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We present four different separable-potential models of the nucleon-nucleon interaction which 6t both
the low-energy data and the MacGregor-Amdt-Wright phase parameters for partial waves through J=4
in the energy range 0 to 400 MeV. The partial-wave scattering amplitudes resulting from our potentials
have driving singularities at real negative values of the complex energy variable, and the appropriate
amplitudes contain the deuteron pole and the singlet antibound-state pole at the correct energies. The
present work extends and completes the results of an earlier paper.

INTRODUCTION BASIC EQUATIONS

PREVIOUSLY, ' we gave three separable potentials
which 6t the nucleon-nucleon scattering data. Now

the Livermore group of MacGregor, Amdt, and Wright'
has published the last of a series of papers on the
determination of the nucleon-nucleon phase parameters.
The appearance of these data has prompted us to
extend and complete the work of Ref. 1.

We shall set forth four diR'erent separable-potential
models of the nucleon-nucleon interaction. When
separable potentials are inserted in the Lippmann-
Schwinger integral equation for the oG-energy-shell
two-nucleon partial-wave scattering amplitude, the
kernel of the equation becomes separable. Conse-
quently the Lippmann-Schwinger equation can be
solved algebraically. The resulting oR'-shell partial-wave
amplitude is separable in the incident and outgoing
relative momentum variables. Also, the oR-shell
amplitude is guaranteed to satisfy the 6ve general
nondynamical requirements laid down in Ref. 1, if
the separable-potential form factors are properly
chosen. That is, the oR'-shell partial-wave amplitudes
resulting from our separable-potential models:

We consider models of the nucleon-nucleon inter-
action with a separable potential of the form

Viv(p, p')

=Li'" "5'Lgi(p)g~ (p') —k~(p)ki (p')5 (1)

This potential is to be inserted into the nonrelativistic
two-particle partial-wave Lippmann-Schwinger equa-
tion, which for uncoupled waves is

Ti(p p'k')

2p ~ dq q'V~(p, q) T~(q, p', k')

where the c.m. kinetic energy E=Pk'/2p, and p is the
reduced mass of the two nucleons. For coupled waves,
the Lippmann-Schwinger equation is

Tip(p, p'; k') = Vl p(p, p')

k' q'+ie—

The partial-wave 7 matrix obtained from the
Lippmann-Schwinger equation is related to the partial-
wave 5 matrix by

(i) reduce to the correct on-shell amplitudes;
(ii) satisfy olf-energy-shell two-particle unitarity;
(iii) have reasonable analyticity properties;
(iv) are time-reversal invariant;
(v) have the proper threshold behavior in both

energy and momentum variables.

S (nk') = 1 2xipsTn (k—'),
where ps= pk/5'. For uncoupled waves, the S matrix
is given in terms of the phase shifts by S&(k') =
expg2ib((k') 5 or

Because of their extreme simplicity, these separable-
potential models should be useful in multiparticle
scattering calculations. The fact that the o6-shell
behavior of these models is determined by the choice
of the separable-potential form factors and the resulting
amplitudes can be written as an oR'-shell factor multi-
plying the on-shell amplitude makes them useful in
probing the oR'-shell behavior of two-body scattering
amplitudes.

S~(k') = 1+2i expLibg(k') 5 sinb~(k'),

whence

tan2b~(k') = —2s ps ReTi(k')/L1+2s ps ImT~(k') 5.

Alternatively, the T matrix can be expressed in terms
of the phase shifts as

T~(k') = —(1/sps) exp/i b(k') 5 sinb(k'),

whence

tanb&(k') = 1m Tt(k') /Re T~(k') .
For coupled waves, we use the Stapp' parametrization
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TABx,E I. Case-I fits to nucleon-nucleon phase shifts in uncoupled partial waves. These partial waves are fitted by thp separable
potential

«(P, P') =Q(p) gi(P') —4(p) hi(p'),
where the form factors are

g] (p) —C Pl/(pR+ag&) (1+1)/R jg](p) —C~pl/(p3+a~s) (1+1)ls

The units of the attractive inverse range ag and the repulsive inverse range ag are inverse fermis (F ', 1F=10 ~ cm). The units of
the attractive coupling strength C~ and the repulsive coupling strength Cg are (MeV F)'~. Dots indicate that a form factor is to
be set equal to zero. ZE' is the sum of the squares of the residuals:

&R Z t bP*~'(E ) bP"(—E )P,

at the 28 data points in the range 0 to 400 MeV.

Partial wave

Repulsive potential
parameters

a (F-~) C& (Mev F)»~

Attractive potential
parameters

ag (F ') Cg (MeVF)»

1p

2.331

1.138

52.45

49.83

Singlet
1.855

1.103

1.418

41.36

46. 16

4.817

469.3

73.93

5.253

1F

3po

'Dg

1.059

2.258

0.697

0.837

4.118

118' 2

3.498

2.347

Triplet

1.076

1.326

2.322

0.992

0.970

2.300

16.48

18.89

5.482

3.851

4.885

0.139

18.04

0.091

15.95

0.120

1.476

TABLE II. Case-II fits to nucleon-nucleon phase shifts in uncoupled partial waves. These partial waves are fitted by the separable
potential

«(P, P ) =g~(P) g~(P ) -I~(p) I ~(P'),
where the form factors are

+(p) C&pl/(p +a&a) (z~)ls h~(p) —C&pl/(p+a~s} &t+a)la

The units of the attractive inverse range a~ and the repulsive inverse range ag are inverse fermis (F ', 1F=10 "cm). The units of
the attractive coupling strength Cg and the repulsive coupling strength Cg are (MeV/F)'". Dots indicate that a form factor is to
be set equal to zero. Zg is the sum of the squares of the residuals:

ZR'= Z fbi'"&'(Ei) —5)"'(Ei}j'
at the 28 data points in the range 0 to 400 MeV.

