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In this work an attempt is made to establish the correspondence between the nonlocal optical potential
and simple structural properties of nuclei. The presentation of the potential as a superposition of separable
partial potentials permits one to solve the Schrodinger equation analyticaHy rather than numerically,
as is usually done. Additional conditions establish an evident correspondence between the potential and
the simple Fermi-gas model of nuclei. It allows one to keep some potential parameters 6xed, so that the
number of actually variable parameters is usua1ly less than that for a local potential. A simple expression
for the S-matrix elements is found, using the asymptotic properties of the partial equation and its solution.
For calculation of the cross section the computation of only ten relatively simple integra]s was necessary,
instead of the numerical solution of a complicated integrodiBerential equation. The neutron elastic-scattering
cross sections were calculated for this model for Pb, Ca, and Fe nuclei. The main conclusions are as follows:
The scattering and absorption of neutrons are connected with the outer part of the potential, corresponding
to the outer layer of the nucleus and to the density Quctuations in this layer. The inner part of the potential
influences the above processes only slightly and might be described as corresponding to the "inert core"
of the nucleus.

I. INTRODUCTION

wOR a description of scattering and reactions be-
. . tween nuclei and different nuclear particles, use is
often made of an optical potential such as that described
by Preston, ' with the following basic properties: (a)
It contains an imaginary part, and (b) it is nonlocal.
But this potential is usually replaced by the local
potential, which simplifies the numerical solution of the
corresponding Schrodinger equation and allows one to
find the cross section of the process under study as a
function of the potential parameters. The values of such
parameters are usually not determined in a unique
manner, so that the physical characteristics of the
process are dubious. Percy and Buck~ have shown that
the use of a certain physically reasonable nonlocal
potential allows the elimination of this nonuniqueness.
The theoretically derived optical potential is nonlocal
even for a local nucleon-nudeon interaction. But ac-
cording to Gilitan and Thaler, ' the interaction is in
fact nonlocal. Because of that nonlocality, the optical
potential deserves further study.

In the present work the specific form of a nonlocal
potential is considered as a sgperposstiors of partial
separable potentials (for different l) connected with a
simple Fermi-gas nuclear model, wbich allows an
analytic solution of the Schrodinger equation. From the
physical point of view, such a presentation —accord-
ing to Neilson'-- corresponds to the replacement of
a single optical refracting body by a set of several
optical bodies with different refractive characteristics.
This replacement permits q~~litative estimation of the

connection between the main structural properties of a
nucleus and its interaction with outer particles. By
assuming some connection between the shape of the
potential and electron-nucleus scattering data (see
Hofstadter'), the number of actually variable param-
eters is decreased. Sitenko' has shown that the imagin-
ary part of the potential is due to the density fiuctu-
actions. Analysis of the scattering in terms of the
proposed potential allows one to draw some conclusions
about the importance of the Quctuations in the inter-
action.

II. POTENTIAL

The Schrodinger equation with general nonlocal
potential V(r, r') has the following form as given by
%heeler' and Yamaguchi'.

[—(fi'/2)r}k+sg(r) = / v(r, r }f(t')dr(1')'.
The expression V(r, r') could also have, besides the
usual terms, the spin-orbit term (e (I 8); but for
elastic scattering processes we can drop it. After the
usual separation of the radial and angular parts of the
potential and of the wave function,

J,sss

ti(r) = Q Rt(r)Ct i'Ft"(8, ()s),
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radial partial wave functions E~(r) is obtained:

I (d2/dr') + (2/r) (d/dr) +fk' —l (f+ 1)/r'j {E~ (r)

in which k'=2ME/9, E=energy, M=reduced mass,

g~(r, r') =radial partial component of V(r, r'), and
l= angular-momentum quantum number. The standard
method of solving this problem is to construct the

g&(r, r'), taking into account some physical ideas, and
then, using these g~(r, r') in Eq. (4), to obtain the
corresponding solution numerically on a computer.
But the solution of the integrodifterential equation is a
rather complicated problem even for computers. So
usually the g~(r, r') is taken to be local in form, that is,

g~(r, r') =s(r) 8(r r'), and —the corresponding dif-
ferential equations are solved. The local potential
parameters are defined by comparison with experi-
mental data, not in a unique manner, and have only
formal meaning.

