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The Hartree-Fock-Bogoliubov (HFB) equations are solved for the S=Z even-even nuclei in the s-d
shell. The possibility of generalized pairing correlations (e.g. both T=O and T=2 pairing) is studied
in detail. It is found that the two kinds of pairing are mutually exclusive and that the lowest HFB solution
for the even-even N =Z nuclei has T=0 independent pairs. The validity and the extent of these correlations
is further examined by projecting the solutions onto eigenstates of the total number operator. These T=0
pairing correlations occur for the axially syrrlrrtetric prolate Mg", oblate S~, and prolate Ar HFB solutions.
In studying the relevance of these HFB solutions to the experimental spectra, it is found that the HFB
Geld gives a more consistent descriptioa of the structure of E=Z even-even nuclei and that it can re-
solve the discrepancies and also the failures of the HF Geld in the upper half of the s-d shell.

I. INTRODUCTION

+)ECAUSE of the vast amount of experimental data
& for the s—d shell nuclei this shell has become a test-

ing area for various models of nuclear structure. One of
the most-studied models in this shell is related to the
idea of the intrinsic state. The intrinsic state is not the
actual state of the nucleus, but rather provides a basis
from which physical states can be extracted. The in-
trinsic-state model was first employed using a harmonic-
oscillator potential to calculate deformed single-
particle orbitals. "Recently the connection between
the intrinsic structure of nuclei and the basic two-body
interaction has been investigated by utilizing the
Hartree-Pock (HF) approximation. ' There have been
many studies of the self-consistent fields in s-d shell
nuclei. Originally the HF calculations~ were per-
formed with an effective central two-body interaction,
confining the single-particle space to a single major
shell, and thus were quite restricted. More recently,
complete HF calculations with a renormalized realistic
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interaction and an extended shell-model space have
been performed. "The majority of these works involve
the E=Z even-even nuclei.

The N=Z even-even nuclei are singled out for
theoretical study because of the following features.
The ground-state equilibrium shapes of Ne, Mg,
Si~, and S"all seem to be deformed. This suggests that
these nuclei can be described in terms of deformed
intrinsic states. If the Coulomb force is neglected,
proton-neutron exchange and time-reversal become
symmetries of the self-consistent field; this produces a
considerable simplification in the calculations and in
the interpretation of the resulting structure.

A significant aspect of these HF calculations is the
existence of a large energy gap between occupied and
unoccupied single-particle levels. 9 This single-particle
gap is the main factor in determining the extent to which
the HF single-determinant approximation is valid. Its
presence leads to a fairly good description of the
ground-state rotational spectrum by employing pro-
jection or cranking techniques. It should, however, be
observed that (l) the HF equations give a large
number of solutions for each nucleus, most of which do
not have a large gap, (2) the HF solutions under-
estimate the spacing between the ground and the
excited rotational bands in the first half of the s-d shell,

' M. K. Pal and A. P. Stamp, Phys. Rev. 158, 924 (1967).'%.H. Bassichis, A. K. Kerman, and J.P. Svenne, Phys. Rev.
160, 746 (2967).

9 J.Bar-Touv and C. A. Levinson, Phys. Rev. 153, 1099 (1967).
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(3) recent analysis of experimental data in Mg"
suggests that the intrinsic structure of Mg" should be
axially symmetric" while the preferred HF state is
triaxial, and (4) the simple HF picture is completely
unable to explain the structure of the upper half of the
s-d shell. The presence of HF solutions with small gaps
suggests that these solutions are unstable with respect to
higher correlations and that dynamically correlated
intrinsic states may in fact be necessary to explain
experiment.

A natural generalization of the HF self-consistent
field method can be made by taking into account
pairing correlations. This is known as the Hartree-
Fock-Bogoliubov (HFB) method. It has been known
for some time that J=O pairing among like nucleons is
important for describing heavy nuclei, but also all
calculations have assumed that the underlying self-
consistent Geld is not affected by the correlations. This
same approximation has been assumed for s-d shell
nuclei, but since neutrons and protons are filling the
same orbitals, it has been necessary to consider the
possibility of proton-neutron pairing.

Several groups have studied T= i, J=O charge-
independent pairing in light nuclei. Also T=O pairing
has been studied and shown to lead to a coherent pair
field and hence to a considerable energy-gap in the
single-quasiparticle spectrum. " Recently calculations
have been reported which consider the possibility of
combined T=O and T= i pairing correlations among
the nucleons. ~" However, these calculations were
incomplete in the sense that pairing was separated
inconsistently from the underlying intrinsic Geld. This
is expected to be particularly important when there is a
significant diffuseness of the Fermi surface due to pair
correlations. To study this e8ect we use the HFB
method since it treats the HF and the pairing Gelds on
an equal basis.

The Grst group to perform HFB calculations were
Dietrich, Mang, and Pradal. '4 They studied the struc-
ture of deformed rare-earth nuclei and also of Mg'4,
assuming only J=O pairing between like nucleons.
Recently, Faessler et al." have performed similar
calculations for the 1p and 2s, 1d shells. These calcula-
tions for E=Z nuclei show that this»nd of pairing is
not an important factor.