Partial wave

Repulsive potential
parameters

ag (F ') C~ (MeV/F)»'

Attractive potential
parameters

a~ (F ') CB (MeV/F)»I

l,p

1P3

lG4

6.157

1.410

1.470

302.0

14, 16

Singlet
1.786

1.258

1.944

1.425

27.33

30.21

21.09

8.502

456.3

43.52

8.577

7.514

0.257

3p

3A

'Dg

'F3

'G4

4.460

2.178

1.213

988.1

45.63

7.247

Triplet
1.313

1.468

1.317

13.94

20.60

14.04

11.34

56.06
44.31
0.766

3.894
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TABLE III. Case-III fits to nucleon-nucleon phase shifts in uncoupled partial waves. These partial waves are fitted by the separable
potential

«(p, p') =gi(p) gi(p') —hi(p) hi(p'),
where the form factors are

gg(P} =Ga {(1/s P')Q(L1+ (pa'/2P') ]}'ls h((P) =Gg( (1/sP'} QgL1+ (gas/2P') J}'I'

except in the partial waves'SO, 3po, and 'pj where the repulsive form factor is gp (p) = Imp'/f p'+)(pz') )) ( {1/~p') Qsf 1+(pz'/2p') jI"'.
Q~(g) is the Legendre function of the second kind. The units of the attractive inverse range pg and the repulsive inverse range yg are
inverse fermis (F"', 1F=10 " cm). The units of the attractive coupling strength Gg and the repulsive coupling strength Gg
are (MeV F)"'.Dots indicate that a form factor is to be set equal to zero. ZR' is the sum of the squares of the residuals:

R g fg,cay'(E. ) gg'tg(E. ))
at the 28 data points in the range 0 to 400 MeV.

Repulsive potential
parameters

Partial wave p~ (F ') G~ {MeV F)'"

Attractive potential
parameters

pig (F ') Gg (Mev F)'"

i/0

1p

1D

1P

1G

3PO

3P~

3'

'G4

2.225.

0.644'

0.933

1 799a

0.477

5 ' 663

0.674

20.84.
26, 53

12.06

291.5
167.1
108.5

5 ' 545

Singlet

Triplet

1.300

1.256

1.415

0.936

1.475

3.268

1.057

0.799

10.00

31.53

10.61

6.539

26.65

21.00

15.40

9.513

1538.4
44.22

1.952

2.304

0.032

158.9
71.86

11.16

0.051

0.050

4 Special repulsive form factor must be used.

TABLE IV. Case-IV fits to nucleon-nucleon phase shifts in uncoupled partial waves. These partial waves are fitted by the separable
potential

«(p, p') =go(p) gi(p') —hc(p) ht(p'),
where the form factors are

+(p) —C&pl/(p +a@2)(~+ ) hf(p) =C~p~l(p +a&~) +

The units of the attractive inverse range ag and the repulsive inverse range ag are inverse fermis (F ', 1F=10 3 cm). The units of
the attractive coupling strength Ca and the repulsive coupling strength Ca are pMeV F et+'&gus. Dots indicate that a form factor
is to be set equal to zero. ZR'is the sum of the square of the residuals:

ZE'~ + pSP*s'(Ec) SF"(Ea) T, —

at the 28 data points in the range 0 to 400 MeV.

Partial
wave

Repulsive potential
parameters

a„(F ') C fMeV F &"+'&g'13

Attractive potential
parameters

a& {F ') C& fMeV F &"+'~j'+

lg
1p

1D3

1+3

lG4

3PO

3P~

3D

3F3

6.157

1.967

2.341

5.000

2.661

2.010

302.0
121.6

1203.0

1329.0
200.3

428.3

Singlet

Triplet

1.786

1.566

2.721

2.387

1.462

2 ' 149

2.266

27.33

49.73

530.5

3378.0

27.0

361.8

4881.0

456.3
25 ' 31
11.95

11.28

0.507

37.76

63.85

102.4
2 ' 332

9.605
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TABLE V. Case-I fits to nucleon-nucleon phase parameters in coupled partial waves. These partial waves are fitted by the separable
potential

VlV(P, P') =(~" ') hi(P) gV(P') —hi(P}I i (P') 3
where the form factors are

gi(p} —Gppr/[p+s(fsp)sgrr+1)ls )rr(p) —Gvspr/[Ps+(rrrk)s)(i+1)ls

The units of the attractive inverse ranges aJ+l& and aJ l" and the repulsive inverse ranges aJ+p and aJ p are inverse fermis (F-l,
1 F=10» cm). The units of the attractive coupling strengths CJ+l& and CJ l~ and the repulsive coupling strengths CJ+p and CJ l
are (MeV F) '/'. Dots indicate that a form factor is to be set equal to zero. ZP' is the sum of the squares of the residuals:

([ z+'*"( ') -4+r'"(E') j'+L ~'*"(E')—~P'(E') 3'+[4-r'*"(E')—4-r'"( ') 3'},
s 1

at the 28 data points in the range 0 to 400 MeV.

Coupled
wave

system

Repulsive
aJ lR

(F ')

Parameters for l =J+1
parameters Attractive parameters

CJ+l aJyl CJgl
(Mev F)'" (F ') (MeV F)'"

Repulsive
aJ 1
(F=)

Parameters for l =J—1
parameters Attractive parameters

CJ-P a
(MeV F)&/& (F-&) {MeV F)»I

J=i
J=2
J=3
J=4

0.848
~ ~ ~

O. 808

20.38
~ ~ ~

3.243

0.744
0.342

~ ~ ~

0.737

10.82
0.467

1.018
1.263

22.98

6.431

0.982
1.509
1.181
1.466

9.804
5.345
6.063
3.440

1664.0
5.526
4.258
0.807

TABLE VI. Case-II fits to nucleon-nucleon phase parameters in coupled partial waves. These partial waves are fitted by the separable
potential

Vrv(p, p'} = (s" ') [gr(p)gv(p'}-Irr(p)hr (p')),
where the form factors are

g$ (p} Cggplr/)ps+ (ap}lg(l+s)/s J$$ (p) Crglpl//pa+ (ale) 3)(l+s)/1

The units of the attractive inverse ranges aJ+p and aJ l" and the repulsive inverse ranges aJ+p and aJ p are inverse fermis ('F ',
1 F= 10» cm) . The units of the attractive coupling strengths CJ+l~ and CJ l" and the repulsive coupling strengths CJ+p and CJ p
are (MeV/F)»'. Dots indicate that a form factor is to be set equal to zero. ZR' is the sum of the squares of the residuals:

JEs= g ([g&+rtsyt(Ef) 4+iiI—t(E.)Js+[«&«xyt(E.) «&fit(E.) P+[g& rtsyt(E. } 4 )fit(E.) js}
i~1

at the 28 data points in the range 0 to 400 MeV.

