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potential; the other part arises from the combined eR'ect
of the potential outside the core, and the core. This
second part can be obtained from the solution of a
t-matrixlike equation with a well-behaved kernel, and
for S waves this t-matrixlike equation becomes the
equation for the 3 matrix of a potential which is obtained
by shifting the potential outside the core into the origin.
The total on-shell, S-wave scattering amplitude has
been shown to be equal to the sum of the hard-core
amplitude plus a phase factor times the amplitude
due to the shifted potential. We note in passing that
many of the results of scattering theory which depend
on the potential being well behaved can be applied to
the t-matrixlike Eq. (2.23); e.g. , one could apply Wein-
berg's" analysis of the Born series to the iterative
solution of this equation.

Starting from the separated form of the I, matrix it
has been possible to 6nd a separable expansion of the
t matrix. This consists of two parts: The separable
expansion of the pure hard-core t matrix, and a part
which arises from the separable expansion of the t-
matrixlike operator r(s) [see (3.23) j. For each of the
two separable expansions we have used an expansion of
the type suggested by Weinberg. "Of course, it is pos-

sible that there might be better separable approxima-
tions than those obtained by truncating the Weinberg
series. One possibility we are studying is to approximate
the pure hard-core t matrix by the hard-shell t-matrix
introduced by PuB, ' and then to expand the difference
as a sum of separable terms.

In our application of the separable expansion, we
have only considered the S-wave part of the t matrix.
In their work with Yukawa potentials, Ball and Wong"
have found that the effect of the higher partial waves is
small. Whether this is true or not for hard-core poten-
tials remains to be demonstrated, The most practical
way of doing this is probably by using perturbation
theory, " since adding more terms to the separable
expansion would make the size of the matrix to be
diagonalized unreasonably large.

In conclusion, we note that the separable expansions
we have considered could be of use in many-body
theory; e.g., in solving the Bethe-Goldstone" equation.
The author is now studying this possibility.

"M. G. Fuda, Phys. Rev. 150, 1064 (1968)."H. A. Bethe and J. Goldstone, Proc. Roy. Soc. (London)
A238, 551 (1957).
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A new method for the study of (a, xn) reactions is presented (a=n, p, a, , y, HI). The method is applicable
to reactions in which 6rst a compound nucleus is created and later x neutrons are evaporated. The method
allows the calculation of excitation functions for the emission of a specified number of neutrons, average
neutron energies, and neutron spectra. The equations governing a succession of neutron emissions are
derived from erst principles. The efFect of p decay is incorporated. The efFect of spin on decay rates is treated
rigorously. The theory is used to calculate the excitation function for the reactions Ag'~(a, n)In'"~,
Ag~~(e, n) In'~&, and Ag'~(a, 2n) In'". The comparison between measured and calculated values is discussed.

I. INTRODUCTION

N the present paper reactions are considered, such
. . that a projectile a (a may be a neutron, proton,
a particle, y ray, or heavy ion) strikes a target to
create a compound nucleus. The compound nucleus
decays, emitting x neutrons in succession. Attention
is focused on the evaluation of the excitation func-
tion for the emission of the ith neutron, the average
energy of this neutron, and the neutron spectrum.
The evaluation is based on the statistical model. The
eGect of y emission between successive evaporations
is considered. The method is valid for the reaction

~ Work supported by the United States Atomic Energy
Commission.

in which highly excited states and states witht a wide
spin spectrum are reached, provided the statistical
model is valid.

Jackson' considered reactions in which neutrons are
emitted in succession. Sikkeland' generalized Jackson's
method to incorporate angular momentum eGects.
Vandenbosch et cl.,' addressed themselves to a similar
problem. These approaches are based on a Monte
Carlo calculation. Other studies of evaporations and
cascades using Monte Carlo methods have been re-

' J. P. Jackson, Can. J. Phys. 34, 767 (1956).'T. Sikkeland, International Symposium on "Why and How
Should We Investigate Nuclides o6 the Stability Line?, "Lysekil,
Sweden, 1966 {unpublished) .