In this paper we examine the eBect of generalized
pairing (including T=O charge-independent pairing)
on the HFB self-consistent Geld. In Sec. II we give
details of the formalism and discuss an approximation
which allows the separation of the single-particle and

jo J.Parikh, Phys. Letters 20, B6O7 (2968).
» A. Goswami and L. S.Kisslinger, Phys. Rev. 140, 826 t 2965)."H. T. Chen and A. Goswami, Phys. Letters 24, B257 (2967).~ A. L. Goodman, G. L. Struble, and A. Goswami, Phys. Letters

20, B260 (1968)."K.Dietrich, H. J. Mang, and J. H. Pradal, Phys. Rev. 135,
B22 (1964).

"A. Faessler et ul. (to be published).

the pairing equations. Section III contains a discussion
of the nature of the HFB solutions and the e8ects of
particle number nonconservation. A summary and
conclusions are given in Sec. IV.

II. HF AND HFB METHODS

A. Equation of Motion, HF, and HFB Factorizations

We start with the Hamiltonian

B=ge;„C;„'C;„+x~Q(i'~
~

V.
~
kpln)C;„tcg„'C. cgp,

where C;„, C;„are creation and annihilation in the
e, i, j, m, p representation (p denotes the s component
of isospin), e, denotes the single-particle shell-model
energy, and V is the two-nucleon interaction.

The commutator of C;„t with B is given by

[H, C,„t]=e,„c;„~+2+(kpla -~ V, ~ipjv)cp, tc-tc;„.

The equation-of-motion method consists in linearizing
this equation by using Wick's theorem and neglecting
the uncontracted normal product

Cp,tcptcg„$(ca——,tc"tc;.)+(C"tcg,)ca,t

(C"O'Ci )C—"'+(C'O'C"')CJ' (3)

The uncontracted normal product is neglected in both
HF and HFB methods. This is reasonable if there is a
large energy gap in thesingle- (quasi) particle spectrum
in the HFB and HF representation.

The HF factorization consists in writing

Ca,tc~tc;„=(Cgtc;„)Cs,t—(Ca,tc;„)C.t, (4)

and is equivalent to minimization of the Hamiltonian in
a single determinantal wave function.

The HFB factorization consists in including the
extra term (C&,tc&t)C;„ from Eq. (3). The major
consequence of this is nonconservation of particle-
number and isospin. HFB factorization is equivalent to
minimization of the Hamiltonian in a BCS wave
function —a particular combination of determinants.

B. HF Basis

With HF factorization, the equation of motion
becomes

[z, c„tj=gx,„,,„c,„t,

where

X,„,,„=e,~.+g(kp, l.
~
V. ~ip, ~~)(c,„tc;.), (6)

which for X=Z nuclei is independent of the isospin
index p. The HF representation is obtained by observing
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that, when one assumes HF factorization, an eigenmode
of the system can be written

C „2=+AD; C;„t.

The coefficients in the transformation are obtained by
solving the eigenvalue equation

sc Inp)=» In@).

The ~ are the HF single-particle energies. The HF
total energy is given by

&ax= (&)ax=x2Z((n I
&

I a)+»-)

to obtain the eigenmodes of the system. "We shall solve
the HFB equations under the following constraints:

The diGerent HF bases obtained when 6 is set equa]
to zero are assumed to make 6 diagonal in the space-
spin part of each of the single-particle orbitals. Also,
the pairing matrix is assumed to connect a single-
particle operator C„~ to its time-reversal conjugate C-.
(This follows from the assumed time-reversal in-
variance of the ground state. ) With this assumption
the HFB matrix is reduced to 4&(4 submatrices, each
submatrix belonging to one single-particle orbital.

The HFB submatrix which belongs to an HF orbital
0. can be written as

(2p I
t

I jv)=e,4;,4„,.

Some assumed general properties of the solutions of
the HF equations for even-even S=Z nuclei in the s-d
shell are (1) symmetry under the exchange of neutron
and proton and (2) time-reversal invariance. Here we
define the time-reversed single-particle state as

where

(». 0)
Eo,.)

(15)

(16)

The HF ground state is the lowest-energy solution of
the HF equations. This solution has always been found
to possess a large gap between occupied and unoccupied
single-particle states. This gap does not allow the build-
ing up of a pair Geld in the BCS sense.

In addition to the ground-state solution, other solu-
tions of the HF equations are found which sometimes
differ little in energy. Most of these higher solutions
have a less conspicuous single-particle gap and therefore
are more susceptible to the inclusion of pairing correla-
tions. We shall consider a self-consistent treatment of
pairing based on these HF solutions. The pairing
correlations are expected to establish the required gap
in the single quasiparticle spectrum and thus bring
stability to the new self-consistent Geld.

By a proper choice of phases we set h~= h. Also we can
satisfy the equation h»(a) =h„„r '( )a+id„„™()a,

as pointed out in Ref. 12. This identification of the real
and imaginary parts of h„„allows us to separate the
role of the T=1 and T=o forces in a simple manner.
The success of the HFB method depends crucially on
whether there is an energy gap in the quasiparticle
spectrum. There exist the following possibilities for
having such a gap.

(1) If 6„„=0,the eigenvalue problem for the matrix
(15) reduces to independent BCS equations for the
protons and neutrons, where the quasiparticle energies
are

&-= I:»'+~»'(n) 1"'

C. Treatment of Pair Field and HFB Factorixation

We have

where

La, c„&j=gx„,,„c,„&+gz„,,„c,„, (12)

&„,2,=)Q(jP, la
I

V
I 212, kv)(cy, tc2,2). (13)

Similarly we can write the analogous equation of
motion for C;„.The HFB method consists in the self-
consistent diagonalization of H in the extended single-
particle basis of C;„~,C;„

(se

L,~& —se)

with an energy gap of h»(a) . Note that » is measured
relative to the chemical potential X. This possibility
arises for heavy nuclei with large neutron excess.