Coupled
wave

system

Parameters for l =J+1
Repulsive parameters Attractive parameters
aJ+1 CJ+l aJ+l CJ+l
(F ') (MeV/F) l/~ (F ') (MeV/F) '"

Parameters
Repulsive parameters
aJ R CJ 8
(F ') (Mev/F)'"

for l=J—1
Attractive parameters
aJ l+ CJ l+
(F ') (MeV/F) '/'

J=i
J=2
J~3
J~4

1.264

1.129

49.38

8.697

1.161
0.652

1.033

33.66
1.102
~ ~ ~

3.270

3.612

1.732

93.74
~ ~ ~

26.00

2.994 41.08
2.198 24.24
1.667 24.98
1.884 14.78

798.4
5.765
7.822
0.960

TABLE VII. Case-III fits to nucleon-nucleon phase parameters in coupled partial waves. These partial waves are fitted by the sep-
arable potential

~rr (P P') =(s" ')[gr(p)gr'(P') —Irr(p)&v(p')3
where the form factors are

gi(P) = Gri((1/«ps) Qr[1+ ((rrrrs) s/2P') j}"s, kr (P) =Gr s
( (1/«ps) Qr[1+ ((rtr~}s/2ps)g}rrs,

where Q&(x) is the Legendre function of the second kind. In the J=1 system, the repulsive form factor for J—1(l=0) is

gr (P) =[Gr P'/(P'+&(rrr )')g((1/s'P') Qr[1+ ((rrr")'/2p')g}'".
The units of the attractive inverse ranges pJ+l" and pJ l& and the repulsive inverse ranges pJ+p and p,J p are inverse fermis (F ',
2 F=10» cm). The units of the attractive coupling strength GJ+l" and GJ l~ and the repulsive coupling strengths GJ+p and GJ
are (MeV F)»s. Dots indicate that a form factor is to be set equal to zero. ZL is the sum of the squares of the residuals:

&E'= & ([4+r'*"(E) —4+r'"(E )j'+[ z "(Ei)—«P'(E) 3'+[4-r'*"(E~)—4-r'"(E)P},
4'~1

at the 28 data points in the range 0 to 400 MeV.

Coupled
wave

system

Parameters for l =J+1
Repulsive parameters Attractive parameters

PJ+l GJ+l P J+l GJ'+1
(F l) (MeV F)1/! (F-l} (MeV F) l/s

Parameters for l =J—1
Repulsive parameters Attractive parameters

PJ-1 GJ-1 //1 J-l GJ-l
(I ') (Mev F)'" (F ') (MeV F)'/'

J=i
J=2
J=3
J=4

0.592
~ ~ ~

0.635

77.49

11.91

0.511
0.142

0.521

28. 10
0.577

~ ~ «

2.344
1.316 16.10

3.249 72.99. 1.458 13.94
1.601 9.750
1.122 11.75
1.481 9.864

2123.0
10.62
3.690
0.708

Special repulsive form factor must be used.
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of the S matrix

cos2e e ' ~-'

Ei sm2s ei'(sg gybg+q)

i sin2e e'(I~-'+~~+'&)

!

cos2e s(((~&+(

~here

—2s pg ReTg~g, g~g(k')
tan28 g~y =

1+2s ps lmTg~g, g~((k')
'

—2s' pg Re Ton(k')
srn2&=

c os (8J+1+8J—1)

TOD(k ) +J—(, J+1(k ) TJyl, J—g(k ) ~

The separable-potential formalism allows us to solve

explicitly for the T matrix in the form T&r (p, p'; k') =
N(( (p, p'; k')/Dg(k'), as well as the deuteron wave

function, the deuteron D-state probability, and the
deuteron quadrupole moment, in terms of the separable-
potential form factors and certain integrals over
these form factors. These results can be found in

Ref. 1.
For J= i, the triplet scattering length u~, the triplet

effective range r&, and the deuteron binding energy are
related by

r&= (2/k&) [1—(1/a(kD) j, (3)

where the deuteron binding energy is E nfl'kgb/2p.

The position of the singlet antibound-state pole in the
Sp partial wave is related to the singlet efI'ective

range a, and the singlet scattering length r, by

kv= {1—[1—(2r,/(4) J 'I/r„ (4)

where the pole occurs at the negative energy E&=
—fPkv'/2p on the second or unphysical sheet of the
complex energy Riemann surface. The scattering
lengths are given by

u, =lim (sp/5') ReTp(k')

a(= lim (s.g/5) ReTpo(k'),

where To(k') is the transition amplitude for 'So
scattering and Tao(k') is the transition matrix element
for J=i, /=l'=0.

%e take for the nucleon mass M the average of the
neutron and proton masses, so that 2pc'= Mc'= 938.903
MeV and Ac=197.32 MeV F. %'e take the deuteron
binding energy E&=2.22452 MeV and the triplet
scattering length e&=5.396 F, which yields a triplet

Then, the coupled wave phase shifts and mixing

parameters are given in terms of the T-matrix ele-

ments by

—2s pg ReTg g g g(k')
tan2bg g

——

1+2s' p@ ImTg g, g g(k )
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ALE IX. Case-I fits to nucleon-nucleon phase shifts in coupled ~aves, assuming eg=0 and neglecting bq+l. These partial waves
are fitted by the separable potential

~&(P P') =g&(P) g&(P') —&~(P)hi(P'),
where the form factors are

g$(p) =Carpi/(Pyg/2) «+»2 P$(p) =Carpi/(p2/ g„2)«+»12

The units of the attractive inverse range a~ and the repulsive inverse range ag are inverse fermis (F ', 1 F=10 's cm}. The units of
the attractive coupling strength C~ and the repulsive coupling strength Cg are (MeV F)'".Dots indicate that a form factor is to
be set equal to zero. ZE' is the sum of the squares of the residuals:

at the 28 data points in the range 0 to 400 MeV.