'R. Vandenbosch, J. R. Huizenga, W. F. Miller, and E. M.
Keberle, Nucl. Phys. 25, Sii (1961).
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ported. ~'~ Excitation functions which were analyzed
using the statistical model have been published. " "
The analysis usually rests on various limiting ap-
proximations. Several studies of neutron evaporation,
mainly when one neutron is evaporated, can be found
in the literature. '~' More recently, similar studies
for charged particles have been undertaken. '~~ Gro-
ver" suggested a method for treating neutron evap-
oration which considers p-ray competition.

In the present paper, the equations governing a
succession of neutron emissions are derived from first
principles, using a time-dependent approach. These
equations are integrated over time to obtain time-
independent equations. The use of the solutions of
the time-independent equations for the calculation of
observable quantities is fully justi6ed. The decay
rates for neutron and y emission are evaluated rig-
orously.

The decay rate for neutron emission is based on
the work of Weisskopf24 and Ewing and Weisskopf. ~ ~
The probability depends on, among others things,
the level density and the phase space available for
the emitted neutrons. In many of the papers pre-
viously quoted, angular momentum effects were in-

corporated insofar as the density of levels and the
coupling of spins is concerned, but were omitted
insofar as phase space is concerned. However, the
effect of angular momentum on the phase space
available to the emitted neutrons is considerable.
Therefore, in the present paper, the effect of angular
momentum on phase space is included. This inclusion
of angular momentum allows the analysis of experi-
mental results using realistic parameters.

In the present work, no parameters are adjusted.
All parameters are adopted from other sources. Since

4 I. Dostrovsky, P. Rabinowitz, and R. Bivins, Phys. Rev. 111,
1659 {1958).'I. Dostrovsky, Z. Fraenkel, and G. Friedlander, Phys. Rev.
116, 683 {1959).

6I. Dostrovsky, Z. Fraenkel, and G. Friedlander, Phys. Rev.
119s 2098 {1960).' Z. Fraenkel and L. Winsberg, Phys. Rev. 118, 781 (1960}.

Z. Fraenkel and P. Rabinovritz, Phys. Rev. 118, 791 {1960}.
9 D. G. Sarantites and B.D. Pate, Nucl. Phys. A93, 545 (1967)."D.G. Sarantites, Nucl. Phys. A93, 567 (2967)."N. Blann, Phys. Rev. 133, 8707 (1964)."J.P. Hazan and M. Blann, Phys. Rev. 137, B1202 (1965)."G, B.Saha, N. T. Porile, and L. Y. Yance, Phys. Rev. 144, 962

(1966).
"H. W. Broek, Phys. Rev. 124, 233 (1961).
~ D. B.Beard and A. McLellan, Phys. Rev. 131, 2664 (1963)."T.D. Thomas, Nucl. Phys. 53, 558 (1964); 53, 577 (1964)."L.Wolfstein, Phys. Rev. 82, 690 {1951).
"W. Hauser and H. Feshbach, Phys. Rev. 87, 366 (1952}.
'9 D. B.Beard and A. McLellan, Phys. Rev. 140, B888 (1964}.
~ M. Lefort and R. PaSilver, Nucl. Phys. 75, 641 (1966)."D. C. Williams and T. D. Thomas, Nucl. Phys. A92, 1 (1967).
~ D. C. Williams and T. D. Thomas, Nucl. Phys. A1%, 552

{1968).' J. R, Grover, Phys. Rev. 157, 832 (1967).
'4 V. F. Weisskopf, Phys. Rev. 52, 295 (1937}.
» D. H. Ewing and V. F. Weisskopf, Phys. Rev. 57, 472 (1940}.
~ D. H. Ewing and V. F. Weisskopf, Phys. Rev. 57, 935 (1940}.

