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We demonstrate that the existence of symmetries under the operations T, P exp (—Ar J„),and exp (i~J,)
in the Hartree-Fock densities of even-even E=Z nuclei follows directly from two indisputable features of any
effective shell-model interaction, viz. , the general exchange nature and the short range. We show that this
implies that one should not expect parity amDng in Hartree-Fock ground state wave functions for these
nuclei. Finally, we demonstrate that these same features of the interaction allow us to predict the shapes of
the Hartree-Fock densities.

INTRODUCTION

1

r ~VER the past several years there has been con-
u siderable progress in our understanding of the

structure of light nuclei through studies employing the
Hartree-Fock (HF) approximation. ' In these calcula-
tions special emphasis has been placed on the even-
even, E=Z nuclei (4m nuclei) which exhibit a large
gap in the single-particle HF energies between occupied
and unoccupied orbitals. Such a large gap is not
observed for other types of nuclei and, in fact, self-
consistent Hartree-Fock-Bogoliubov (HFB) calcula-
tions converge to HF solutions (i.e., no-pairing solu-
tions) only for the 4n nuclei. In the s-d shell, these HF
solutions exhibit a very interesting alternation of shape;
Ne", Si", and Ar have spheroidal (axially-symmetric)
density distributions, while Mg" and S~ have ellipsoidal
(triaxial) density distributions.

In all of the HF calculations to date, certain sym-
metries have always been assumed. The single-particle
densities have been taken to be invariant under:

(1) time-reversal; T,
(2) reflection through a plane, e.g., the x-s plane;

P exp( —ArJ„),and
(3) rotation by z about an axis in the plane of

reaction symmetry, e.g., the s axis; exp(is J,),
where P in (2) is the parity operator. Symmetries (2)
and (3) above together imply that the y-z plane is also
a plane of reQection symmetry. The major experimental
evidence leading to the assumption of these symmetries
is the lack of any low-lying 1+ states in the spectra of
the 4e nuclei. The immense increase in labor involved
in dropping the assumption has inhibited the use of
more general trial functions to test its validity.

Inasmuch as the effective shell-model Hamiltonian
H is invariant under all of these symmetry operations,
it might appear that there have been no assumptions
involved by taking the HF density to be invariant
under the same symmetry operations. This clearly is

~ Work supported in part by the United States Atomic Energy
Commission under QRO-3765-12.' For an excellent summary of HF calculations in light nuclei,
see G. Ripka, Advances in Nuclear Physics (Plenum Press, Inc. ,
New York, 1968), Vol. 1, and references therein.

~ L. Satpathy, D. Goss, and M. K. Banerjee, Phys. Rev. (to
be published).

not the case. For any odd-A nucleus the spin of the
last nucleon precludes time-reversal invariance of the
density. In all HF treatments of rotational nuclei, we

seek a description of a deformed intrinsic state from
which a rotational band can be projected, a procedure
which obviously relaxes the requirements of rotational
invariance for the HF density. There have also been
several suggestions to the effect that an improved HF
density may be obtained by allowing parity mixing in
the single-particle orbitals and then projecting states
of both parities from the same intrinsic wave function. '
In this paper we address ourselves to the problem of
determining which of the symmetry operations which
commute with H also commute with the HF density p,
a problem which can only be treated by studying the
dynamical features of H.

We shall demonstrate that the three symmetries
listed above follow from two simple and well-known

properties of all effective shell-model interactions; the
exchange nature and the 6nite range. From this other
interesting results follow, such as the alternation of
shapes described above and the lack of parity mixing in
nuclear HF wave functions.

SINGLE-PARTICLE ORBITALS
AND SYMMETRIES

Since the HF wave function
~
C) is arrived at by

minimizing (4
~
H

~
4), ~

C') will adjust itself to take
maximum advantage of the most attractive features of
the effective interaction V. Since the dominant part of
the effective interaction is the central interaction V,
we should 6rst investigate the constraints imposed on

~
C) by the requirement that the attraction due to V,

is maximized, and then maximize the attraction due to
the noncentral parts of V subject to these constraints.