Another way of treating the problem is by imposing
on the potential g~(r, r') more definite formal and
physical conditions, which do not contradict the main
idea of the optical potential, but allow one to get more
information about the nucleus involved. These con-
ditions are formulated as follows: From the theory of
approximate solutions of integral equations as given

by Kantorovich and Krylov, 9 it is known that an
effective method of solution is the replacement of the
kernel K(r, r') of the equation with the degenerate
one'0

For the potential g~(r, r'), which should be defined
on the basis of practical applicability and physical
expediency, we can put quite formally

g)(», »') = Q $~u (r)fu (r')+~u)~r(r)~i»(r') j, (6)

and, in the general case with some definite number of
consider this formula as practically exact. The

solution of Eq. (4) with such a potential can be ob-
tained formally in a simple manner. The physical
meaning of such an expression is that it describes the
interaction of the partial wave R~(r), having a given l,
with all nucleons in the nucleus, which have all possible
values l' of angular momentum. This solution is still
rather complicated from the practical point of view.

9 A. V. Kantorovich and V. I. Krylov,

Approximate

Methods of
Higher Analysis (John Wiley k Sons, Inc. , New York, 1964),
Chap. 2.

"The method of ending the functions a& and P& is given by
Kantorovich and Krylov (Ref. 9) when IC(r, r') is known. In
our case, with unknown gf(r, r ), physical conditions are imposed
instead on a; and P;, and then g~(r, r') is found, the index j being
replaced by the index l' according to the signi6cance of /' as an
angular-momentum characteristic of the nuclear nucleons.

For further simplification of the problem, the fact
that the interaction between two nucleons is especially
effective when both of them have the same value of /

is of use. This follows (a) from the validity of the shell

model, and (b) from the existence of an energy gap in
the spectrum of even-even nuclei, connected with
"pairing correlations" of nucleons with the same l,
etc. Because of the effectiveness of s interactions, we
can suppose that if an incident nucleon has a definite
value of /, then because the nucleons in a nucleus target
move nearly independently (according to the simple
shell model), the incident nucleon should interact
mainly with the inner nucleons having the same l.
But the incident nucleon is described by a plane wave,
which contains all values of /. Generalizing a previous
supposition, one can imagine that each partial wave

E~(r) (l=l;) of the incident nucleon should interact
with the inner nucleons with the same l= /, . Taking into
account only the main part of the interaction —as
accords with the spirit of an optical-potential model-
one can write approximately the real part of the po-
tential

Ref)(r, r') su(r) f()(r') = s)(r) s((r'),

where ft(r) = r)~(r) because of symmetry considerations,
as shown by Yamaguchi. ' To find an explicit expression
for r)~(r), the main feature of the optical potential is
used: the correspondence of the form of the real part of
the potential to the shape of the nuclear density distri-
bution. So if the potential s~(r)s~(r') is replaced in
Eq. (4) by the local potential r)&(r) s&(r') b(r —r'),
then, after integration over r', one should obtain
sP(r)E~(r) =ap~(r)E~(r), the usual "potential" part
of the equation, with the local partial potential p~(r)
equal to the partial density distribution of the inner
nucleons with given /. Then

s((r) = a"'pP'(r),

in which ~ is a proportionality factor.
For the definition of the imaginary part of the po-

tential, use is made of the fact that it is due to the
fluctuations of a nucleon's density (see Sitenko, Ref.
6). These fluctuations are small inside the nucleus,
where all possible states are filled according to the
Pauli principle. They can be intense only in the outer
layer of the nucleus, where the nucleons have l=
l =L, where the nucleo—n vacancies (holes) are con-
centrated, and where virtual transitions to the next
nonfilled shell are possible. The most preferred ener-
getically are the Quctuations connected with the
exchange processes between nucleons and holes in the
same (outer) shell. Because the fluctuations are con-
nected with the outer shell (l L), their distribution
should correspond to the distribution of nucleons on this
L shell, and the shape of the imaginary part of the
potential should reproduce the shape of the nucleon
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distribution on this shell:

~~(r) =V"'pd" (r) (8)

p(") = 2 p (")=po{1+e"pL(" C)/P)l ' (11)
0

equal to the density distribution of protons evaluated
experimentally by Hofstadter. ' The numbers of
nucleons on the shells with l&J- calculated by this
method approximately agree with the predictions of
the shell model. " All p), (r) with l&L are included in
the last shell of- the nucleus. The normalizing constant

is p0=0.68)(10" cm '; the other constants are
C= roXA'I' ro (1.07~0.02) X——10 " cm, P= (0.5455&
0.0682) X10 " cm. Summing up all the previous
proposals, the potential can be written in the form

gt(r, r') =
Kopje (r) p&'I'(r')+(~g+iy) pl, ' '(r) pl, ' '(r')

(12)

Here ao describes the interaction of the incident particle
with the nuclear matter of the nucleus —a homogeneous
unperturbed medium of nucleons in nonexcited states
when all neighboring states are filled up. f~:I, represents
the interaction with the fluctuations, which consists of
the averaged interactions with the nucleons in the
excited virtual states, with the nucleons in the states
with vacancies (holes) as neighbors, and with the holes
themselves. This interaction corresponds to the elastic
scattering by the fluctuations. The symbol p cor-
responds to the absorption of the incident nucleons by
the Quctuations.

Cofactors p~ have the same analytical expression as
p~, the only differences being that (i) the parameter C
is replaced by E=C+d, in which d is the distance by
which the potential extends out of the range of the
density distribution; and (ii) p is replaced by two
parameters: for the inner shells l&L=l, the p~
have diffuseness a,=p; for the outer shells (l&L)

"L. P. Rappoport and S. G. Kadmenskiy, Zh. Eksperim. i
Teor. Fiz. 37, 1303 (1959) I English transl. :Soviet Phys. —JETP
10, 929 (1959)j."Ya. B. Zel'dovich and V. M. Rabinovich, Zh. Eksperim. i
Teor. Fiz. 3'7, 1296 (1959) /English transl. : Soviet Phys. —JETP
10, 924 (1959)j.

Besides absorbing nucleons, the Quctuations also
scatter them. This part of the potential is

gLpLII2(r) pL1/2(r )

We define p~(r) according to the Thomas-Fermi
method" whose applicability to finite nuclei follows
from the work of Zel'dovich and Rabinovich":

K~(t)

p)(r) = [(2l+1)/(2') 7 kJ~&(oo(kr) dk, (10)
0

where J~&~o(kr) is a Bessel function of half-integer
index, and E„(r)= [3or'p(r) ])Io is the Fermi momentum,
with

Ko = &o/E, Kr, = Kr,/E. (13)

The p~, having the same form as p~, can be written as in
Ref. 13:

p ( ) = [(21+1)/2 ][E(r)]'
X{jP[rE(r)]—j& &[rE(r)]j&+&[rE(r)]I, (14)

E(r) =E„(r)= [3s'p(r) ]'". —

Here C is replaced by R=C+d; P, by u; (I(L) and
ao (l&L).