(2) If h»=h =h„„r '=0, then the matrix (15) is
again reduced to 2)(2 matrices with the energy
eigenvalue

I » 2++ TM(n)2jl/2

and an energy gap ~„™(n). This is the case of isospin
pairing. u

(3) AAt=constant)&I, I being the unit matrix.
Since h~= 5,

&9=
I
detA

I
I.

''1 M. Baranger, in IP6Z Cargese Lectures in Theoretical Physics
(%'. A. Benjamin, Inc. , New York, 1963).
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In this case the energy eigenvalue is given by

E.=L..'+ I
detA. I]'I', (20)

with an energy gap of
I
detA I"'. Since the ground

state of most N= Z nuclei has T=O, one would like the
T=0 state to be contained in the intrinsic state without
confining the solutions to be eigenstates of T'. In
analogy to HF where one constrains &J& to be zero, we
impose the condition (T)=0; that is, on the average,
all components of the isospin vanish in the ground
state. We thus guarantee more degrees of freedom in
the isotopic-spin coordinates, allowing the possibility
of intrinsic states with lower energy. The condition
(19) then follows. Note that case 2 is a special case of
this more general solution. The gap and number
equations in the general case are

App(u) = A-(u)—
= P&uaT=1

I
V. I »T=1)L~p, (v)/E„],

A '-'(u) = Z&uaT= I
I
V.

I
viT= »LA..'-'(v)/E, ],

(21)

A„r~(u) = Q(uaT=O
I

V,
I
yyT= 0)[A„™(y)/E. ]

fi/=Z= gI I—(e —li)/E ], A=chemical potential.

(22)

The generalized Bogoliubov transformation corre-
sponding to this simpli6ed HFB problem is

I

I
aal 'isa 0 va va Cap

(II)=EHF+Epairr

E .=-'2(& If I )+ -)V-',

(28)

(29)

&pair= 2

X P [A»(u)e v +A„pr '(u)-N Rev '+A„p™NImv '].

(30)

Note that w'e have used the same notation for the energy
and wave functions of the HF Hamiltonian even when
occupation numbers other than zero and one have
been used.

III. NATURE OF SOLUTIONS OF
HFB EQUATIONS

In this section, we study the general nature of the
solutions of the HFB equations for s-d shell N=Z
nuclei. To study the major features of the HFB 6eld
we use a simple central Rosenfeld two-body interaction
with a Yukawa radial shape

~
—rjo

V= Vo (0.3+0.7@ d,),r g
(31)

and

3.';„,q„(V') =e,bu+g(ip, up
I V, I kp, up)V '. (27)

The ground-state energy in the HFB approximation can
be written as a sum of a HF energy and the pairing
energy.

Qa —Va Va
lg a=1.35 F, Vo= 50 MeV.

Sam

I
va va

Va —Va

Na

(23) This force has been used extensively in earlier HF
studies. We con6ne ourselves to the s-d shell and use an
oscillator parameter of 1.65 F. The single-particle part
of the Hamiltonian has been chosen to be of the form

where u and v are real and v
' is complex. The occupa-

tion probability of the level n is

V '= v '+
I

v
' ['. (24)

with
~(V')

I
u&=~-

I u)

I
&=Zo*'(V')

I f&

(25)

(26)

Dietrich et c/." have shown that, to a good approxi-
mation, the principal eGect of pairing on the HF
degrees of freedom is accounted for in the dispersion of
occupation numbers across the Fermi surface. This
suggests the following procedure for solving the HFB
equations. First solve the HF problem with occupation
number of 1 or 0 for a particular orbital; then solve the
BCSproblem separately to extract improved occupation
numbers, solve the HF equations again with these new
occupations, and repeat the last two steps until con-
vergence is obtained. The HF equations become

e,=e+u ..&v'
I
l s

I
i&+ui'&v'

I
l'

I v& (32)

In particular, we will refer to the two following cases:
n~'=0 MeV, cx~.,= —2.8 MeV, and so= —4.2 MeV
used in Ref. 6 and O,i'=0.2, a~.,= —2.0 and eo= —3.3
MeV corresponding to the experimental single-particle
energy spectrum of 0".

A. Tendency to Higher Syninietry

One major feature of pairing correlations is the
tendency toward higher symmetry in the intrinsic
wave function. For example, it is well known that J=O
pairing correlations are responsible for the spherical
shape of a large number of open-shell nuclei. ' For
deformed nuclei in the rare-earth region, pairing
correlations lead to axial symmetry. "

» A. Bohr and B.R. Mottelson {in numerous communications) .
Ig M. Baranger and K. Kumar, Nucl. Phys. A92, 608 {1967).
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TABLE I. HFB solutions corresponding to the axially symmetric prolate shape of Mg~, the axially symmetric oblate shape of S&,
and the axially symmetric prolate shape of Ar . The first column gives the HF single-particle energies in the final state of the HFB
convergence. The next six columns give the components of the corresponding HF single-particle wave function in the jm representation.
This is followed by the BCS amplitudes I and Im(e ') corresponding to the T=0 pairing. The last two columns give the order param-
eter A and the quasiparticle energy E . For each nucleus the bottom row gives the expectation value of the Hamiltonian split into
two arts EH+ and E~„, The chemical potential ) and the expectation values of the quadrupole Qz and Q4O are also given ((Q+) and
(Q4O are given in arbitrary units).