TAsx.E I. Experimental and theoretical cross sections
for the reaction Ag'~(a g}In'" &.

a-particle
energy in MeV
in c.m. system

Experimental
cross section

inb

Theoretical
cross section

inb

9.7

11.5

13.8

25.2

17.5

19.5

0.0007~0.0004

0.026+0.006

0.09+0.03

0.09~0.03

0.06+0.02

0.04~0.02

0.001

0.022

0.087

0.092

0.048

0.029

there are no restrictive assumptions, all quantities
are calculated as accurately as input data allows
within the framework of the statistical, compound-
nucleus model.

In Sec. II the theory is discussed. In Sec. III the
power of the method is demonstrated by a sample
calculation and comparison with experiment.

II. THEORY

In this section the theory of (u, xn) reactions is
discussed in detail. It is shown that one of the most
important functions required for the evaluation of
the observables in such reactions is a function closely
related to the level-occupation function. First, an
integral equation for this function is set up, and a
method for solving this equation is outlined. Second,
it is shown how the observable quantities are cal-
culated. The kernel in the integral equation depends
on neutron and p decay rates. Therefore, a method
for the evaluation of these rates is presented. Both
decay rates depend on the nuclear density of levels,
so that this subject is brieQy reviewed. Finally, the
cross section for the creation of the compound nucleus
and the related original spin distribution which enters
the present theory are discussed.

A. Occupation of Levels

It is later shown that the observable quantities
depend on a function closely related to the function
representing the occupation of levels, following the
emission of a specified number of neutrons. Now an
integral equation for this function is derived. A method
for the solution of this equation is suggested.

Let y;,&(E, J, t) be the function representing the
occupation of levels at a time t after the formation
of the original compound nucleus following the emis-
sion of i neutrons and ky rays, irrespective of order.
Here E is the energy of excitation above the ground
state and J, the spin of the nucleus.
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The following equation is satisfmd by the functions y;,&(E, J, t):

8y;o(,E,J; t) So Bi
=(1 —8;o), g y~q, o(E', I', t) S"(E',J'; E, J)dE' —(1—tt;„)y;,o(E, J; t)

Bt
'

PI g+B;

8-Bs+g Sy-Bg

X g S"(E,J; E', I')dE'+(1 —
dlo, o) p yi,o-i(KI'; t)S))(E', I'; E, J)dE'

p S

—y(,o(E,J; t) Q So(E, J; E', I')dE'. (1)
p

I'„(E,J) =5 Q S"(E,J; E', J')dE',
Bg

S&(E,J; E', J')dE',

vels
ZdO, 1)= j y;(E, d;t)1'(Ed)dl , , (7. )

0

Also, the branching ratio for neutron emission
T"(E,J';E', I') and y emission P'(E, J;E',I') are

(2) introduced, so thaty;(E, J;t) = gy;,o(E, J; t).

In Eq. (1), the quantities S"(E, I, E', I') and Z;(E, J) are introduced below:
S)'(E,J, E', J') are the probabilities per unit time
per unit energy range (decay rates) for the emission
of a neutron and p ray, respectively. The explicit
forms for the above decay rates are discussed later.
In Eq. (1), B; is the binding energy of the ith neu-
tron and 8; is the sum of the binding energies of
the 6rst i neutrons. Also, in this equation, Eo is the
excitation energy of the original compound nucleus
above its ground state. The total occupation of le
after the emission of i neutrons and any numbe
y rays, y;(E, J;t), is written as a sum of te
such that

An integro-differential equation for the total occupa-
tion of levels y;(E, J; t) can be obtained from Eqs.
(1) and (2),

8y;(E, J; t)
8$

s (E)Jd K I') = r~(E) I)2"(Ed I' E') I') I&) (4')

S&(E,J; E', J') =r„(E,J)&(E,J; E', I')/S. (5')

The integrodifferential Eq. (3) is reduced to an
integral equation by integrating Eq. (3) over time
from t=0 to t=dd) and using Eqs. (4)-(7). Thus,
one obt~i~n