Because the integrals on the right-hand side of (13)
are taken from 0 to , they are constants, depending
only on parameters and k, but not on r. So

R('(k) + (2/g) R), ($)+[1—/(l+ I)/P]R), ($)
= Ko pal (])A,+ (&,'+or')B,pal ((), (13')

"G. N. Watson, The Theory of Bessel Fuectkes (Cambridge
University Press, New York, 1966).

the diQuseness should be larger. There is no confining
shell that restricts the increase in the spreading of the
density of fluctuations and of the potential distribu-
tions, so c~, the diGuseness of the outer potential com-
ponent, is bigger than p.

Altogether there are six parameters: three dynamic
(~, zr„and y), and three geometric (d, a;, and oo).
The parameter ro is fixed by the electron scattering
measurements. '

It is evident that the parameters Kp and e; are con-
nected with the inner part of the nucleus [the contri-
bution of f~& in the outer shell is negligibly small:
pl, (r)&( P p~(r), (l(L)]. They can be called "inner-
core parameters. "

Because it is accepted that the inner part of every
nucleus consists of closed shells with no holes, these
parameters are characteristic of nuclear matter and
should be kept fixed for nearly all nuclei except for
light ones and very heavy ones. The parameters that
may vary significantly are then f~:&, y, 0.0, and d. Actu-
ally, d also is rather slowly varying or even a constant
parameter, as follows from practical computations.
So the real individual nuclear cha.racteristics are con-
nected with the parameters KL, p and no describing the
interaction of the incident particle with the outer
layer of a nucleus, which outer layer changes from
nucleus to nucleus.

III. SOLUTION OF THE SCHRODINGER
EQUATION

Equation (4) can be rewritten as follows, introducing
$= kr:
R~"(f)+ (2/k) Ri(k)+L1 f(~+ 1)/—e]Ri($)

')F")t) f P)"(5 )A(i )5"&r+( '+~&')Pd"(k)''
0
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csee r
b}g= k'

prg "jg pl, kgsgggr"dr'g'dr,

0

pr,=pl, (r), etc. (20)

It is necessary to stress again that the indefinite
integrals in the expressions for the b's do not have any
arbitrary constants, since these were eli~~nated by the
initial conditions LEq. (17)]. This means that the
solutions Pg and Qg are expressed by the known func-
tions and the integrals of the known functions. All
quantities are defined completely and the solution is
complete.

IV. 8-MATRIX ELEMENTS AND THE
DIFFERENTIAL CROSS SECTION

To obtain the expression for the 5-matrix elements
the asymptotic expressions of the Eqs. (4) and their
solutions are considered. Let us write: ggg(kr) =krRg(kr) .
From Eq. (4) is obtained the equation for ggg (Ng"=—
d'I, /dr')

I/'+}k' —[ ( +}}1)8/} jI(2k(/k')krf g(r, r')
0

XRg(r') r"dr', LNg(0) =0]. (21)

The corresponding equation for the free motion is

v)g"+ fk' —D(1+2) /r' ]Iq„= Ok L(/kg(0) =0] (22)

with the solution

(g)g(kr) =krj g(kr). (23)

Multiplying (21) by v)g(kr) and (22) by ggg(kr) and
subtracting the second product from the first, we obtain

grglg" —Nw
"=(2M/fgg) krg}kg(kr)

g~ r, r' Rg kr' r"dr'. 24
0

Integrating the left- and right-hand sides of this
equation by parts from 0 to r, (the value of r where
Ng and (rg begin to behave asymptotically), we then
obtain

Pyg(kr) Ng'(kr) —ggg(kr)(})g'(kr)]

tgs= (231/fgg) k rv)g (kr)
0

X gs r, r' R& k~ r'~dr'dr. 25
0

But the asymptotic values of the functions ggg(kr) and
(g)g(kr) are as follows (the factor $ should be used in
Ref. 16):
Ng (kr) ~,~,.= sk {krj g (kr) —ikrggg (kr) +Sggkrj g (kr)

+gkr}(gg(kr) ]),g... (26)

(/kg(kr) =krjg(kr). (27)
"B.Buck, R. M. Maddison, and P. E.Hodgson, Phil. Mag. 5,

2282 {2960).