~R'= & hap*~'(E;) —b&"'(E;)3',

Partial
wave

Repulsive potential
parameters

~z
(F ') (MeV F)''

Attractive potential
parameters

as C~
(F ') (MeV F)'2

sSl
SP2
sDs
SP

2.335
~ ~ ~

4.427

82.73
~ ~ ~

345.3

2.068
1,509
1.259
1.530

72.84
5.349
3.403
3.663

50.51
0.406
0.)28
0.068

Tmx.E X. Case-II fits to nucleon-nucleon phase shifts in coupled waves, assuming eq=0 and neglecting by+i. These partial waves
are fitted by the separable potential

Vi(p, p') =gi(p) gi(p') —hi(p) &i(p'),
where the form factors are

g (p}—C pl/(ps++ 2) «+R)I2 h&(p) —C&pl/(p2++&2) «+0)/2

The units of the attractive inverse range eg and the repulsive inverse range ag are inverse fermis (F ', 1 F=10 is cm). The units of
the attractive coupling strength Cg and the repulsive coupling strength C~ are (MeV/F) 1. Dots indicate that a form factor is to
be set equal to zero. ZR' is the sum of the squares of the residuals:

Z Qlexpt{E.) ~lflt(E.) )2

for the 28 data in the range 0 to 400 MeV.

Partial
wave

Repulsive potential
parameters

(F ') (MeV/F)'12

Attractive potential
parameters

C~
(F ') (MeV/F) '12

sSl
SP2
sD
SP4

4.540
~ ~ ~

6.558

127.4
~ ~ ~

493.8

1.908
2.192
1.451
1.945

35.02
24. 14
7.716

15.93

60.63
4.015
0.189
0.229

Tmx.E XI. Case-III fits to nucleon-nucleon phase shifts in coupled waves, assuming eq ——0 and neglecting Bq+l. These partial waves
are fitted by the separable potential

~l(p, p') =gl(P) gl(p') —hi(p) I l(p'),
where the form factors are

gg (p) =Gg I (2/~P) Qigi+ (pg2/2p') g I'~2 hg(p) =Gg I {2/~P) Q)L2+ (pg2/2P) jI
"2

except in the fits to the partial wave 'Sl, where the repulsive form factor is gp(p) =LG&p'/(p'+pp&2) jI (2/~p') Q&L2+(&2/2p') ))"2-
Qi{x) is the Legendre function of the second kind. The units of the attractive inverse range pg and the repulsive inverse range pg are
inverse fermis {F ', 2 F=10 ~ cm). The units of the attractive coupling strength Gg and the repuIsive coupling strength Gg
are (MeV F)"2.Dots indicate that a form factor is to be set equal to zero. ZR2 is the sum of the squares of the residuals:

ZR'=—Z Lb@*&t(Ei)—8]"t(Ei)j2,

at the 28 data points in the range 0 to 400 MeV.

Partial
wave

Gg
{MeV F)'"(F ')

Repulsive potential
parameters

Attractive potential
parameters

PA Gg
(F ') (MeV F)"2

'Sl
S+2
SDS
SIi4

3.441»
~ ~ ~

3.025
~ ~ ~

777 4a
~ ~ ~

872.8

3.259
1.600
2 ' 543
1.581

29.97
9.764

98.48
10.83

545.9
2.622
0.148
0.020

~ Specia1 repulsive form factor must be used.
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TABLE XII. Case-IV fits to nucleon-nucleon phase shifts in coupled waves, assuming ez= 0 and neglecting 8J+g These partial waves
are fitted by the separable potential

vi(p, p') =gi(p) gi(p') —hi(p) hi(p'),
where the form factors are

g](p) =C~p/(p+ag)«+&, hg(p) =Cgp'/(p+ag)«'&.

The units of the attractive inverse range ag and the repulsive inverse range a~ are inverse fermis (F ', 2 F=10 "cm). The units of
the attractive coupling strength Cg and the repulsive coupling strength C~ are PMeV F &"+'&J'". Dots indicate that a form factor
is to be set equal to zero. ZR' is the sum of the squares of the residuals:

g fg&expt, (E.) g&fit(g.)P

at the 28 data points in the range 0 to 400 MeV.

Partial
wave

Repulsive potential
parameters

t MeV F-(sf+1))1/8 (F ')

Attractive potneital
parameters

Cg
LMeV F-(at+1)j1/I

4, 540

2.489

127.4

307 ' 8

1.908

2.720

2 ' 253

2.861

35.02

122.5

248.0

2115.0

7.275

0.775

0.237

eHective range r&
——1.726 F. We set the singlet anti-

bound state at an energy E&= —0.0665 MeV on the
second sheet of the complex energy Riemann surface
and we take the singlet scattering length a, = —23.678
F, which yields a singlet effective range r, = 2.729 F.

FORM FACTORS

The choice of a functional form for the repulsive
form factor g~(p) and the attractive form factor h~(p)
in Eq. (1) determines the off-shell behavior, the
threshold behavior, and the analyticity properties of
the off-shell scattering amplitudes as well as the
asymptotic properties of the phase parameters. We
have been particularly careful to choose functional
forms which lead to an on-shell scattering amplitude

with driving singularities which lie only on the real
negative axis in the complex energy plane. Thus our
amplitudes have a singularity structure similar to that
obtained from the fully relativistic theory of the
nucleon-nucleon partial-wave amplitudes.

