a W.bile it
is wrong to di8erentiate this form of )p(r) at r= a, it is
correct to evaluate )P(r) at r =a since no derivative of G
appears.

Example 3: Purcell proposes a method for avoiding
the "dangerous" quantity

[(dG(")/d )(, )]-
He retains the choice g(r) =0, which implies the above
equation:

~, , 4(r') =4(a) —((P}' G(")(a, r'),

As we know, one makes an error if one tries to obtain
)P'(a) by differentiating this formula at r=a. This
erroneous procedure gives (r(P)' =b(P(a), while the
correct answer is

0"(a) =0 (a) I
—(&'a/2m) G"(a, a)] '+bl).

This discrepancy exactly corresponds to the discon-

(6.15)

but he evatuates this at a point (r =a(), say) inside r =a.
(It is assumed that a is chosen well outside the interac-
tion region, so that ao is not inside this region). On
inserting ao)P(ao) =I(ao) —UO(ao), a)P(a) =I(a)—
UQ(a), (r(P)' =I'(a) —UO'(a), one finds the result-
ing formula for U (with a0& a&A):

I(a) [dG(") (r, ao) /dr]~ [I'(a) I—(a) ]G(")(—a, ao) —(2m/fPaao) I(ao)

Q(a) [dG(a) (r, ao) /dr] [0'(a)——0(a) ]G(")(a, ao) —(2m/f), 'aao}0(ao)

An evident weakness of this procedure is that ao must be
significantly difI'erent from a or else the above objection
applies. If ao is much less than a, it means that the
wave-function expansion includes a large region of free
space where the wave function )p has the explicit form
r '(I UO). It is un—likely that any real improvement
can be obtained by extending the expansion region in
this way. Furthermore, the objection to the choice
8=0 still applies, since there is a discontinuity in )P at
r=a, and the expansion of ip over the entire range is
distorted by this discontinuity.

xEa m/ep4: the variation-principle recipe, which is
equivalent to Gz of NST. It is clearly important to
check whether this recipe involves a "dangerous"
quantity, either implicitly or explicitly. At first sight,
there is trouble. From formulas in Appendix A, we may
write the wave function thus:

(p(r) =-,'[1+B'»(1)—(aO'/0) B»(1)7 '

X Z &r I@.}[(H—E) 'g]- (616)

NST define a so-called Green's function

Ge(r, r') = g (r I @ )[(H—E) '] ((b»
I
r')

so that
B»»=(fPa/2m)Gr)(a, a),
B'» = (5'a/2m) [(d/dr) »Gs(r, a) 7

/fPab f, 0'
0'(r) =

I

—
II

I'- —I
&2esj E 0

Pa d»Ge(r, a) aO' fPa
X 1+— —Ge(a, a)

2~ dr 0 2m

XGs(r, a), (6.17)

we see that, apart from a multiplying factor, 4(r)
involves Gs(r, a) but not its derivative. This checks
the fact that )p(r) has no discontinuity at r=a in the
case g(r) =)p(r) . However, the multiplying factor does
involve [dGs(r, a)/dr], so the theory is apparently
subject to the Purcell criticism. However, this con-
clusion is incorrect, since the function Gg defined above
ceases to exist when the sums on e, m include all
states. [As previously noted, if

I (p„) are eigenstates of
H, then (H —E) ~ 0, and 0 ' does not exist when all
states are present). NST do not comment on the fact
when they introduce G&. Thus the function G& as
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defined above does not go over into a proper Green's

function when all states n, m are included. For this
reason, it follows that the Purcell criticism does not
apply. This view is supported by the fact that the
above formula for f(r) is correct when it specialized
to the case R=a (i.e., no outer region):

8'&(1)=bB»(1) =bR(b),t'ai'ol"'I

0' ) ( aO')
+(r) =

I

—
I I

I'——I
I

1+ I b ——IR(b)
&2m) E 0 i I 0 ]

g (r I4ibi
E),—E

This is the standard E-matrix-theory result. Note that
Gg of NST does become a proper Green's function when
all states are included, so that the criticism of this
recipe stands.

Conclusions

The essential result is simply that there exists a best
formula for the collision matrix in terms of linear com-
binations of given functions, viz. , (3.15) with (3.16).
This result follows from the stationary principle of
Sec. II, despite the fact that the stationary property
fails for linear combinations.

In a practical calculation of a cross section with
resonances, the result of this paper can be combined
with an independent calculation of the direct interac-
tion (i.e., background) scattering (e.g., from a coupled
channel or other direct interaction theory). Once the
wave function for such background has been obtained,
it may be regarded as one of the states p„, while the
other (3f —1) states give rise to local resonances. On
forming the matrix A with all j/I states included, and
then calculating the collision matrix with (3.15) and
(3.16) interference effects between the background and
resonances are automatically included. An important
feature of this approach is that it is unnecessary to
orthogonalize states p„, in particular there is no need
for the background state to be orthogonal to the
resonance states.