Sut asymptotically for r &r

kr jg (kr) ~cosLkr —(l+ 1)s/2];

krgtg(kr) sinLkr —(l+1)s/2].

(28)

(29)

LSg—1]=(2M/fgg) k k(o(Pgg gagg—)

4

X pg"'(r)j g (kr) r'dr+ (kgb, +i&) (aag+ipgg)
0

&o

Pr,g/'(r)j g(kr) r'dr . (31)
0

To obtain the di8erential cross section is trivial. The
scattering amplitude is

f(8) = (i/2k) g (2l+1)(1—Sg]Pg(cos8), (32)

and the differential cross section

dkr/dQ= (Ref(8)]+LImf (8)]'.
V. COMPUTATION AND DISCUSSION

OF RESULTS

(33)

Computations of the differential cross section for the
elastic scattering of neutrons were performed for the
following nudei:

Pb (A=20S, L=6, ro 1.09X10 "cm, P=0——528X
10-"cm),

Caa (A=40, L=2, ro=1.06X10 "cm, P=0.546X
10-"cm),

Fe~ (A=56, L=4, ro=1.09X10 "cm P 0.58X
10 "cm)

The numerical evaluation of the integrals b; and the
computational program were carried out by J. F.
Easton, engineer-analyst of the Nuclear Research
Centre, University of Alberta.

The experimental data on the scattering of neutrons
by these nuclei were taken from the work of McDonald
and Robson" for Ca~, and from the work of Percy and
Suck' for Pb and Fe.

"W. J. McDonald and J. M. Robson, Nucl. Phys. 50, 322
(2%a).

Replacing jg and ggg in (26) and (27) with their asymp-
totic values (28) and (29), and inserting these values
in the left-hand side of (25), we obtain, after obvious
calculations,

&kLSg —1]= (2j(f/fgg)

r
Xk r(/kg(kr) gg(r, r') Rg(kr') r"dr'dr. (30)

0

Using the expressions for Rg= Pg+iQg given above, the
expression for the S-matrix element is
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The fitting of the experimental points with the theo-
retical curves was done both for the absolute magnitude
of da/dQ and for the shape of the curves. The computed
curves together with the experimental results are pre-
sented in Figs. 1-3.

The important feature of this computation is that
each curve resulted in a unique set of parameters —no
other values of parameters could give similar curves.
The values of these parameters are presented in Table
I. The parameters d (the range of extension of the
potential out of the density distribution), a; Lthe

80 go I%0 i$0

FIG. 2. do/dO for neutron scattering by Fe~, E= 7 and 14.5 MeV.
Experimental data are taken from Ref. 2.

3. '

60 eO iiO
8

Iao

ations of nuclear density are possible in all parts of the
nucleus, but statistically they are much less probable. )
This follows from an analysis of the curves of Figs.
1—3, and is illustrated in Table II, in which the com-
parison of the dependence of do/dQ on K0 Kr. and y for
Pb' ' is presented. It is shown there that a change of the
values of ~p, even over a wide range, affects the values
of the cross section less strongly than a change of al,
and y over narrow ranges. Variation of ~L, and y leads
to much more signi6cant variations of da/dQ, illustrat-
ing that ap is really an "inert-core" parameter; that the
most active part of the interaction is concentrated in
the surface layer of the nucleus; and that it is the

FIG. 1. The differential cross section da/dQ for the elastic scat-
tering of neutrons by Pb~ at energies 7 and 14.5 MeV. The values
of the parameters are given in Table I. Experimental data are
taken from Ref. 2.

diffuseness of the inner partial potentials (f(I-),
i.e., the diBuseness of the inner potential corej, and
Kp (the coeKcient of interaction of the incident partial
waves with the inner nuclear matter or core of the
nucleus) could be called "inner-nuclear-core" param-
eters, because ~p and d are actually the same for all three
diferent nuclei, and e; is practically equal to the
density diffuseness parameter P, which has been de-
termined from electron scattering by nuclei 5