First, let us consider the case of a purely central force
and study the effect on

~

C ) of the exchange nature of
V,. For all exchange mixtures in use, V is much more
attractive in even relative space states than it is in odd
relative space states and, in fact, it is usually repulsive
in the latter. Two nucleons in the same space orbital
can only interact through even relative space states,

' K. Bleuler, in Proceedings of the International School of Physics
"Enrico Fermi, " Course 36 (Academic Press Inc. , New York,
1966).
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TABLE I. Cartesian orbitals in the 2s-id shell used as examples in the text. The normalization constant X=2 '"b I '21

Type (a)
2 quanta in one direction

Type (b)
i quantum in each of two directions

(r ) 200}=NP(2s /bS) —1)exp( r—'/2b')

(r
~
020) =ND2y'/b') —1jexp( r'—/2b'}

{r
~
002) ~NL(2s'/b ) —1jexp( —r' /2 bl)

(r ) 011)=2N(ys/bs) exp( —r'/2b')

(r
~
101)=2N(ss/bs) exp(-r'/2b')

(r
~

110) =2N{gy/bS) exp( —r' /2 bs)

while two nucleons in diferent space orbitals interact
through odd relative states 10/16 of the time and
through even relative states only 6/16 of the time.
From this it follows that a given orbital will be fully
occupied (i.e., occupied by neutrons and protons of
both spins) in

~ C), leading to a [4,4,4, ~ ~ ] SU(4)
symmetry. Bar-Touv and Levinson' have shown by
this argument that the exchange nature of the force
accounts for the observed gap between the energies of
the occupied and unoccupied orbitals in HF solutions
for the 4e nuclei in the s-d shell. For our purposes, the
important result is that the HF wave function

~ 4) is
scalar in spin and isospin for 4e nuclei, consequently the
symmetries of

~
C) are determined by the space wave

functions of the single particle orbitals.
To examine the functional form of the space orbitals,

we may proceed as follows. We consider the space
orbitals to be constructed from a complete set of states
in a representation where l and m are good quantum
numbers. We then consider the dominant attractive
matrix elements of V, and adjust the coeKcients in the
expansions of the orbitals to maximize these matrix
elements. This approach is described in detail in the
appendix. Here we present a more qualitative argument,
using s-d shell wave functions as examples, which
produces the same results.

The dominant feature of the space dependence of I/'.

is its short range. Considering the discussion of the
eGect of exchange, we 6rst maximize the expectation
value of V, between two particles in the same orbital.
Because of the short range, the wave function is
maximized when the density distribution is as compact

as possible. This, then, is the primary constraint on the
space wave functions; they must have the minimum
spatial extent consistent with the requirements of the
exclusion principle.

The space wave functions in the s-d shell can be
expressed in terms of a basis set of Cartesian wave
functions; for convenience we use oscillator wave
functions. These are of two types; three of type (a)
corresponding to two quanta in some one direction and
three of type (b) corresponding to one quantum in each
of two directions. The basis functions are displayed in
Table I. Figure 1 shows schematically the density
distributions for typical orbitals of each type. It is clear
that the density of a type-(a) orbital is more compact
than that of a type-(b) orbital. Figure 2 shows sche-
matically the density distributions for a linear com-
bination of the Cartesian basis functions, in this case
chosen to be an eigenfunction of angular momentum.
It is clear that these densities are much less compact. In
fact any linear combination of two or more of the
Cartesian basis functions, which is not equivalent to a
rotated Cartesian basis function, leads to a less compact
density than that which we obtain with single Cartesian
functions. From this it follows that the Cartesian wave

Y

fe)

FIG. i. Schematic representations of the density distributions
arising from the Cartesian orbitals of type (a) and (b) discussed
in the text and displayed in Table I. The examples shown corre-
spond to (a) two quanta in the s direction and (b) one quantum
each in the x and s directions.