&O-Sd
SO-Bs I

S+Bg

&-%+1—(1—b;,,) (yE, I;t) g S"(E,J;E', J')dE'
J'I

p
Here

X, &(E',J'; E, J)dE' (8)
rd E', I'

Bo-Bg

y (E' J't)S (E', J';E, J)dE'
J't' S

—y;(E, J;t) Q S&(E,J;E', I')dE'.
Jl p

The integrodifferential Eq. (3) for the function
yd(E, J;t) is now transformed to an integral equa-
tion, for a time-independent function Z;(E, J) closely
related to the function y;(E, J; t). It is shown later
in this paper that the knowledge of the function
Z;(E, J) is suf6cient for the present purpose. For
convenience, the neutron width r (E,J), the y width
r (E,J), the total width r, (E,J},and the function

Z'.o(E I) =&+'(E Ii t=o) —y'(E, J; t=")3
So-Bg

+ (1—8;,o) Q Z x(E',J').
J'I 8+Bs

y;(E, J; t=0) =t);,oy, (E,J). (10)

X,', T"(E', I'; E, I)dE. (9)
r (E', J')

The functions y;(E, J; t=0) and y;(E, J; t= oo) can
be easily determined. At t,=0, the only nonvanishing
function y;(E, J; t=0) is the one corresponding to
the level-occupation of the original compound nucleus
prior to neutron and y emission y, (E,J} such that
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Later the determination of y, (E,J) is discussed.
On the other hand, at t= the only nonvanishing
function y;(E, J; t) is the one corresponding to the
ground state of the final nucleus which can not decay
any more:

y;(E, J; t=~) =0, for E)0.
Equations (9)-(11) allow one to rewrite Eq. (8)
explicitly as

&0

Zp(E, J) =Ky, (E,J)+ Q Zp(E', J')
8

I' E' J'
I'g(E', J') A(E', J'; E, J)dE, (12)

S0-Bi
Z;(E, J) = Q Z i(E', J')

z+a~

I' E' J'
X r,(E,J)X, , T"(E', J'; E,J)dE'

r E' JI
+ Z;(E',J'), , W(E', J'; E,J)dE',

I'g(E', J')
for p)0. (13)

By inspecting Eqs. (12) and (13), it is seen that
Zp, p(E J') is essentially Ay, (E, J) and Z;,p(E, J) for
i)0 can be determined from Z q(E, J), so that the
equation for Z;(E, J) can be solved in succession.
The equation for each of the Z;(E, J) is solved using
the method of successive approximation as previously
suggested~ and applied. ~

S. Calculation of Observable Quantities

Now it is shown how observable quantities are
calculated when the functions Z;(E, J) are known.
First, v;(Ep, e; t), the probability of emitting the pth
neutron with an energy e up to the time t after the
beginning of neutron emission, is calculated. It is
easy to see that the function v;(Ep, e; t) satisies the
relation

~All j ) Q (EI JP )8t

X S"(E',J'; E' e, J)dE'. (14)—
However, since the time of measurement is long,
compared to the time of neutron and y emission,
one measures (Ev, pt) eat t= Tphpis can be ob-
tained by integrating Eq. (14) over time from t=0,
when there are no neutrons, to t=~. This inte-

» D. Sperber, Nucl. Phys. A90, 66$ (2967}.» D. Sperber and J. Mandler, Nucl. Phys. A113, 689 (2968).

gration yields

~0 +s-1
vg(Ep, e) =vg(Ey, e; t= ~ ) Q Pi-1

JJ~ p e+Bs

X (E', J'; t) S"(E', J'; E'—e, J)dE'dt

Ey-Bs
Z x(E', J')

J,JI e+Btt

I' E' J'" r, (E', J')
T"(E', J'; E' e, J)—dE'. (l3)

Second, the total probability of emitting the ith
neutron X&(Ep) is determined by integrating v;(Ep, e)
over energy. One obtains

E0-Bs
F;(Ep) = v;(Ep, e) de. (16)