The calculated cross section is most sensitive to the
values of np, f4('L, , and p since they characterize the sur-
face layer of the nucleus, which contains the nucleons
with l=l =—I., and ~here fluctuations of the lowest
possible energy are concentrated. (High-energy Buctu-

90
8

FIG. 3. do/dQ for neutron scattering by Ca4', E=14.1 MeV.
Experimental data are taken from Ref. 17.
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TABLE I. Calculated values of the potential parameters: d, the extension of the potential out of the density distribution; u;, the dif-
fuseness of the inner partial potential for /&1. (very close to the density di6useness); Kp the coefBcient of the interaction of the incident
particle with the inner nuclear matter; ao, the diffuseness of the outer layer of the potential (l&L), corresponding to the low-energy
surface density fiuctuations; aL„ the real, and p, the imaginary, coeKcient of the interaction of the projectile with the Quctuating surface
layer of the nucleus. This interaction is more intense and more effective than the inner (~) part of interaction (see also Table II).

Energy
(MeV) (F)

as
(F) (MeV) (F) (MeV) (MeV)

Ca«

14.5
7

14.1

14.5
7

0.05
0.05

0.05

0.05
0.05

0.53
0.53

0.55

0.58
0.58

—0.28—0.28

—0.28

—0.28—0.28

1.24
1.04

0.88

1 ' 24
0.957

—1.15—1.18

—3.38

—2.97—4.47

—1.15—1.18

—5.75

—3.95—5.97

Quctuations, characterized by Kl. and y, which are
responsible for the interaction. In discussing the
quality of fit of the computed curves to the experi-
mental data, it is necessary to note that our possi-
bilities in fitting were limited because no proper search
routine was available. Everything was done by trial
and error, and the author was surprised by the agree-
ment achieved.

To simplify the computation of the indefinite in-
tegrals in the expressions for the b s, it was assumed
that the limiting values of these integrals,

limp u}=iim f yp "'ed', for r

were equal to

}impy($}= fj,p "'i'djio,
It is possible to show that this assumption caused very
minor errors in the computed values of the b s.

A correction should also be made of a numerical error
in previous work, '8 in which during the computation of
numerical constants the value of djr/dQ for Pb~
was accidentally made 100 times too small. It is in-

teresting to note, though, that the value of Kp in that
wrong result was practically the same as in the present
work; this is another illustration of the "inertness" of
the inner core.

VI. CONCLUSIONS

1. The proposed nonlocal optical potential qualita-
tively corresponds to the basic properties of a simple
Fermi-gas model of a nucleus. Formal presentation of
this potential as a sum of partial separable nonlocal
potentials permits solution of the Schrodinger equation,
analytically.

2. The hypothesis of the effectiveness of "the
relative s interaction" for all values of l simplifies the
case significantly. It permits one to represent the
potential as a superposition of partial potentials, which
corresponds to the representation of the nuclear density
distribution (determined experimentally by Hof-
stadter') as a sum of partial density distributions
according to the statistical Thomas-Fermi method.
It also permits one to obtain analytical expressions for
S-matrix elements and for the differential cross section
for the process.

3. Specification of the imaginary part of the inter-

TAnLz II. The dependence of the relative differential cross section 8=L(djr/dQ), s „~/(djr/dQ)„~, ] on the values of the dynamical
parameters. Changing Kp (the inner-core parameter) from —10 ' MeV to —50 MeV changes e from 1M to 10 ', or 100 times less
than the experimental value, while it changes aL, and y from —10 ' MeV to —1.15 MeV, which is the experimental value. This means
that aL, and p, the outer-layer parameters, are really responsible for the interaction of the projectiles with the target nuclei, and that
ao is really an inert-core parameter.