In case I, the form factors have the functional form
p'/(p'+a')«+'&~' which has an asymptotic behavior
like 1/p as p—+~, whereas in case II, the form factors
are of the form p'/(p'+a')&'+'&", which goes as 1/p'
as ~~. These cases correspond to choosing the 6rst
two members of the family of form-factor shapes
discussed in Ref. i. Of course, all our choices of separ-
able-potential form factors behave like p' at threshold,
in order to produce the proper behavior of the phase
parameters at threshold, Cases I and II in this paper

20

~ ~
~ ~ ~ ~ ~ ~

O
Vl

-25
0

Lab kinetic energy (MeV)

-20
400

Fzo. 1. Fits to the singlet phase shift 'So. The curve marked Q
is the data value of the phase parameter in degrees and is read
with the left-hand scale. The other curves are the absolute error
(fitted value minus data value) in degrees of the various fits and
are read with the right-hand scale. The dashed curve represents
the case-I 6t, the solid curve marks the case-II and case-IV 6ts,
and the dotted curve indicates the case-III fit.

-35
0

Lob kinetic energy {MeV)

FIG. 2. Fits to the singlet phase shift 'PI. The curve marked 4
is the data value of the phase parameter in degrees and is read
with the left-hand scale. The other curves are the absolute error
(fitted value minus data value) and are read with the right-hand
scale. The dashed curve represents the case-I 6t, the solid curve
marks the case-II 6t, the dotted curve indicates the case-III
fit, and the dot-dash curve denotes the case-IV fit.
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TAszx XIII. Low-energy parameters. t,5

Experiment
Case I
Case II
Case III
Case IV

'So parameters

Singlet
scattering length a,

(F)

—23.678
—23.678
—23.678
—23.681
—23.67&

Singlet
effective range r.

(F)

2.729
2.729
2.729
2.722
2.729

lOaa
h»

a'e

Q
S
0
Ih

'Si parameters (coupling to 'Q neglected)

Triplet
scattering length eg

(F)

Triplet
effective range r ~

(F)

-7
0

Lab kinetic energy (MeV)

9.5
400

Experiment
Case I
Case II
Case III
Case IV

5.396
5.345
5 ' 396
5.399
5.396

1.726
1.724
1.726
1.730
1.726

Fzo. 4. Fits to the singlet phase shift FI. Description of curves
is as for Fig. 2.

0.25

J= 1 parameters

Experiment
Case I
Case II
Case III
Case IV

Triplet
scattering
length eg

(F)

5.396
$.654
5.384
5.565
5.380

Triplet
effective
range rt

(F)

1.726
2.041
1.710
1.936
1.705

0.278
0.277
0.276
0.278
0.274

0.7
1.1
0.$
1.4

Deuteron Deuteron
quadrupole D-state

moment probability
(F ) (%)

lOa0
Cha

'Cl

IO

C1a'a

a

All fits to the partial waves ~So contain a singlet antibound-state pole
at 8~ -0.066S MeV on the second or unphysical sheet of the complex
energy Riemann surface. All fits to the J 1 coupled wave system and to
the st partial wave neglecting the coupling to IDx contain the deuteron pole
at 8~ -2.224S2 MeV on the physical sheet of the complex energy Riemann
surfaces

0
0

Lab kinetic energy (MeV)

i-0.25
400

Fzo. 5. Fits to the singlet phase shift 64. Description of curves is
as for Fig. 2.

t.5 l5

ISa
~I

Ch
D

O

O
IO

EK

, J ~ ~ ~

O

O
lO
Jh

~ ~ ~ 4

0
0

Lab kinetic energy ( MeV)

-t5
400

-20
0

Lab kinetic energy (MeV)

-5
400

Fzo. 3. Fits to the singlet phase shift 'Ds. Description of curves
is as for Fig. 2.

Fze. 6. Fits to the (uncoupled) triplet phase shift 'Pe. Description
of curves is as for Fig. 2.
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FIG. 7. Fits to the (uncoupled} triplet phase shift 'P&. Description
of curves is as for Fig. 2.

FIG. 10. Fits to the uncoupled triplet phase shift 64, Description
of curves is as for Fig. 2.
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FIG. 8. Fits to the (uncoupled) triplet phase shift Dt,.Description
of curves is as for Fig. 2.

Fzo. 11.Fits to the triplet phase shift 'S& (7=1 coupled waves) .
Description of curves is as for Fig. 2.
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400 -3

0
Lab kinetic energy (MeV)

-t0
400

FIG. 9. Fits to the (uncoupled) triplet phase shift ~F&. Description
of curves is as for Fig. 2.

FIG. 12. Fits to the triplet mixing parameter ej (J=1 coupled
waves). DescrIption of curves is as for Fig. 2.
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Pm. 13. Fits to the triplet phase shift 'Di (J= 1 coupled waves).
Description of curves is as for Fig. 2.

FIG. 16. Fits to the triplet phase shift 'F& (J=2 coupled waves).
Description of curves is as for Fig. 2.
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Lab kinetic energy {MeV)

-t
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Fzo. 14. Fits to the triplet phase shift 'P~ (J=2 coupled waves}.
Description of curves is as for Fig. 2.

FIG. 17. Fits to the triplet phaM; shift 'Di {J=3 coupled waves) .
Description of curves is as for Fig. 2.
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FIG. 15. Fits to the triplet mixing parameters & (J=2 coupled
waves) . Description of curves is as for Fig. 2.

FIG. 18. Fits to the triplet mixing parameter + (J=3 coupled
waves) . Description of curves is as for Fig. 2.
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FrG. 19. Fits to the triplet phase shift 'Ge (J=3 coupled waves).
Description of curves is as for Fig. 2.

FIG. 22. Fits to the triplet phase shift 'H~ (J=4 coupled waves) .
Description of curves is as for Fig. 2.
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FIG. 20. Fits to the triplet phase shift 'F& (J=4 coupled waves) .
Description of curves is as for Fig. 2.

FrG. 23. Fits to the triplet phase shift 'S~ (assuming e~=0 and
neglecting 8'D~). Description of curves is as for Fig. 1.
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Fro. 21. Fits to the triplet mixing parameter e~ (J=4 coupled
waves). Description of curves is as for Fig. 2.