4 J.Bar-Touv and C. A. Levinson, Phys. Rev. 153, i099 (1967).

T

FIG. 2. A schematic representation of the eBect of taking a
linear combination of two orbitals of type (b) to form an orbital
with sharp angular momentum, in this case the density corre-
sponds to either the id1 or the id 1 orbital. A three-dimensional
sketch is employed to illustrate the smearing of the density due
to the cylindrical symmetry about the s-axis.
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functions are the correct space wave functions for the
HF orbitals. Of course, linear combinations of the
filled orbitals may always be used without changing

Each of the Cartesian orbitals in invariant under the
symmetries T, exp(ssrL, ), exp( irr—L„), and P. Since
each filled orbital is invariant under these operations,
the entire determinental wave function

~
C) is also

invariant under these operations. Since the density is
scalar in spin space, it is also invariant under exp(ix J,)
and exp( irrJ—„).These conclusions correspond to the
first two conditions in the Appendix, namely, time-
reversal invariance and the fact that, in the expansion
of an orbital, only components with m's differing by
2 appear. To determine whether the density is invariant
under exp( irrL„)—Lexp( irrJ—„)] or P exp( irrL„)—
LP exp( isrJ—„)],we must inquire as to the relative
phase of components from diferent shells. Through a
careful study of the types of components introduced by
possible parity mixing, we show in the Appendix that
these components must be relatively real. This result
demonstrates that P exp( —ieL„) PP exp( irrJ—„)] is
the correct choice.

'The inclusion of a spin-orbit force eliminates the
symmetries involving the orbital angular momentum
operator. However, since an 1 s force commutes with
the remaining symmetry operators, they survive.
Consequently, we have demonstrated the necessity for
the HF density to be invariant under the three sym-
metries under consideration, viz. , T, exp(isJ, ) and
P exp( irrJ„)—.

PARITY M~&NG IN THE HF ORSITALS

We now wish to investigate the conjecture that an
improved HF description might be obtained by allowing
the HF orbitals to be constructed with mixed parity. '
The prime candidate to provide a field which could
accomplish this is the tensor force. The held-producing
term could, in principle, be of the form r 4 or p d. In
the latter case, the coefficients of components from
shells of diferent parity will be relatively imaginary, a
condition ruled out by the symmetries P exp( irrJ„)—
and T. In the former case, the HF density must give up
time-reversal symmetry. In either case, while parity
mixing could increase the attraction due to the tensor
force, it would decrease the attraction due to the central
interaction. Because of;&.e dominance of the central
interaction, we would not expect to observe parity
mixing in nuclear HF calculations for the ground band
using any reasonable effective interaction. This expecta-
tion is borne out in the calculations of Bassichis,
Kerman, and Svenne, ' who find no advantage to parity
mixing unless the tensor force is increased to nearly
twice its normal strength.

'%. H. Bassichis, A. K. Kerman, and J. P. Svenne, in Pro-
ceedings of the Iwter~ioeal Coeferelce orl, ENclear Physics, Gatlie-
berg, Teew. , 1966 {Academic Press Inc., New York, 1967),p. 855.

TABLE II. Relative strengths of the matrix elements
ia,a„ts.(1),es,es„ra, (2) ~

s
~
ts, 'a„'a,'(1), es,'es„'es, '(2) ) of simple

two-body forces between Cartesian states. Each column is nor-
maiised to the (002, 002

~
s

~
002, 002) matrix element; in a

reasonable representation of the effective two-nucleon force, the
strength of the 5-function interaction is much greater than the
core polarization term in the last column. The R is this term is
the radius where the p-shell density is a maximum.

8 function
8 {r1—R)5 {rg—R}

X cosmos

(002, 002 i s i 002, 002 )

(002, 011 [ s [ 002, 011)

(002, 110 [s [002, 110)

(002, 020 [ s i 002, 020)

(011,011
i
s

i 011,011)

(011 101 i s
I
011 101)

0.341

0.146

0.220

0.878

0.293

1.015

0.702

0.797

1.386

1.101

SHAPES OF THE HF DENSITIES

'T. T. S. Kuo and G. E. Brown, Nucl. Phys. 85, 40 {1966).

The HF density may have additional symmetries
compatible with the three studied here when certain
combinations of orbitals are filled. One such possibility
is the existence of an axis of rotational symmetry.
Clearly, for any single Cartesian orbital, such an axis
can always be found. For densities composed of more
than one orbital, the interaction between orbitals must
be studied to determine which orbitals are filled. As a
guide, the matrix elements of a 8-function potential are
presented in Table II.

At the beginning of the s-d shell, for Ne", only one
orbital will be filled. From the arguments above, or
from Table II, we see that this orbital will be of type
(a) s,nd, for convenience, we choose it to correspond to
2 quanta in the s direction. The resulting density has
rotational symmetry about the s axis and a positive
quadrupole moment; i.e., it is prolate and axially
symmetric.