(MeV) (MeV) (MeV)

—10 4

—10 4

& —0.5
—10 '
—0.28

(—3o)-(—5o)

—10 4

—10 4

—10 4

—1.15

—1.15

—10 '

(—o.1)-(—1.)
—10 '
—1,15

—1.15

—10 4

—30

(10 ')-(10 )
10'

'SB. B. Dotsenko, Nuclear Research Centre, University of Alberta, Edmonton, Canada (unpublished).
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action as caused by fluctuations' concentrated in the
surface shell (l=l ) permits one to distinguish two
main parts of nuclei: (i) the irtert core, and (ii) the
strongly twteroct&tg rtlcleur sgrface containing nucleons
with /= l, holes, and Buctuations. These conclusions
follow from the analysis of Figs. 1—3 and Tables I
and II.

4. This analysis shows that the inert-core parameters
are 6xed constants for different nuclei, so that those of
practical importance (for the specification of the in-

teraction properties of different nuclei) are the three
nuclear surface parameters eo, ~L,, p. This is distinctly
less than the usual number of parameters of local
optical potentials.

5. More extensive analysis of these parameters for
diferent nuclei will supply material for possible cor-
relation between the structure of the surface layer of a

nudeus and its interaction with partides, and par-
ticularly for investigation of the role of the holes and
density Quctuations in such interactions.
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Study of the J Deyendence in the (d, He') Reaction*
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The J dependence of the angular distributions in the (d, Beg) reactions was experimentally observed
at small angles in the 2p proton pickup. This J dependence is qualitatively reproduced by distorted-wave
calculations which indicate that the effect arises mainly from the deuteron spin-orbit potential. The
calculated angular distributions are strongly dependent on the Q value of the reactions and the incident
deuteron energy. The calculations also show that the J dependence is localized at the surface of the nucleus,
and is very sensitive to the volume of the real part of the deuteron optical potential. This sensitivity may
be understood by considering the role of the spin-orbit term in the optical potential. The sensitivity of the
calculated angular distributions to the other parameters is investigated.

I. INTRODUCTION

INCR the 6rst discovery' of the J dependence of

~ ~

the angular distributions in the (d, p) reaction,
similar effects have been observed in many other
direct reactions. The J dependence in the (d, He')
reaction was erst observed by Freedom, Newman,
and Hiebert. ' They found a difference between the
angular distributions of 2pq~~ and 2pgs proton pickup
in the region from 50' to 80' at an incident deuteron
energy of 34.4 MeV. This difference was qualitatively
reproduced by the ordinary distorted-wave Born-
approximation (DWBA) theory, and was found to
arise from the deuteron spin-orbit potential.

The J dependence of the /=1 transition at small
angles (15'—30') was observed in the course of our

~ %'ork performed under the auspices of the U.S.Atomic Energy
Commission.' L. L. Lee, Jr., and J. P. Schi8er, Phys. Rev. Letters 12, 108
(1964); Phys. Rev. 130, 3405 (1964).' B.M. Preedom, E. Newman, and J.C. Hiebert, Phys. Letters
u, 65& (1966).

spectroscopic study of the (d, He') reaction on even-
even Mo isotopes. This observation is important
because at such small angles the direct interaction
should predominate and distorted-wave calculations
are expected to be reliable and rather insensitive to
the choice of optical-potential parameters. In this
paper the experimental evidence for such a J depend-
ence is described. It is also shown that the J dependence
is correctly given by the distorted-wave calculations.
The changes in the shapes of the calculated curves in
response to variations of the individual parameters
are discussed in detail.

II. EXPERIMENTS AND COMPARISONS WITH
THE DISTORTED-WAVE THEORY

The details of the experiments and analysis were
described in a previous paper. ' The 23-MeV deuteron
beam from the Argonne cyclotron was used. The
targets were isotopically enriched metallic foils, and

' H. Ohnuma and J. L. Yntema, Phys. Rev. 177, 1695 (1969).