Fxo. 24. Fits to the triplet phase shift ~Pg (assuming ~=0 and
neglecting b F~). Description of curves is as for Fig. 2.
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TABLE XIV. Maximum excursions of the error (6tted value minus data value) and the laboratory kinetic energies at which they occur.

Phase
parameter Case I

Maximum excursions of the error (deg)
Case II Case III Case IV

lpl

1'»

spo

ap,

8D1

Ip»

SP»

f 10.04 at 400 MeV

—1.639 at 160 MeV

( 2.546 at 220 MeV

-3.608 at 400 MeV

l
( 0.482 at 220 MeV

—0.729 at 400 MeV

( 0.804 at 400 MeV

—0.504 at 220 MeV

0.085 at 240 MeV

—0.129 at 400 MeV

1.479 at 400 MeV

—1.107 at 10 MeV

0.114 at 5 MeV

—0.074 at 40 MeU

(
1.355 at 400 MeV

—1.264 at 30 MeV

0.114 at 40 MeV

—0.083 at 280 MeV

0.276 at 220 MeV

—0.427 at 400 MeV

11.07 at 400 MeV

—9.099 at 50 MeV

3.904 at 400 MeV

—4. 232 at 20 MeV

6.501 at 400 MeV

—1.647 at 160 MeV

0.201 at 120 MeV

—0.194 at 30 MeV

0.463 at 140 MeV

—1.024 at 400 MeV

0.325 at 400 MeV

—0.239 at 180 MeV

10.58 at 5 MeV

—1.314 at 180 MeV

2. 193 at 15 MeV

—1.669 at 90 MeV

0.586 at 220 MeU

—0.936 at 400 MeV

0.916 at 400 MeV

—0, 580 at 240 MeV

0.109 at 260 MeV

—0.171 at 400 MeV

1.105 at 400 MeV

—1.067 at 10 MeV

2.440 at 30 MeV

—1.419 at 200 MeU

1.516 at 140 MeV

—2.541 at 40 MeV

0.290 at 400 MeV

-0.200 at 200 MeV

0.436 at 220 MeV

—0.682 at 400 MeV

3.791 at 380 MeV

—3.513 at 70 MeV

7.891 at 400 MeV

—5.371 at 40 MeV

5.127 at 400 MeV

-2.838 at 220 MeV

0.462 at 180 MeV

—0.599 at 40 MeV

0.250 at 180 MeV

—0.651 at 400 MeV

0.269 at 50 MeV

—0.205 at 200 MeV

15.83 at 400 MeV

—8.684 at 70 MeV

2.022 at 5 MeV

—2 ~ 841 at 400 MeV

0.295 at 200 MeV

—0.438 at 400 MeV

0.604 at 400 MeV

—0.3?9 at 220 MeV

0.042 at 240 MeV

—0.065 at 400 MeV

4.599 at 400 MeV

—3.414 at 140 MeV

3.854 at 400 MeV

—2.001 at 220 MeV

1.818 at 400 MeV

—0.848 at 220 MeV

0.057 at 200 MeV

—0.087 at 400 MeV

0.040 at 220 MeV

—0.093 at 400 MeV

14.37 at 400 MeV

—5.455 at 40 MeU

1.803 at 400 MeV

—3.364 at 5 MeV

11.54 at 400 MeV

—2. 100 at 40 MeV

0.754 at 460 MeV

—0.422 at 200 MeV

0.628 at 140 MeV

—1.175 at 400 MeV

0.350 at 400 MeV

—0.270 at 160 MeV

10.58 at 5 MeV

—1.324 at 180 MeV

1.362 at 15 MeV

—2.220 at 400 MeV

0.695 at 240 MeV

—1.079 at 400 MeV

1.068 at 70 MeV

—0.643 at 240 MeV

0.147 at 260 MeV

—0.232 at 90 MeV

2.857 at 400 MeV

—1.031 at 10 MeV

2 ~ 594 at 30 MeV

—1.482 at 220 MeV

2.341 at 160 MeV

—3.595 at 40 MeV

0.503 at 400 MeV

—0.319 at 220 MeV

0.632 at 260 MeV

—1.021 at 400 MeV

2.764 at 340 MeV

—3.536 at 70 MeV

7.877 at 400 MeV

—6.505 at 60 MeV

8, 723 at 400 MeV

—3.682 at 200 MeV

0, 620 at 180 MeU

—0.778 at 40 MeV

0.375 at 30 MeV

0.247 at 400 MeV

0.219 at 80 MeV

—0.173 at 220 MeV
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TABLE xIV (.~i~~m).

1609

Phase
parameter Case I

Maximum excursions of the error (deg)
Case II Case III Case IV

'G8

8F4

( 0.602 at 400 MeV

—0.313 at 240 MeV

f 0.315 at 200 MeV

(—0.535 at 50 MeV

0.267 at 400 MeU

—0.172 at 120 MeV

( 0.107 at 240 MeV

[—0.145 at 400 MeV

( 0.215 at 100 MeU

—0.061 at 400 MeV

0.172 at 140 MeV

—0.110at 400 MeV

0.401 at 400 MeV

—0.190 at 260 MeV

0.556 at 200 MeV

-0.852 at 60 MeV

0.363 at 400 MeV

—0.190 at 200 MeV

0.128 at 240 MeV

—0.174 at 400 MeV

0.249 at 100 MeV

—0.011 at 400 MeV

0.188 at 180 MeV

—0.149 at 400 MeV

0.746 at 400 MeU

—0.465 at 220 MeU

0.073 at 380 MeV

—0.175 at 60 MeV

0.167 at 400 MeV

—0.231 at 80 MeV

0.080 at 200 MeV

—0.086 at 400 MeV

0.210 at 140 MeV

-0.117 at 400 MeV

0.154 at 140 MeV

—0.0'li at 400 MeV

0.233 at 400 MeV

—0.157 at 300 MeV

0.813 at 240 MeV

—1 ~ 306 at 70 MeV

0.436 at 400 MeV

—0.262 at 260 MeV

0.144 at 280 MeV

—0.220 at 400 MeV

0.327 at 100 MeV

-0.013 at 320 MeV

0.19? at 220 MeV

—0.210 at 400 MeV

diGer from the corresponding cases in Ref. 1 in that
we do not introduce any specially modified repulsive
form factors.