When we fill a second orbital to form Mg'4, we must
include the interactions between the orbitals to deter-
mine the minimum energy. As can be seen from Table
II, an ambiguity arises from the use of just the b-func-
tion force. The same binding energy is obtained either
by filling one orbital of type (a) and one of type (b)
with one quantum in the same direction, or by filling
two orbitals of type (a) . The fact that the range of the
actual force is not zero, however, increases the relative
importance of the overlap between different orbitals
and hence favors 6lling one orbital of type (a), say,
~
002), and one of type (b), ~

011). The resulting
density no longer has any axis of rotational symmetry.
It is interesting to note that core-polarization effects on
the effective matrix elements of the type discussed by
Kuo and Brown' leads to the same conclusions as the
nonzero range; for comparison matrix elements of this
correction are included in Table II.
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TABLE III. Results of HF calculations (Ref. 2) for S=Z
even-even nuclei in the 2s-1' shell. The efFective interaction is
taken to have a Yukawa radial dependence with range 1.4 F,
and an exchange mixture giving the following depths in difFerent
spin space states: V triplet even = —43.0 MeV, V singlet even=—31.5 MeV, V triplet odd=17, 8 MeV, and V singlet odd=37. 4
MeV. Oscillator wave functions are used with the length param-
eter b chosen to give the correct rms radius. For triaxial nuclei,
the axes are chosen so that the magnitude of Qo is greater than
that of .

Nucleus Shape
Qo in

units of b'
Qms in

units of b'

Si s

Ssl

Prolate axial

Triaxial

Oblate axial

Triaxial'

Oblate axial

7.8

8 ' 8

—11.4

—6.4

5.4

~ The vanishing of the quadrupole moments does not imply spherical
symmetry as higher moments, especially the hexadecapole moments, are
nonvanishing.

Repeated applications of the above arguments
through the s-d shell lead to the following predictions
for the shapes of the HF densities for X=Z 4n nuclei:
Si"' will be oblate with axial symmetry. S"will not have
axial symmetry, and Ar" will be prolate with axial
symmetry. The results of actual HF calculations are
presented in Table III, and these results agree with
those expected from our arguments.

An extension of these arguments to interactions
between major shells leads one to expect the four-
particle —four-hole intrinsic state of 0" to be composed
of an oblate density for the eight p-shell particles and
the four s-d shell particles occupying an orbital of type
(a) which has its density in the plane of the p-shell
density, leading to an over-all density which has no axis
of rotational symmetry. This result is also borne out in
explicit calculations. '

SUMMARY

' G. J.Stephenson, Jr., and M. K. Banerjee, Phys. Letters 24B,
209 (1967}.

Relying only on the main features of the effective
shell-model interaction, features common to all poten-
tials currently in use, we have shown that the HF
densities of 4n, E=Z even-even nuclei will be invariant
under the symmetry operations T, exp(inJ, ) and
P exp( isJ„).T—he simple arguments presented in the
body of the paper are not restricted in their validity to
s-d shell nuclei nor especially to s-d shell harmonic-
oscillator wave functions; these have been used as an
illustrative example. The arguments presented in the
appendix clearly are not restricted to any single major
shell. %e also have shown that parity mixing is not
expected to give any advantage in these nuclei and that
the qualitative behavior of the shapes of the HF densi-

ties in the s-d shell may also be understood from the
dominant features of the effective interaction.

c„~„'=(—) c„(„"
C„~ 'is real.

(A6)

(A7)

"The nonzero C„~ "s have m's differing by
multiples of 2, i.e., are all even or are all odd. " (A8)

To show that the HF density is invariant under the
three symmetries, we need to show that the relations
(A6) —('A8) follow from the nature of the effective
two-body interaction.

APPENDIX

The effect of the exchange nature of the effective
interaction, as discussed in the text, is to lead to occupa-
tion of each space orbital four times, i.e., to L4, 4,4 ~ j
SU(4) symmetry for the HF wave function in the
light 4n nuclei discussed in this paper. As a result, the
density and the single-particle Hamiltonian h are scalar
in spin-isospin space and we need only consider the
space wave functions of the occupied orbitals and the
symmetry operations T, P exp( —imL„), and exp(inL, ).