{MeV) 2SI/pi+ id g/P" id g/gs/' Im (e') b (MeV) E (MeV)

-1/. 882

—12.242

-10.369

—7.000

—5.419

—2 ~ 599

0.659 0.646 0.385

—0.326 0.707 —0.628

0.687 -0.289 —0.676

0.965

—0.262

0.262

0.965

0.111 -0.994 1.473 6.659

0.581

0.819

0.814 2 ' 494 2.636

0.5/3 2.793 2.9/3

0.994 -0.110 0.987 4.499

0.998 —0.056 0.673 6.007

0.99/ —0.081 1.440 8.907

EHp= —71.508 Mev E„l,= —5.832 Mev E~=—77.340 Mev x= —11.389 Mev QUA=15. 311 Q4O= —5.3/7

—20.281

-19.840

-18.025

—16.790

-12.872

—9.565

0.119

0.810

—0.574

0.001 0.993

0.816 O. 068

0.578 —0.098

0.982

—O. 191

0.191

0.982

0.128 0.992 1.512 5.950

0.142

0.182

—0.990
—0.983

1.554 5 ' 536

1.343 3.747

0.891

0.991

0.453 2.272 2.810

0.137 1.398 5.154

0.393 —0.919 2.371 3.278

Em, = —173.600 MeV E~„,= —5.231 MeV EH~ = —178.831 MeV X = —14.526 MeV Q~ =—19.533 Q4fl =—39.001

—23.012

-21.659

-21.445

—19.451

-17.159

-15' 424

-0.6j.6

0.787

—0.022

0.080 0.783

0.091 0.610

0.993 —0.119

0.989

—0.150

0.150

0.989

0.001

0.001

0.030

0.280

0.456

0.844

0.999 0.008 6.979

0.999 0.235 5.449

0.999 0.314 5.239

0.960 2.065 3.838

0.890 1.311 1.616

0.536 1.685 1.861

EHp = —232.929 MeV E „,=—3.729 MeV EH~ = —236.658 MeV X =—16.215 MeV Qmo=4. 046 Q~= —3.432

In the s-d shell, HF calculations have shown that the
ground HF solution corresponds to axially asymmetric
shapes for the nuclei Mg and S".The HF equations
for a given nucleus usually possess several solutions
which often di6'er very little in the HF energy (H).
The criterion usually adopted in picking the HF
ground state (lowest value of (H)) is not very reason-
able since neglected correlations, for example pairing,
would lower the energy of other solutions considerably.
Moreover, the reliability of the minimum-(H) criterion
is further affected by (1) second-order HF energy, (2)
rotational energy, and (3) zero-point fluctuation
energy. In particular, the first efFect is found to be
large, about 17% of the 6rst-order HF potential
energy. ' For Mg~ and S" there exist axially symmetric

solutions which differ in (H) from the axially asym-
metric solutions by about 3 MeV (The axially sym-
metric HF solutions for S" and Ar", which favor
pairing correlations, are di8erent from the ones given
in Ref. 6. These HF solutions are given in Table
III). The single-particle HF gaps for these axially
symmetric solutions are 3.0 MeV for Mg" and 5.3 MeV
for S".The gaps for the triaxial solutions however are
7.4 and 6.6 MeV, respectively. (These values are for
a~.,= —2.8 MeV. ) The single-particle gap for the
triaxial solutions turns out to be large enough to exclude
pairing in the BCS sense. This does not mean that
pairing correlations do not exist in these cases. The
BCS equations are well known to have a cutoff in the
build-up of the pairing correlations. The fact that the
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TABI.E II. The spherical solution for Ne which displays combined T=0 and T= 1 pairing. The axially asymmetric HF solution
went to this solution when the pairing correlations were self-consistently included. The single-particle energies are those used in Ref.
(6). Each column represents a jm state. The quantities V'(a), h(a), and E are the total occupation, gap parameter, and quasiparticle
energy, respectively. (The unit of energy is MeV. ) All quantities are defined in Sec. III.

fgS/
1/S g/2-S/I

HF energy

e~(a)

Res ~(a)

Ime„~{a)

&(-)
h~{a)

P l(~)

~ p™(~)
~(~)
E

0.373

0.373

0.142

0.300

0.783

0.783

0.302

1.148

1.255

0.272

0.272

0.417

0.321

0.723

0.723

1.128

1.523

1.628

0.196

0.196

0.528

0.355

0.693

0.693

1.891

2.130

2.224

0.058

0.058

0.000

0.007

0.570

0.570

0.000

0.806

4.991

—10.654 —10.584 —10.519 -6.235 —4.065

O. ON

0.069

0.005

0.010

0.995

0.995

0.073

1.409

7.234

-3.916

0.057

0.057

0.018

0.007

0.827

0.827

0.266

1.199

7.343

(H~= —34 618 Spain= —5 119 Et ~)=—39.737 X=—11.160

pairing correlations are small in the axially asymmetric
state is basically due to the fact that axial asymmetry
has already taken care of a major part of the dispersion
of occupation numbers above the Fermi level relative to
the axially symmetric solution. "The axially asymmetric
solution could also be used as a basis for the inclusion of
pairing correlations but at the expense of using more
elaborate techniques, namely, by number conserving
representations. The defect of such an approach is the
nonexistence of simple modes of excitation. The HFB
solutions corresponding to the axially symmetric
shapes are shown in Table I. After the energy gain by
pairing correlations is taken into account along with the
rotational energy, the energy (H) for the axially sym-
metric state is comparable to that of the triaxial
solution. It will be shown in Sec. III C that the paired
solution is likely to be closer to the physical intrinsic
state on the basis of comparison with experiment. In
this sense only pairing restores axial symmetry to
Mg andS".