0

In a similar way, the average energy for the ith neu-
tron (E;) can be written as

80-B;
(Es)= L&I(Ep)P'X ev;(Ep, e) de. (17)

0

The cross section for emitting i neutrons, e (a, Ep; p, pp),
can be written as

0 (ap Ep, i/ pp) =e;(o, Ep) PT;(Ep)/g g;(Ep) j. (18)

In Eq. (18), p;(u, Ep) is the cross section for the
formation of the compound nucleus with projectiles e.
It will be discussed later, along with a discussion of
the occupation of levels of the compound nucleus

y.(E,J). To obtain the excitation function, one has
to calculate p(u, E„i,e) as a function of Ep. If the
been of projectile is not monochromatic, then one
has to average Eqs. (16)-(18) over the range of
energy of the excitation of the compound nucleus.
Finally, v(Ep, e), the total number of neutrons with
energy e, describes the neutron spectrum, which can
be written as

v(Ep, e) = Q v;(Ep, e; p) . (19)
C 1

Again, the ar~puaents about averaging over the energy
range of the beam apply.

C. Neutron Decay Rate

Now the emission probability for neutron per unit
time per unit energy range S (E, I;E,P) is eval-
uated. First, this emission probability is broken into
a sum of terms, each term corresponding to the
emission of a neutron with a specified orbital angular
momentum l and total angular momenta

j, S"(E,J;E', J'; l,j)
1/0

S"(E,J;E', J') =
j )J-JI( j l-1/S

S"(E,J; E', J';/, j). (20)
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It is customary to derive an expression for
S"(E,J; E', J') by invoking the reciprocity theorem
for nuclear reactions. A rigorous treatment requires
the application of the reciprocity theorem to each
of the S"(E,I;E', J'; l, j) individually. In other
words, the theorem has to be applied to each channel
with a speci6ed l and j separately. In the standard
treatment~ one considers the probability per unit
time of emitting a neutron into an energy range d4..
On the other hand, when one considers the emission
probability of a neutron with a speciaed orbital an-
gular momentum I and total angular momentum j,
one has to consider the probability of emitting a
neutron into an energy range between E and E—de

with an orbital angular momentum / and total an-
gular momentum j, S"(E,J;E', J', l,j). Here it is
assumed that for a given / the probability of j being
l+xe or l—xe are the same. First, an exPression for
S"(E,J;E', J', L) will be obtained where L takes
continuous values. In the standard treatment,
S"(E,J;E', J') is proportional, among others, to the
phase space available to the emitted. neutrons. Ac-
cording to the present treatment, where each channel
is treated individually, the following relations is
satisfied by S"(E,I'; E', J'; L):

S"(E,J;E', J'; L)dedL=
2g 2251

p(E', J')
C1—(LIL )'j'" p(E, I

Here, R is the radius of the nucleus and o (e, L; E,J;
E', J') is the inverse cross section for exciting a nu-
cleus at an energy E' and spin J' to a nucleus with
an energy E and spin J by absorbing a neutron with
orbital angular momentum L. The quantity Le in
Eq. (21) is

Le=R(2ese) 'I'. (22)

It is now shown that if the spin dependence of
the inverse cross section and the density of levels
are neglected and the summation over L in Eq. (20)
is replaced by integration over L from L=0 to L=Le,
Eq. (21) reduces to the standard expression. The
arguments which do not enter the calculation in this
approximation are suppressed. Let S"(E,E') be the
decay rate for emitting a neutron from a state with
energy E to a state with an energy E', o(e; E, E'l
be the cross section for the inverse process, and p(E)
be the energy-dependent density of levels; then

o(e; E; E') p(E') se LdL
2se2M' p(E) e [1—(L/Le)'$"'

de, for i&le (24a)
p(E' I')
p E,J

S"(E,J; E', J'; l, j) =0, for l)ie. (24b)

In Eq. (24)
le=Le/5. (25)