I.et us write the space wave function of an occupied
orbital as

u, (r) = Qc„s '
~
nlm), (A1)

where the
~
nlm) form a complete set of suitably chosen

functions and where we follow the Condon-Shortley
phase conventions for the angular functions, i.e.,

(tm'i I+ ( fm)&O (A2)
and

T
~
nlm)=( —) ~

nl —m).

The condition that the density and h are invariant
under the symmetries in question leads to the require-
ment that the following three functions:

T (ur)=P( )-C.-, ' ~ni m), -(A5)

P exp( is L„)—u, (r) =g( —)"C„~„'
~
nl —m), (A4)

and

exp(is L,)u, (r) =P(—)"C
~

'
~

n1m), (A5)

must either be multiples of u;(r) or else linear combina-
tions of occupied orbitals at the same energy. In the
latter event, suitable linear combinations of the
occupied orbitals may be chosen to make the u;(r)
eigenfunctions of the three symmetry operators. This is
possible because, for space wave functions carrying
integral angular momentum,

T2u, (r) =[8exp( iL„)j'u;(r) =u—;(r) .

Requiring that the u, (r) be eigenfunctions of the
symmetry operators, with eigenvalue +1, Eqs. (A3)-
(A5) lead to the following relations on the expansion
coefBcients:
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where the sums are over occupied single-particle orbitals.
The spin and isospin indices are suppressed. H0 is the
single-particle part of the shell-model Hamiltonian H,
the second term is the interaction of nucleons in
identical space orbitals through the effective inter-
action e, and the last term is the interaction between
nucleons in diferent space orbitals. Since Ho is invariant
under the symmetry operations in question, its eGect
on the C„~ ' will not aGect the symmetry properties of
h. As described in the text, the main attraction will
come from the second term in (A9), hence the sym-
metry properties of the orbitals will be determined. by
it; the third term will primarily aQ'ect the equilibrium
shapes in nuclei with more than one orbital occupied.

The second term in (A9) involves a spin-isospin
sum over space sylIDnetric states which may be written
as

Q(ii
~

v
~
ii) =6+A,~(igloo; LM) A;(lgl4, LM)

where
X &(iris) LM

~
v+

~
(1114)LM), (A10)

A;(lg12; LM) = QC~&i'm&'Cngimg'

(A11)

is the amplitude of the space-symmetric vector coupled
state

~
(lrlg) LM) m

~
ii) The sy. mbol

lg Q L

The expectation value of the energy is given by

&4 I&I4)=Z&'I&DIi)+Z&'iI ~ Iii)

+2&iI li» (A9)

as large as possible. However, we are in no position to
comment on the magnitudes of the C„~ ' without a
knowledge of the detailed dependence of HD and the
matrix elements of e+. on n and /. In particular, we
should keep

N &'=Z
I
C &

'I' (A13)

the weight of the state (N, l) in I,, 6xed in our attempt
to maximize the magnitude of (A12). Multiplying
(A13) by a Lagrange multiplier, adding to (A12) and
diGerentiating with respect to C„~ ', we get the relation

C„~„'=v„i'(—) ' C.&
'*. (A14)

The unknown factor p,„~' may depend upon e and l, but
not on ia. By refiecting the sign of m in (A14), we see
that

~ p, i'
~

=1.Substituting (A14) in (A12), we get

(b) The phase of the matrix element

(PL=0
i v~ i

l"L=0)
is (—) ' " times an attractive matrix element.

(c) Among the matrix elements in space symmetric
states, ((ll')L

~
e+

~
(ll')L), the biggest are those for

which l+l'+L is even.
(d) Among the matrix elements of type (c), the

biggest is that for which L=
~

l l' —~.

These features are basically the result of the fact
that, beyond the separation distance which is small
compared to the size of nuclei, the effective potential
falls oG smoothly and rapidly. The "core polarization
correction'" arising in calculations where major shell
mixing is not allowed does not change these features.