APPENDIX A: ALGEBRAIC MANIPULATIONS
GIVING ALTERNATIVE FORMS OF

R IN (3.11) AND (3.15)

One-Body Case

There are two varieties of alternative forms:

(1) Variation of boundary condition Rmay be.replaced
by the corresponding quantity for boundary condition
b, viz. ,

R(b) = gLH+2(b) —E] 'y.

Matrix algebra shows the relation to be

R=L1—Rb(oO'/0 —b)] 'R(b).

A related result is that the relative values of the co-
eflicients in f,e g——d„P„are unchanged if g is replaced
by any 2(b):

d =&~A-~g =$LI —R(b) (oO'/O —b) ]-r

X++2(b) —E) 'g.

(2) Rentoeal of 2 and zorMd syrnntetrization of H.
Defining C„„=(qb~t

~
H —E

~ p„), we have

Cnm —C~~=y ~ —y~4,
where

3.= (fPo/2nz) 'I'(ry„) '

The matrix D defined by D „=—pH+Z(0) —&7 „is

D= (C+~S')+(I—) (Cr+Sg),

and has the properties that it is the same for all 0. and it
is syrmnetric if a=~z or if H+Z(0) is Hermitian.
Splitting D into two parts,

D Z+Y,
with

Z=aC+(1-a)Cr

Y=aySr+ (1—a) 5yr,
we have

Z '=(1+Z 'Y)D '.
On defining

Bw(a) =xr[a(H —E)+(1—n) (Hr —Er)] 'Y,

R~(0) =xrLH+2(0) —E] 'Y=xrD-'Y

LN.B.:R~(0) =Rr*(0)),

we get four equations on putting vectors x, y=y, 5
around the equation for Z ', the first being

B»(a) =R»(0) +aB»(a) R~~(0)

+ (1—a)8+(a)R»(0) .

Eliminating R'~(0) from this equation and the one for
8'& gives R(0) in terms of the 8's:

R»(0) =—R(0) =B»(a) I $1+aB~&(a)]
X (I+(1—n) Bn(a) )—a (1—a)8» (a)Bn(a) I

=8"(1)/L1+8" (1)).
The solutions for 8's in terms of R's(0) are

B»(a) =(1—R'n) 'R»,

8"(a) =(1—R&') 'Rn,

8&'(a) = (1—R&') 'LR"—a((R~')' —R»Rn)),

8"(a) = (1—R&') '$R&' —(1—a) ((R&')'—R»Rn)].
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Note that B», Ba, (B&'+B'~)—= U, (B»' —B'~) X
(1—2a) '=—V are independent of a. Further, eliminating
all E.'s, a relation between the B's is found to be

V' —U'+4V+4B»B" =0.

In Sec. III of the text, we mention the value of the
logarithmic derivative, f,o(say), obtained by direct
differentiation of the sum P@. This is, on using the
above kind of manipulations,

f~o= [(W~o) '/M~o] =B (1)/aB (1).

This is to be compared with the form implied by the
result (3.11),viz. ,

f= [aE(0)]-'= [aB»(1)]-'+B'&(1)/aB»(1),

which is clearly diGerent in general.
Another result easily obtainable from the same sort

of analysis is that the solution d may be reexpressed

d=)A 'g=g{[1—(aO'/0)E(0)][1+8"(1)]}'

APPENDIX B: PROPERTIES OF THE
OVERLAP MATRIX 0 FOR A COMPLETE SET

If the
I P„) are complete, one form of the unit

operator is the diagonal one:

0=OPO,

where 0 is the overlap matrix

and P is the diagonal matrix of the P's. By renormali-
zing the

I p„) or by working with O'=—P'~'OP'~', we may
suppress P (the same is true in the text if we work with
N'=—P'~'I|fP'~', etc.) . Thus consider

0'=0.
On writing this in terms of the submatrices,

The Many-Body Case

X(H —E) 'g. 0~~0~.+0~.0 =0~.,
O.orOoror+O O.sr=O.jr,

The generalizations of the above algebraic relations
for the one-body case are easily shown to be

R=R(b) [1—(aO'/0 —1)R(b)]-'

If we de6ne
—OFMOMM OMf

where a(O'/0) —b is the diagonal matrix with ele-
ments a, (0,'/0, ) b, and—

these relations show that

W'=W, 0 WO =W,

O~,W=WO, ~=0.

OmXOn =On OrMO~~ ~ D~g =W~

R(0) = {1+(1—u) 8&'(a) —a(1—a) B»(u)

X[1+»,( )],»o( ) },&„( )[1+»,( )], On comparing with the rela«on satisfied by X in the
text,

=&"(1)[I+»"(I)] '.

Here we have assumed A, to be synunetric so that the
definition (3.16) of R becomes yrA 'y. When A is not
syxnrnetric, and (3.16) applies, then the equation for
R(0) is valid only for evaluation of a= —',. In this case,
the quantities B», B~, U, and V are no longer in-
dependent of 0,.

we see that a solution for X is

X=W,

and that this satis6es the conditions O~,X=XO„~=0.
Further, if 0„, exists, this solution is unique. In
general, 0 and X are projectors, while 0~~, 0 are not.