For case III, we take form factors like

j (&/p') QiL&+ (1 '/2p') ]I' '

except in the partial waves 'Sp, 'Pp, '5&, and 'P&,
where the repulsive form factors have the form

Lpe/(pe+&pt)]{ (l/pt)Q, L/+ (pe/2')]}ue

The Q~ functions are Legendre functions of the second
kind. Both these forms have an asymptotic behavior
like L(lnp')/p']'~' as ~ee, and lead. to on-shell am-
plitudes with cut singularities on the negative real
energy axis. Separable-potential form factors like those

used in case III were 6rst introduced by Mitra' and
we have used them because they promise the most
realistic analyticity structure. This promise is belied
by the fact that we must introduce special repulsive
form factors, which have a pole at the start of the
repulsive cut, in order to fit the phase shifts in the
partial waves '~p, 'Pp, 'S~, and 'P». In fact, the case-
III fits are the least successful of our 6ts.

Finally, in case IV, we choose form factors of the
form p'/(p'+a') &'+'&, which behave as 1/p'+' as phoae.
These form factors were chosen because they lead to
oB-shell amplitudes with the same asymptotic behavior
in the momentum variables as the o8-shell amplitude

0.2

2.5
i

0.75

Vl
~0
4l

4l

ee
Ela
Cha

Lab kinetic energy (MeV)

-0.2

-0.75
400

Lab kinetic energy (MeV)

Fn. 25. Fits to the triplet phase shift 8D8 (assuming e8=0 and
neglecting 88G8). Description of curves is as for Fig. 2.

Fro. 26. Fits to the toilet phase shift 'F4 (assuming e4=0 and
neglecting O8H4). Descnption of curves is as for Fig. 2.

' A. N. Mitra, Phys. Rev. 123, 1892 (1961).
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TABLE XV. Maximum excursions of the error {6tted value minus data value) and the laboratory kinetic energies at which they occur,
for the phase shifts in coupled waves, assuming eJ=0 and neglecting 5J+I.

Phase
parameter Case I

Maximum excursion of the error {deg)
Case II Case III Case IV

3'

3P

3E4

I' 0.800 at 340 MeV
)

—2.393 at 60 MeV

0.164 at 120 MeV

—0.228 at 30 MeV

0.224 at 400 MeV

—0.102 at 220 MeV

0.060 at 280 MeV

—0.091 at 400 MeV

0.923 at 320 MeV

—2.571 at 60 MeU

0.505 at 180 MeV

—0.619 at 40 MeV

0.218 at 400 MeV

—0.115 at 260 MeV

0.082 at 280 MeV

—0.128 at 400 MeV

8.470 at 400 MeV

—1.693 at 50 MeV

0.786 at 400 MeV

—0.411 at 200 MeV

0.227 at 400 MeV

—0.098 at 220 MeV

0.021 at 240 MeV

—0.036 at 400 MeV

0.923 at 320 MeV

—2.571 at 60 MeV

0.665 at 180 MeU

—0.800 at 40 MeV

0.623 at 400 MeV

—0.138 at 220 MeV

0.114 at 280 MeV

—0.169 at 400 MeV

arising from a superposition of Yukawa potentials.
This is easily seen by noting that a Yukawa potential
in momentum space has the form Vi(p, q)~(1/pq)
)& QiLp2+qt+ittt/2pq j, and the insertion of this potential
into the Lippman-Schwinger equation (1) leads to an
off-shell amplitude Ti(p, q; k'), which behaves like
1/p'+' as p—t to and like 1/q'+' as q

—+tc .
In the l=0 partial wave, the case-II and case-IV

form factors are identical. Case IV has the added
advantage that all the integrals arising in the separable-
potential formalism can, in principle, be done in
closed form.

FIT TO THE NUCLEON-NUCLEON DATA

Ke have fitted our potentials to the MacGregor-
Arndt-Wright (Livermore) nucleon-nucleon phase
parameters for laboratory kinetic energy from 0 to
400 MeV for the partial waves through J=4. For
each phase parameter we used the 28 data points, in
the range 0 to 400 MeV laboratory kinetic energy E,
provided by the energy-dependent phase parameter
determination of MacGregor, Amdt, and Wright.

The fitting was accomplished on a CDC-6600
electronic computer at Lawrence Radiation Laboratory
using xsqmN, a least-squares minimization program
developed by Eric Heals. The program r.spmN searches
for the values of the potential parameters that minimize
the sum of the square~ of the residuals at the 28 data

Sum of squares
of residuals

Case I
Case II
Case III
Case IV

2263. 7

1445.5

3966.9

1811.9

TABLE XVI. Grand total of the sum of the squares of the
residuals for all uncoupled waves and coupled wave systems
through J=4.

points,
28

QR2 ggiexpt(R, ) 6 fit(R. ) jt

for uncoupled waves, and

28

—~"'( )j'+QL z+t'*"( ) —4 i"'( ) j'

for coupled waves.
The potential parameters that yield the best fit

to the phase parameters are given in Tables I-
VIII, where we have included the values of gR',
since a comparison of these numbers for a single
partial-wave or coupled-wave system gives an indica-
tion of the relative goodness of fit of the four cases.

We have displayed our fits to the phase parameters
graphically in Figs. 1—22, where the curve marked 6
at 100-MeV intervals is the data value of the phase
parameter in degrees and is read with the left-hand
scale. The other curves are the absolute error (6tted
value minus data value) in degrees of the various fits,
and are read with the right-hand scale. The dashed
curve represents the case-I fit, the solid curve marks
the case-II fit, the dotted curve indicates the case-III
fit, and the dot-dash curve denotes the case-IV fit.