The cross section for the inverse reaction is written as~

o(e, l j;E', J', E,J) =s(2j+1)Tq l(e) P. (26)

D. y Decay Rate

The emission probability per unit time per unit
energy range $&(E,J;E', J') is now evaluated. First,
the emission term is broken into two terms: The
Grst term is due to electric multipole transitions
Ss&(E,J; E', J') and the second is due to magnetic
transitions, so that

S~(E,J;E', J')
=Sg&(E,I; E', I')+ST~(E, J; E', J'). (27)

Each of the two terms in Eq. (27) is written as a
sum of terms corresponding to a radiation of a speci-
fied multipolarity. LThis is the equivalent of Eq. (20)
for neutrons. ] For example, So&(E,J; E', J') is
written as~

8r'e'
Ss~(E, J; E', J') = Ss(E,J; E', J', l).

Here,
(28)

In the usual treatment, one considers both spin
states of the neutron. In the present treatment the
case for j=l+s' and the case for j=l—$ are treated
separately, since the cross section for the inverse
process is j-dependent.

The function S'(E,J, E,J'; L,j ) is evaluated for
a continuous variable L. However, the quantization
of angular momentum requires the knowledge of an
equivalent form of the function for integer values of l.
This is achieved by the following de~nation:

(7+1/2)K

S"(e,I;E', I'; l, j)de= S"(E,I; E', I'; L,j)dL
(t-i/s)a

o(E, l,j;E,J; E', I')le'
SSEM

o(e; E;E') p(E')be
mfa p(E)

This indeed is the standard expression/

(23)
~,jIi l((2+1) tQ L l

X [ (J3& I Qer er ~
I I'M') le p(E', I'). (29)

~ J. M. Blatt and V. F. Weisskopf, Theoretica/ NNcteue Pkysk's
(John Wiley & Sons Inc. , New York, 1952).
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In Eq. (29}, (JM I Qjr m' I
J'M') are the model-

dependent nudear matrix elements for the components
for the multipole tensor of order l. Expressions similar
to (28) and (29) hold for magnetic multipole tran-
sitions. In the present discussion, only contributions
from dipole and quadrupole radiations are considered.
The nuclear matrix element for electric dipole radia-
tion is calculated using the single-particle model. ~~
The amount of quadrupole admixture is discussed later.

a-particle
energy in MeV
in c.m. system

Experimental
cross section

inb

Theoretical
cross section

inb

13.6

15.4

17.1

0.006+0.005

0.10

0.30

0.00

0.31

TABLE III. Experimental and theoretical cross section
for the reaction Ag~(a, 2e) In"'.

E. Density of Levels

The density of levels p(E, J) s,ppearing in all the
expressions for decay rates is written as a product of
a spin-dependent and an energy-dependent terms, ~~

p(E J) =(2J+1)p(E) exp( —(J+k)'/2~j (3o)

In Eq. (30), n' is the spin cut-oif parameter. ~ The
spin cut-oB parameter is related to the nuclear mo-
ment of inertia s, and the nuclear temperature T by~

18.6

20.0

21.2

22 ' 5

24.0

25.3

25.5

26.6

0.52

0.69~0.07

0.81

0.88

1.03+0.09

1.10

0.97

0.95

0.64

0.88

1.02

u'=a T/fP.

Alternatively, ~ 0 can be expressed as

s'= gT(m'),

(31)

(32)

28.1

29.1

30.2

31.1

0.90+0.08

0.78

0.61

0.53

0.88

0.49

where g is the number of proton and neutron single-
particle levels per MeV, and (ns'), the mean square
of the magnetic quantum numbers of the excited
particles. It has been suggested"~ that for every
specified energy there is a corresponding spin J~ such
that at this energy there are no states with spin
values higher than J~, and the density of levels
vanishes for states with spin higher than J~. This
property of the density of levels has been included

TABLE II. Experimental and theoretical cross sections
for the reaction AgM9(a, g) In'~ ~.