Another example of this tendency toward higher
symmetry caused by the pairing correlations occurs for
the triaxial HF basis of Ne . The HFB solution is
given in Table II. Notice that the dispersion of occupa-
tion numbers due to the pairing correlation is such that
all the m states of the d&/& orbital are almost equally
occupied, i.e., the intrinsic state has become spherical.
The small deviation from sphericity is due to the fact
that this solution corresponds to combined T=O and
T= 1 pairing and that T=O pairing inherently implies
deformation. It is not known whether this solution
corresponds to any physical excited state of Ne

» J. Bar-Touv and I. Kelson, Phys. Rev. 142, 599 (1966).

B. Prolate Versus Oblate Shapes

Another feature of the lowest axially symmetric HF
solution for the s-d shell is that one gets prolate shapes
for the lower half of the shell and oblate shapes for Si'
and the upper half. For all s-d shell nuclei there are
other HF axially symmetric solutions of opposite shape.

However, in analogy to the competition between
axially symmetric and asymmetric shapes, these axial

solutionsmaydi8er little in(H), butone, by virtueof a
small gap, may allow extensive pairing correlations.
This is the case for Ar" where the prolate and oblate HF
solutions differ in (H) by only 3 MeV. The single-
particle gap for the prolate solution is 2.4 MeV com-
pared to 7.4 MeV for the oblate solution. Consequently,
the energy gain due to pairing for the prolate state
makes(H) closer for the twostates. TableIdisplays the
HFB solution corresponding to the prolate state. The
physical relevance of the paired solution will be dis-
cussed in Sec. III F.

C. Effect of Self-Consistency on HF and Pair Fields

In this section, we shall study the eGects of the pair
field on the HF field and vice versa. Table III shows the
HF wave function for the cases of S32 and Ar" with zero
pairing and for the final self-consistent HFB solution
(the/. sforcestrengthis —2.8MeV). Thechangein the
HF field due to pairing depends very much on the
amount of dispersion of the occupation numbers across
the Fermi surface, which in its turn depends on the
single-particle gap. In Mg24 and S",where the dispersion
is rather small, the change in the HF Geld due to the
pair correlations is small. A significant change, however,
occurs in the total HF energy of the system, which
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TABLE IV. Variation of properties of the self-consistent field with the single-particle 1 8 force strength 0.1., for Mg". The dispersion

is defined as Z,&),V '. dE~ js the reduction of the HF energy due to the dispersion and A is the inertial parameter defined as A =
fi'/23. The unit of energy is the MeV.

1 ~ 2

—1.6
-2.0
—2.4
—2.8

HF gap

0.550

1.712

2.360

3.065

Dispersion

0.408

0.367

0.321

0.268

0.208

Quasiparticle

gap

6.144

5.988

5.801

5.595

5.378

2.957

3.317

3.472

3.415

3.066

—7.426

—6.812

—6.031

-5.108

—4.007

AHp

0.098

0.111

0.123

0.134

0.146

Aam

0.318

0.305

0.286

0.265

0.242

decreases because of the dispersion of the occupation
numbers to the unoccupied single-particle states of
lower binding energy. This loss is more than com-

pensated by the large gain in pairing energy. Moreover,
there is an extra gain in the energy of rotation due to a
decrease in the moment of inertia (see Sec. III F). In
Ar", where the dispersion is particularly large, the
resulting changes in the HF and HFB fields single out
Ar" from other S=Z even-even nuclei. (See Sec.
III F.)

In order to study the e8ect of the HF field on pairing,
we vary the single-particle 1 s force strength. As

expected, the decrease of the HF single-particle gap
brings an increase in the dispersion across the Fermi
surface due to pairing and hence an increase in the
pairing energy. Table IV shows the variation of various
quantities of the self-consistent fields as a function of
1 8 force strength. In general, the HFB quantities show
a relative stability compared to those of the relevant
HF fields. In particular, the quasiparticle gap (the
unperturbed energy of the E= 2+ state) is significantly
stable compared to the abrupt changes of the HF
single-particle gap.

It is interesting to notice here that the main eBect of
using the realistic forces and the extension of the shell-
model space to include all lower shells is the reduction
of the single-particle HF gap. ' This is particularly
clear for the axially symmetric HF solutions in Mg
and S" considered in this paper. For example, in Mg~
the gap is reduced to 0.5 MeV compared to 3.1 MeV
used in this paper. ~ By using Table IV it is easy to
extrapolate the expected changes in the pairing correla-
tions due to the realistic forces. The most significant
change, except for the obvious increase in pairing due
to the lower HF gap, may well occur in the reduction of
HF energy-loss due to pairing, which should be much
less than we have found.

D. T=O Versus T=1 Pairing

One consistent feature of the generalized pairing
solutions for the E=Z even-even nuclei is the mutual
exclusion of T=O and T=1 pairing; i.e., no physical
cases show simultaneous T=O and T=1 pairing. This

Io A. P. Stamp, Nucl. Phys. A105, 627 (1967).