For the convenience of those who would like to use
these fits, neglecting partial waves with /&l, , whereI, is 0, 1, 2, or 3, we have fitted the coupled waves
'S~, 'P2, 'D3, and 'F4, assuming eJ=O and neglecting
~J+]. in each case. These results are presented in Tables
IX—XII and Figs. 23-26.

We present the low-energy and bound-state para-
meters resulting from our potential models in Table
XIII. In Table XIV we give the maximum positive
and negative values of the errors and the energies at
which they occur, for each fitting case in each partial
wave. Similarly, Table XV lists the maximum error
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excursions for the partial waves 'S~, 'E~, 'D3, and 'E4
treated as uncoupled waves. Table XVI gives the
grand total of the sum of the squares of the residuals
in each fitting case. To form this sum, we sum the
squares of the residuals in each uncoupled partial
wave and each coupled wave system through J=4.
The results show that case II gives the best over-all
fit to the nucleon-nucleon scattering data.

In the partial wave 'Sp we fit the phase shift and
the three low-energy parameters: scattering length,
virtual (antibound) state pole position, and eBective
range. These three parameters are related by Eq. (4),
so that only two of them are independent. Consequently,
we choose the scattering length u, = —23.678 F and
set the antibound-state pole at E~= —0.0665 MeV
on the second sheet of the complex energy Riemann
surface, which implies a singlet effective range r, =2.729
F.The antibound-state pole on the second or unphysical
sheet leads to a zero in the S matrix at the same
energy on the physical sheet of the complex energy
surface. In addition, the zero of the 'Sp phase shift
at 249.5 MeV implies that the N function in the
separable-potential formula for the on-shell T matrix,
Tg(k') =)V (k')/D~(k') is zero at 249.5 MeV To.
fit the 'Sp partial wave, we use the conditions that
the S matrix be zero at Ey= —0.0665 MeV and that
the N function be zero at 249.5 MeV to determine the
attractive and repulsive coupling strengths, and search
for the values of the attractive and repulsive inverse
ranges which give the best fit to the phase shift and
scattering length. We then used Eq. (4) to determine
the value of the effective range produced by the
separable-potential models. Our 'Sp scattering ampli-
tudes are, therefore, guaranteed to contain the singlet
antibound-state pole at the correct position on the
unphysical sheet.

In the construction of our separable-potential models,
we have made the tacit assumption of charge in-
dependence. When fitting the 'Sp phase shifts, we
biased the s(arch procedure to ensure the correct
values of a, and r, . However, the MacGregor-Arndt-
Wright 'Sp phase shifts are fitted to the proton-proton
scattering length and eBective range at low energy,
and this explains the discrepancy between our its
and the phase shift data at low energies. We can fit
the 'Sp phase shifts quite closely, but then the absolute
value of the scattering length becomes smaller. Note
that the greatest error in our fits to the 'Sp phase shift
occurs at 400 meV, where the data value of the phase
shift is —23.27'. However, the energy-independent
determination of MacGregor, Amdt, and Wright
gives a 'Sp phase shift of —19.35' at 425 MeV, so
our fits deviate from the energy-dependent data in
the direction of the energy-independent value. In the
absence of a charge-dependent determination of the
Sp phase shif ts, we have presented what we feel is

the best compromise.
When we fit the 'I'p phase, w'hich has a zero at 204

MeV, we use the condition that the Ã function of

the on-shell T matrix is zero at 204 MeV to determine
the repulsive coupling strength. We then search for
the values of the attractive coupling strength and the
attractive and repulsive inverse ranges which produce
the best fit to the phase shift data. However, in case
III, we had to search with all four parameters free
to obtain a reasonable fit.

If we consider the partial wave 'S~ as if it were
uncoupled, we wish the S matrix, and thus the T
matrix, to have the deuteron pole at E~=—2.22452
MeV on the physical sheet. This is accomplished by
determining the attractive coupling strength from the
condition that the D function in the separable potential
expression for the on-shell T matrix have a zero at
the deuteron pole position. Then we search for the
values of the repulsive coupling strength and the
attractive and repulsive inverse ranges which yield
the best fit to the phase shift and scattering length,
obtaining the effective range from Eq. (3) .

When we consider the coupled waves with J=1,
we again guarantee the correct binding energy for
the deuteron by obtaining the attractive strength in
l=0 from the condition that Dg-q(k') =0 at En=
—2.22452 MeV. Next we search for the values of the re-
maining seven potential parameters which give the
best fit to the phase shifts, mixing parameter, scattering
length, deuteron quadrupole moment, and D-state
probability. We obtain the e8ective range from Kq.
(3). Since the quadrupole moment of the deuteron
is sensitive to the oG-energy-shell behavior of the
nucleon-nucleon interaction, we weight this quantity
so that our searching routines are heavily biased in
favor of those parameter sets which lead to a nearly
correct quadrupole moment. We find that the resulting
D-state probabilities are quite low, but since the
available estimates of the D-state probability are
imprecise and somewhat model-dependent, we do not
feel that this is a serious drawback.

As an independent check on our work, our separable-
potential models were put into computer programs
which solve the Lippmann- Schwinger equations (1) and
(2), with arbitrary well-behaved potentials, as complex
matrix inversion problems. The latter programs were
developed completely independently of the present
work, and the agreement of the T matrices and phase
parameters calculated from the two approaches
constitutes the desired check of our work.

In conclusion, we suggest that whenever possible
the form T«(p, p'; k') =F«.(p, p'; k') T«. (k') be
used in calculations when k'&0, with F«(p, p'; k')
obtained from the separable-potential models and
T«(k') expressed directly in terms of the experi-
mental phase parameters. This separation has been
discussed in Ref. 1, and it guarantees that the eGect
of on-shell two-body scattering is taken into account
as accurately as possible in any calculation involving
oB-energy-shell two-body partial-wave scattering am-
plitudes, while retaining the advantage of separability
in incident and outgoing momentum variables.