31.9
32.9

33.6

34.4

35.2

36.1

3/. 0

38.1

0.48

0.36

0.32

0.27~0.04

0.24

0.19

0.15~0.02

0.12

0.35

0.15

0.06

0.03

0.00

a-particle
energy in MeV
in c.m. system

Experimental
cross section

inb

Theoretical
cross section

inb

in this study. The maximum spin is related to the
energy in the following way:

J~= (2') '"/5. (33)
9.7

11.5
13.8

15.2

17.5

19.5

0.0005+0.0002

0.0140+0.004

0.18+0.06

0.26+0.06

0.30+0.07

0.21&0.05

0.0000

0.0300

0.1700

0.2500

0.2900

0.1400

~ B.Stech, Z. Naturforsch. 7A, 401 (1952)."S. A. Mozkowski, Phys. Rev. 89, 474 (1953)."D.Sperger, Nuovo Cimento 36, 1164 (1964).~ H. A. Bethe, Rev. Mod. Phys. 9, 1094 (1937).
4 C. Block, Phys. Rev. 93, 1094 (1954).

~ T. Ericson and U. Strutinski, Nucl. Phys. 8, 284 (1958).
'g T. Ericson, in Advances in Physks, edited by N. F. Mott

(Taylor and Francis, Ltd. , London, 1960) Vol. 9, p. 425."J.R. Grover, Phys. Rev. 123, 267 (1961).
N' J. R. Grover, Phys. Rev. 127, 2142 (1962).
'I D. Sperber, Phys. Rev. 138, B1028 (1965).
~ J. R. Grover, Phys. Rev. 157, 832 (1967).

E'=aT' —T, (35)
"J.M. B.Lang and K.J.LeCouteur, Proc. Phys. Soc.67A, 586

(1954).
~ D. W. Lang and K. J.LeCouteur, Nucl. Phys. 14, 21 (1959).
4g D. W. Lang, Nucl. Phys. 26, 434 (1961).
44 D. W. Lang, Nucl. Phys. 42, 353 (1963).
4g T. D. Newton, Can. J. Phys. 34, 804 (1956).
~ A. Gilbert and A. G. Cameron, Can. J.Phys. 43, 1446 (1965).

Nuclear densities of levels have been discussed ex-
tensively by many authors. ~~ ~~ Shell eGects and
pairing have been considered. In the present paper,
the form suggested by Lang and LeCouteur" has
been used. Following Lang and Lecouteur, the energy-
dependent term in the density of levels p(E') is

p(E') =C(E'+ T)~"exp(2aE')" (34).
Here, the temperature T and the excitation E' are
related by
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where
E'=E, for odd-odd nuclei

E'=E—6, for odd-A nudei

E'=E—2A, for even-even nuclei.

(36a)

(36b)

(36c)

GI. NUMERICAL RESULTS AND DISCUSSION

The power of the method described in this paper
is demonstrated by performing a sample calculation
and comparing the results with the experiment.
The reactions chosen for this comparison are
Ag'~(a e)Innms Ag'~(a n)In'"' andAg'~(a 2e)In"'
These reactions are chosen because they have been
measured extensively. 4' " The predictions of the
present theory are compared with the experiment in
Tables I-III.

For the reaction Ag'~(a, 2e)Inu', there is a large
number of measured values of the cross section. The
cross section is calculated for a smaller number of
energy values. For the values of energy for which
the cross section is not calculated there is a blank
in the last column of Table III. In this preliminary
calculation only that of excitation functions for a
limited number of reactions is performed. Experi-

4' D. J.Tendam and H. L. Bradt, Phys. Rev. 72, 1118 (1947).
'fl S. N. Ghoshal, Phys. Rev. 73, 417 (1948).
49 E. Bleuler, A. K. Stebbis, and D. J. Tendam, Phys. Rev. 90,

460 {1953).
60 K. G. Porges, Phys. Rev. 101, 225 (1956)."C. T. Bishop, J. R. Huizenga, and J. P. Humrnel, Phys. Rev.