= Q t'I„+( 1)'I' 'is—„c„,tc„=,t]
) 0),

r~;r

y ~= g (~„+s,c„„&c-„„t)

(33)

x H(,+.,c- tc.= ') I0) (34)

"3.H. Flowers and M. Vujicic, Nucl. Phys. 49, 586 (1963).

result does not mean that the T= 1 (T=0) pair correla-
tions are identically zero for T=O (T=1) pairing,
but, being small, such correlations cannot be accounted
for in the BCS approximation. It is well known that
BCS solutions go to the trivial (5=0) solution in the
limit of small 5.

For the even-even nuclei, due to the large separation
of the observed T=O and T=i states, isospin con-
servation should be important and therefore the T=O
pairing solutions should be accepted as the physical
solutions. The T=1 pairing solution gives an isospin
intrinsic state from which one can project the various T
states. However, it is unlikely that states separated by
~9 MeV could be contained in the same intrinsic
state."For this reason, we disregard the T= 1 pairing
solution. In the T=O pairing picture of the ground
state, the T= 1 states are to be generated as two quasi-
particle pairs coupled to T= 1.

E. Projections onto Eigenstates of
the Number Operator

As mentioned in II B the HFB vacuum is not an
eigenstate of the number operator. The eBects of this
approximation have been extensively studied in heavy
nuclei where only Tz=2 pairing occurs." However
such studies have not been performed for T=0 pairing
and realistic systems with small numbers of nucleons.

The canonical HFB approximation has the conceptual
advantage of considering the variational problem in
two parts, first solving the Euler-Lagrange equations
for the HF degrees of freedom, and then solving the
pairing part for the best set of occupation parameters
for the HF orbitals. When the solutions to the HFB
equations give pure T=O or Tz= 1 solutions, then the
pairing equations result from a variation with the trial
wave functions
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TAM, E V. Cranking moment of inertia parameters (A; =1/2p; in MeV) of the axially asymmetric HF solutions and the HFB axially
symmetric solutions for Mg and S~. In each case the first value presented corresponds to 0 ' single-particle energies, and the second
to the single-particle energies given in Ref. 6.

Nonaxial Axial Nona Teal

Sgg

Axial

0.338 0.236

0.182 0.208

0.389 0.541

0,281 0.242

0.281 0.242

0.387 0.211

0.509 0.249

0.471 0.405

0.223 0.259

0.223 0.259

In these restricted cases the u's and e's may be taken to
be real numbers. Since all physically interesting solu-
tions for even-even nuclei have 1'=0, we shall present
the relevant equations for the T=0 case only.

Having written a trial wave function for the number
nonconserving part of the variational problem, we can
correct the defect by projecting out that part of f
which contains the proper number of nucleon pairs.
Ke may express this formally as

=cf d(r

g LN, +g(—1)'I 'k„C„,'C, ']
I 0), (35)

s&0;r

where C is the normalization constant and is given by

where

s =y~R|'(a) /Roo

I' =QZ „v„'LRI'(va)/Ro'],

&=QP„N,s„{RP(va)/Ro'],
sr

A =)Q(r(av)S„sP{LRP(va) —RP(vn)]/Ro'}

+$ Q (r(n»') H„r).'s

X {LR3'(w'a) —Rs'(w'a) ]/Ro'}

+$ Q (r(nw )P»ig„s„l„~s„~

(43)

(44)

(45)

I
C I'= —1/(kr'Ro'), (36) X {P4'(w'n) —Rx'(w'a) ]/Ro }

~ is the number of neutron proton pairs, and the

R N( i, er)=(,2 i) fist '"'

X g (NP+svP) (NP+svP), (37)
s'lr ~ ~ ~ i s'g

(r(ave' ' ' vtr) =4,

2p

=0,

—$E{LRg'(n) —R()'(n) ]/Ro'}

av {v1' ' 'vhT}

a=vs) vga {vg' ' 'v~}

a=vg=v), v~, vg( {vg' ' 'vN}.

and are called residuum integrals. Taking the expecta-
tion value of (1) in (35), we find the energy is given by

E= Qi„sPRg'(v) /RD'+ Q H„„v,'v. 'RP (vv') /Ro'
jr ssI

+ g P,„N,v„l„s„RP(w')/R()', (38)

where

"=4&v I
&

I
v&+&»

I
V. I »&r~, (39)

&»'=3L&vv'
I V~

I
vv'&r-a+ &vr'

I Vo I »')r-&]

+I &vv'
I
V.

I
vv')r + (—1)'""'(vr'

I Vo I
vs'&r ], (40)

P.;=2&vs'
I V. I

vs')r~(1 —8„„.). (41)

Variation of the energy with respect to the e's gives the
set of equations

(0+I',+A )N,v+$6 (I'—s')=0, (42)

As in the BCS equations, the potentials in (42) depend
on the solutions and so they must be obtained by an
iterative procedure. The solutions to these equations
will be discussed in more detail in a future publication.
Therefore, only one numerical example is presented here.

Previous investigations suggest that certain features
are to be expected from such an approach:

(1) If we choose as the initial guess the solution to
(15), then for the first iteration, (42) describes the
BCS solution with the correct particle number pro-
jected out (PBCS). The solutions to (42) are always
lower in energy than this solution (FBCS).

(2) No matter how large the HF gap or how weak
the pairing interaction, there are nontrivial solutions
to (42).