Since the (PL=0
~

s+
~

PL=0) matrix elements are
the most attractive, the variational procedure will
automatically make the amplitudes

A, (ll 00) = Q (—)'~C„i 'C„i '(2l+1) " (A12)

A, (ll; 00) =Q(21+1)- i'p„iiN„, . (A15)
stands for the Clebsch-Gordan coefBcient, and 0~ is a
normalization factor to account for the possibility that
1 and 2 may be identical orbitals. The interaction
potential e+ is one-half of the sum of the singlet-even
and triplet-even interaction potentials.

To maximize the attraction in (A10), we must
maximize first the amplitude of the most attractive
matrix element of e+, then, consistent with this,
maximize the amplitude of the next most attractive
matrix element, and so on. There are certain features of
the two-body matrix elements which are true for any
form of eGective shell-model interaction likely to be
considered seriously, and it is upon these that we wish
to draw:

(a) The biggest matrix elements are

(PL=0
i v+ i PL=0),

those for zero-coupled angular momentum.

+ ii —( ) ilia (A16)

where the real phase factor n is independent of l
and n. Combining (A16) with (A14), we find that we
have derived the relation (A6), the condition that
N, (r) be an eigenfunction of T, the time-reversal opera-
tor. This, in its turn, guarantees that the HF density
is invariant under time reversal.

To derive the remaining two symmetries, viz. ,
I' exp( —isL„) and exp(isL, ), we must consider the

The preceding considerations guarantee that the
diagonal L=0 matrix elements contribute to the
attraction as much as possible. Turning to the off-
diagonal L=0 matrix elements, we find that in order to
guarantee that the terms

A, (ll; 00)A,~(l', l'; 00) (l"L=0
i e+ i

l-"L=0)

are all attractive we must have



1714 M. K. SANER JEE, C. A ~ LEVIN SON, AND G. J. STEPHENSON, JR. 178

L/0 matrix elements. Let us 6rst consider the am-

plitude for L/0 and M =0:
l' L

A, (lP; L, M =0) =Q! C l 'C l

0

Ordinarily there is no simple phase relationship between
the two Clebsch-Gordan coeKcients, except in the case
of L=!l l'—!,where

l l'
= ( —) ' X (positive number) .

+C~'C i+'
l l' L

!—~mo) (A17)
Using (A23) we may rewrite (A22) as

(A23)

Using (A6) and the relation

l l' L l' L
( ) l+li L— (A18)

A'(l/', L, M) =Q jC l 'C l ls- '( —) '

+C l rC f p l()j~+Ary}(A24)

we may rewrite

A, (//; L, M=O) =g( —)-
I,
' L

where x and y are the magnitudes of

l l' L l
and

L

C~)~'C ) ~' ——real (A20)

—m 0

X tC. l 'C. l-'*+(—)'+" L«-"C v-'} (A19)

Because of the property (c) of the matrix elements

((/P)+L! s j (l/')+L) the amplitude (A17) should have
the maximum magnitude for l+l'+L=even. For a
given value of ! C l 'C l '!, the expression in curly
brackets in (A19) has the maximum magnitude when

The property (d) implies that (A24) should be as
large in magnitude as possible. To arrange this the two
terms in the curly bracket in (A24) should have the
same phase. Because of (A21) this means that M
should always be even. To ensure this, we must have
either only even m's or only odd lN's in (A1), i.e., the
condition (AS) must be fu161led.

Finally if we want the summands in (A24) to have
the same phase, the phase 4 (m) must be of the linear
form

or, in other words,
4 (la) =4»+4»la. (A25)

C„l„'= ! C„l '! exp} /4 (m) ], (A21)

where the phase 4 (m) is independent of I and /. Next
we consider the amplitude for L/0 and M /0, which is

r l P L
A;(l/'; L'M) =Q! C l 'C„ lllr „'

+Cur 'C l (A22)
M —m m M

Such a phase can be eliminated by a rotation of the
system about the Z axis through an angle —+ and
multiplication of I, with the factor exp( —&0). This
means that it is possible to arrange that C„~ ' is real.
Therefore, by considering only the phases of the coeS-
cients C„l ' in the expansion (A1) and seeing how the
attraction among four particles in the same orbit can be
maximized, we have d,emonstrated the need for the
conditions (A6) —(A8) and, thereby, the need for the
symmetries T, I' exp( —isJ„) and exp(ArJ, ).