135, B401 (1964)."S.Fukushima, S. Kume, H. Okamura, K. Otozai, K. Saka-
moto, Y. Yoshizawa, and Y.Hayashi, Nucl. Phys. 09, 279 (1965).

F. Compound-Nucleus Properttes

The results of the present theory depend on the
cross section for the formation of the compound
nucleus, as is shown in Eq. (18). Also, the knowledge

of the level-occupation function of the compound

y, (E,J) is required, as seen from Eq. (10). The
cross section for the formation of the compound
nucleus 0 (e, /, j;E,J; E', J') is written as~

0(e, l, j; E,J; 8', J') =sK'(2j+1)2'(,;(el. (37)
Here, .=s—z—a. (38)

Equation (37) contains the transmission coefficients,
which are calculated using an optical potential, and 8,
which is the binding energy. Their particular choice
is discussed later. In Eq. (37), X is the wave number
of incoming particles. From Eq. (37), one can obtain
the level occupation of the compound nucleus. The
occupation function is proportional to the cross sec-
tion 0 (e, /, j; E, J; E', J'). The expressions in Eq. (37)
become simpler if the original nucleus is in its ground
state, and one uses a monochromatic beam of energy e.
In this case,

o(e, f,j;E,J; O', J')
= (2j+1)s K'T&g(e) b(&+8—E) . (39)

mentally, the cross section for the emission of up to
five neutrons is known. Excitation functions for the
emission of more than two neutrons will be published
later, since this is only a sample calculation. The
theoretical values are compared with the experimental
results of Fukushima er, al."

The parameter u appearing in the form for the
density of levels is taken as —,'OA MeV ' (here A is
the number of nucleons) or 11 MeV '. A rigid-body
moment of inertia is assumed. The gap parameter

is taken from the work of Nemirovsky and
Adamchuk. ~

The transmission coefBcients for low-energy neu-

trons are taken from the work of Auerbach and
Percy. ~ Auerbach and Percy calculated transmission
coefBcients using an optical potential, with the in-

clusion of spin-orbit interactions. However, their
transmission coefEcients are limited to neutron ener-

gies up to 5 MeV. For higher neutron energies, in
this preliminary numerical calculation, values for the
transmission coefficients based on the sharp cutoff
approximation are used, namely,

T~,;(e) = 1, for i&la (40a)

T~;(e) =,0, for (40b)

The transmission coefBcients for e particles are taken
from the work of Huizenga and Igo.~w The work
of Grover~ and Sperber~ suggest about 20% of
quadrupole admixture.

The comparison between the calculated and meas-
ured results (Tables I-III) shows satisfactory agree-
ment for this sample calculation. This agreement
which is obtained without fitting parameters, but
rather by using reasonable parameters based on other
work gives one confidence in the power of the present
method.

In particular, it has to be remembered that Fuki-
shima in his analysis had to use very small unrealistic
values for the parameter u to obtain agreement be-
tween theory and experiment. It is believed that the
worse agreement between the present theory and
experiment on the high-energy neutron tail, is among
others, due to the use of approximate values of the
transmission coeKcients as suggested by Eq. (40).
However, the underestimate for cross section for the
high-energy neutrons may be also due to precom-
pound reactions. Such precompound processes have
been suggested by Gri6inP' Finally, the high-energy
end of the spectrum corresponds to transitions to
low-lying states for which the statistical model may
not be applicable.

~ P. E. Nemirovsky and Yu. Adamchuk, Nucl. Phys. 39, 551
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~ E. H. Auerbach and F. G. J. Percy, Brookhaven National
Laboratory Report No. BNL 765 (T-286) 1962 (unpublished).

~ J. R. Huizenga and G. Igo, Nucl. Phys. 29, 462 (1962) .IJ. R. Huizenga and G. Igo, Argonne National Laboratory
Report No. ANL-6373, 1961 {unpublished) ."J.J. GriKn, Phys. Rev. Letters 17, 478 (1966).