(3) In the limit, where 3CS predicts uniform
occupation (strong pairing), FBCS gives smaller dis-
persion while in the limit where BCS gives the trivial
solution (weak pairing), the FBCS will always give
~vite dispersion.
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Fzo. i. Occupation of the fourfold
degenerate single-particle states of
Mal' for the HF and HFB (BCS)
solutions, and for the projected eigen-
state of the total number operator.
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In order to illustrate the effects of number con-
servation, we will examine Mg, using the prolate HF
solution (see Table I) for the single-particle basis, and
the T=O pairing solution as the initial guess for Eqs.
(42). The HF energy is —N.605 MeV which is to be
compared to —77.340 MeV for BCS, —76.430 MeV for
PBCS, and —76.952 MeV for FBCS. In Fig. 1, we
show the effect on the occupation of the six fourfold
degenerate orbitals Lsee (7)j.

Referring to this FBCS solution as a typical example
for X=Z even-even nuclei, we observe that the con-
siderable gain in ground-state energy due to T=O
ij;independent pairs is preserved in the good S scheme.
This demonstrates that the HFB results are not
seriously vitiated by the mixing of neighboring nuclei.
It should be noted, however, that the dispersion is
substaa tially reduced by number projection. For
expectation values of operators sensitive to the occupa-
tion numbers (e.g. , stripping spectroscopic factors),
this result implies that projection is crucial. However,
the number projection does noI, bring new dynamical
correlations, hence the HFB solution is a good intrinsic
state and reproduces ground-state properties.

F. Moment of Inertia

In this section, we shall discuss the effect of pairing
correlations on the value of the moment of inertia given
by the cranking model. The results of HF calculations
(with l s force strength of —2.8 MeV) give fair agree-
ment with the experimental value for Ne' and also for
Mg~ when allowance is made for axial asymmetry.

It has been mentioned that with the two-body force
used in this paper, pairing correlations do not build up

for Ne and Si~. We shall therefore con6ne our dis-
cussion to Mg~, S", and Ar . With the HFB wave
function, the moment of inertia is given by

HFB correlations on the axially symmetric HF basis
already given in Secs. I and II for all Mg~, S", and
Ar" tend to decrease the moment of inertia signi6-
cantly. Table IV shows the eGect of pairing on the
moment-of-inertia parameter (A = fP/2Q) for the
axially symmetric state of Mg~ for different values of
the 1 s strength. The HF and the HFB moment-of-
inertia parameters show opposite trends with regard to
0.~.. For the value of n~., which corresponds to the
0" I, s splitting, the ratio between the HFB and the
HF values is more than 2 and, as expected, this ratio
should drop to 1 when the increased 1 s strength
reproduces a HF gap large enough to suppress the
pairing correlations. A comparison between the moment-
of-inertia parameters of the unpaired axially asymmetric
HF solutions and the corresponding axially symmetric
HFB solution for Mg and S" for the two choices of
shell-model single-particle energies used in the present
study is given in Table V. A comparison of these values
with those presented in Fig. 2 for n~.,———2.8 MeV
reQects more stability for the HFB moments of inertia
than for the HF asymmetric values.

The HFB results (including the limiting cases of zero
pairing for Si~ and Ne ) for the moment-of-inertia
parameter are shown in Fig. 2 along with the experi-
mental values. The experimental values of Ne, Mg~,
and Ar" have been chosen as average values calculated



1680 BAR-TOUV, GOSWAMI, GOODMAN, AND STRUBLE

24
24 .—
OA'-

43

l
I

/

I
/

Fro. 2. Moment of inertia param-
eter h~/2g as function of the mass
parameter for present HFB calcula-
tions. For comparison the HF results
of Ref. 6 including the corresponding
axially symmetric solutions of Mg"
and S" and the average experimental
values are shown.

I4
24

I

21

IIAII &i~=.=~

0 HF

IIPSSBPNINIO Ik IVIL~ '%0NI)
& AVNASE EXP. VNAJES

from 0+-2+ and 2+&+ spacing. The values for Si's

and S" are extracted from the 2+-4+ spacing only.
The 0+ states of these two nuclei are lowered to their
observed positions by their interaction with the first
excited 0+ states which correspond to spherical states
observed at 4.97 and 3.78 MeV, respectively, in these
two nuclei. '~" The theoretical HFB values for the
moment-of-inertia parameter are always overestimated,
which is particularly desirable because of the expected
reduction of the cranking estimate due to the Peierls
correction, " which is not included here.

The preference of the HFB axially symmetric solution
over the unpaired HF axially asymmetric solution for
Mg'4 suggested in the present study is supported by
experimental data on stripping spectroscopic factors"
and also the y-branching rations of Mg". These experi-
mental data in Mg" favor an axially symmetric shape
for the Mg'4 even-even core. Also the HF asymmetric
rotation of Mg'4 underestimates the spacing between
the ground-state E=O rotational band and the first

"J.Bar-Touv and A. Goswami, Phys. Letters 28, B391 (1968).
"The reference to S" as being deformed in the ground state

may not be apparent from the energy spectrum alone. However,
the large similarity of the angular correlation pattern of the pp'
reaction (Ref. 24) in S"and in Si" (whose ground-state deforma-
tion is apparent from the clear rotational nature of its low-lying
spectrum) suggests that S'G can also be considered deformed.
However, there is a particularly big component of the spherical
state in the S'~ ground state.

I' G. Crawley and G. Garvey, Phys. Rev. 160, 981 (1967).
» R. Peierls and J. Yoccoz, Proc. Phys. Soc. (London) AVO,

381 (1957)."B.Cujec, Phys. Rev. 136, B1305 (1964).
2~ G. J. McCallum and B. D. Sowerby, Phys. Letters 25, B109

(1967).
'

E=2 excited band by at least 1 MeV. The HFB
unperturbed E=2 band head, being related to the
lowest E=2 two quasiparticle state, overestimates
this spacing by about 1 MeV (see Table IV). This is
favorable because of expected lowering by the residual
interaction between the quasiparticles of the E=2
subspace.

In Ar" the cranking value of the moment-of-inertia
parameter is found to be 2.83 MeV for the paired
prolate state. Such a high value implies that the excita-
tion energy of the rotational states is much bigger than
that of the vibrational states of the almost sphcricai
Ar . Experimentally, the Ar" spectrum resembles a
pure vibrational spectrum. However a close check of
experimental BE2 ratios reveals a large amount of
anharmonicity, which is characteristic of a transitional
nucleus.

Apart from the pairing-energy gain already men-
tioned, the significant increase of the HFB moment-
of-inertia parameter brings another considerable energy
gain caused by large rotational energy. The energy of
the J=O band head is given as E(J=O) = (H) —A (J )
(the value of (J') does not change appreciably). Thus
the rotational energy gain L~(AHpe AHF) (J')], with
a proper choice of 1 s strength, could be considerable
and thus bring the axially symmetric paired solution
and the unpaired axially asymmetric solution closer.

IV. SUMMARY AND CONCLUSIONS

Ke have considered the eGect of generalized pairing
correlations in the S=Z even-even nuclei of the s-d
shell by approximate solution of the HFB equations.
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It is well known that the HF equations give several
solutions. The usual way of choosing one of these
solutions (take the lowest value of (B)) is not adequate
because they differ often only slightly (about 1% of the
first-order potential energy), whereas the second-order
HF potential energy is ~17% of the first-order poten-
tial energy. Moreover, the energy Quctuation (H')—
(B)' in the lowest HF solution as well as the higher one
is large except for the Ne axially symmetric state. '
This shows that even the lowest HF solutions are not
good approximations to the actual ground state of the
system. In view of this, we assert that the HF solutions
should be regarded only as bases for further calcula-
tions, for example those which include pairing correla-
tions. Only when the higher correlations have been
taken into account and the energy calculated to all
significant orders can one make a reasonable choice of
the proper solution. Alternatively one can try to make a
selection on the basis of experimental data.

In this paper, we attempt to study the broad features
of the HFB field with the usual choice of truncated s-d
shell space and phenomenological effective two-body
interaction. The HFB solutions thus derived have been
compared with the HF solutions and also with the
experimental data. More detailed considerations are
under investigation and will be presented in a future
publication.

The solutions of the HFB equations are obtained by
constraining the pairing matrix 5 to be diagonal in
the HF basis (only in the space-spin variables). We
have restricted ourselves to X=Z even-even nuclei
where the further constraint (T)=0 has been imposed.
Further, for the E=Z even-even nuclei, only T=O
pairing solutions are discussed on physical grounds.
The major results of the work are as follows: (1)
Pairing favors axially symmetric solutions in Mg~
(prolate) and S" (oblate). The inclusion of pairing
correlations restores the energy gap for the axially
symmetric solution, which is essential for the stability
of any single-particle basis. Further the pairing energy
along with the gain in the rotational energy due to the
decrease of the moment of inertia make the ground-
state energies (Eq~) of the axially symmetric state
comparable to that of the axially asymmetric state,
even in the first order. In view of the somewhat smaller
energy gap the axially symmetric solution may also be

II M. K. Banergee (private co~munication).

expected to gain more second-order potential energy.
(2) With the inclusion of pairing for Mg~ and S", the
over-all picture for the cranking moment of inertia
seems to be in better agreement with experiment. The
overestimate of the moment-of-inertia parameter
(A=K'/2g) found in all the cases is encouraging in
view of Peierls correction to cranking. (3) For Ar"
we have shown that the pairing correlations favors the
prolate state. Moreover, deformation of the prolate
state is decreased considerably by the pairing correla-
tions. Thus the moment of inertia decreases to the
extent that the energy of the 2+ rotational state
becomes higher than the expected energy of the 2+
vibrational state. Ar, therefore, seems to belong to
the group of transitional nuclei. Experimentally Ar"
shows a vibrational spectrum with a large anhar-
monicity, which is characteristic of a transitional
nucleus. The oblate state which corresponds to a 5=0
solution of the HFB equation does not agree with
experimental data.

Many questions, however, remain unanswered. The
role of realistic forces and an extended basis has to be
examined. In particular, it is well known that the
tensor forces play an important role in determining the
strength of the eGective T=O central force which is
important for the isospin pairing field. In this extended
scheme one should calculate the binding energy to at
least the second order for a choice between the various
HFB solutions.

A detailed study of the one and two quasiparticle
spectra, including the rotation particle coupling, will be
important. Also it will be interesting to see how the
T= 1 and higher-T excited states are to be described,
i.e., are they two or more quasiparticle states or does
one have to generate them by constraining the isospin
to take on prescribed values when solving the HFB
equations. Some of these questions are expected to be
answered in the near future.
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