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A modi6ed Tamm-Dance approximation for spherical superconductor nuclei is formulated. The approxi-
mation consists in diagonalizing the nuclear Hamiltonian in the space spanned by the components of zero-
and two-quasiparticle excitations corresponding to a 6xed particle number ("projected states"). Thus,
spurious states arising from the Bogoliubov-Va]atin canonical transformation, which are present in the usual
Tamm-DancoG approximation, are completely eliminated, Matrix elements between "projected states"
are evaluated by the Bayman projection method of the generating functions. The model is applied to the
calculation of the low-lying excited states of the tin isotope with A = 116, and the results are compared with
the corresponding ones obtained in the Tamm-DancofF approximation. Our conclusion is that the eBect of the
particle-number nonconservation is important mainly for the energies of the highest levels. This becomes
particularly clear for the J=0 case.

1. INTRODUCTION

T is well known' that the Tamm-DancofI' approxima-. . tion (TDA) for spherical superconductor (even-
even) nuclei consists in diagonalizing exactly the Hamil-
tonian of the system in the space of the two-quasi-
particle (qp) elementary excitations. The idea is that
higher excitations (four- and more-qp) can be neglected,
since to excite a single qp we need at least an amount of
energy equal to the gap (which is of the order of I MeV
for nuclei like tin isotopes). In spite of its simplicity,
this model appears quite good for treating low-lying
excited states of the so-called vibrational nuclei."In
fact, recent calculations, ' ' which also take four-qp
excitations into account, show that at least the lowest-
1ying vibrational states can be considered as almost pure
linear combinations of two-qp excitations. Of course,
this is untrue for higher energy states.

Formally, the standard TDA presents all the advan-
tages resulting from the BCS theory of superconduc-
tivity, in which excited states of a .'l p-nucleon system
are treated as few-qp states. On the other hand, its
main disadvantage is that the resulting states do not
conserve the number of particles. This fact is more
dangerous for excited states than for the ground state.
In fact, for the excited states the nonconservation of
the particle number introduces spurious components.
Take, for instance, the state S

l 4o, where
l

0'o) is the
BCS state. It is different from Xo

l
4'o) (Xo is the correct

number of nucleons) and its component in the space of
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the excitations built up by two qp's coupled to an angu-
lar momentum J=O is spurious. This well-known 0+
state, which dramatically aA'ects the physical properties,
can be eliminated by simple methods before diagonaliz-
ing the Hamiltonian. ~' However, this is not the only
spurious state; other spurious components arise from the
successive powers of the particle number operator. Their
complete elimination by standard methods is practically
impossible, and their e8ects on the physical properties
are unknown (for a complete description of the spurious
states of higher order, see Ref. 7).

In order to eliminate the aforementioned difhculty
it is important to formulate an approximation with the
property of conserving the number of particles without
losing the formal and physical advantages of a model.
built on the BCS theory of superconductivity. %ith this
in mind, we propose a model, which we call the pro-
jected Tamm-Dancoff approximation (PTDA) . In
this model we shall diagonalize the Hamiltonian in the
space spanned by the two-qp excitation components
with a particle number equal to the eGective valence-
nucleon number. This is very similar to the procedure
applied by Macfarlane' to the study of states of even Ni
isotopes. Only the technique of picking out components
with a 6xed number of particles is completely di6'erent.

2. PROPOSED MODEL
Our starting point is to 6nd "generating functions'"

l P(z) ) and
l
Poor(aa'; z) ) deined as

lk(z))= Zz'I A.) (&)
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TABLE I. Excitation energies (in MeV) for Sn'" calculated in TDA and PTDA. Numbers in parentheses denote percentage weights of
components, with fixed nucleon number (2p =16), of states calculated in TDA.

TDA PTDA TDA
J=2+

PTDA
J—4+

TDA PTDA

0.0 (36)

1.63 (46)

2.35 (32)

2.89 (32)

4.83 (25)

0.0
1.51

2.92

3.55

5.77

1,61 (37)

2.30 (39)

2.42 (39)

3 ~ 03 {26)

3.28 (26)

1.54

2.41

2.54

3.56

3.89

2.45 (36)

2.89 {36)

3.23 {27)

3 ' 39 {26)

3.45 (36)

2.63

3.17

3.64

3.80

and

I
AM(«" z) ) = 2 z~'

l 0'2. ,~M(«') ) (2)

respectively. Here,
I f»& and

I $2v, JM(aa')) sre com-
ponents (not normalized), which correspond to a fixed
number of particles equal to 2p, of the BCS state and of
two-qp excitations coupled to JM, respectively. We
shall call these components "projected states" ("pro-
jected SCS state" and "projected two-qp states, "
respectively) .

The functions (1) and (2) have the property that
matrix elements between projected states of any
operator 0 preserving the number of particles can be
derived from the matrix elements between correspond-
ing generating functions, apart from an identical
constant factor, by using the equations

&«. IPI«.&= j«~' '&W(~& IPIW(*&&, (3&

64. I
0

I 6, («') &

zz 2 ' z 0 g~au, z, 4

Qpv, gM(bb')
I
0

I fpv, g M (aa') &

&fz s '~2(/AM(bb'; z) I
0

I tbsp M (aa'; z) &, (5)

where the contour of integration includes the origin.
The generating functions can be constructed im-

mediately in terms of creation and annihilation opera-
tors for nucleons (c t and c, respectively, where &2

designates all the quantum numbers which characterize
a single-particle shell-model state, namely, a—=7, n,
l,j,m =a, m, where the meanings of the symbols are
obvious). In fact, it is immediately seen that

14(=) ) = II (u.+z-zv c.'c--')
I 0» (6)

a&o

I lPJM(aa'; z) ) =nz(aa') g (j,j;;n2 2n ~
I J/M)

fÃss5$ss, ~

X(u, zc .t —s .v, c ) (u,sc t sv, c ) I

—p(z) ), (7)

Here ng(aa') =I 1+(—)~b )"', and u, and v are the
usual BCS coefficients with u,'+v, '=1; s»= (—)/» —"»

and —u=c, —ns . Matrix elements of the Hamiltonian
between these functions can be constructed without any
difficulty. We start by defining a new set of creation and
annihilation operators through a z-dependent canonical
transformation:

d t=(uoc+ —s zv,c )/(u, '+s'v')'",

(&/, = (u.c.—s,zv.c 2) /(u. '+s'v. ') "'. (8)

The generating function
I P(z) ) is the vacuum for

these operators, and
I
/AM(aa'; z) ) can be rewritten as

z2DgM'(aa') bg p y.u.v.z (—z' 1), —
(u 2+z2v 2) 1/2 (u,2+z2v, 2) 1/2

where

D&M'(aa') = 5 5(.g;; n2.2n;
I
m)/f. '/f. '

(10)
and g, = (2j.+1)'/'.

Transformation of the Hamiltonian in terms of d. t and
d operators is also very easy. All we have to do is to
observe that the transformation (8) is perfectly equiva-
lent to a Bogoliubov-Valatin canonical transformation
if we change u, into u. (uo2+zpv ') "' and v, into
zvo(uo'+z'v, ') "'.Obviously, &f

2 and (f opera, tors reduce
for z = 1 to creation and annihilation operators for quasi-
particles of the BCS theory. The trick consists in simply
taking the Hamiltonian that one obtains after the
Bogoliubov-Valatin transformation and before the
"elimination of the dangerous terms" (with the chemical
potential put equal to zero) and in changing u, into
u, (u, '+z'v, ') '" and v, into sv, (u,'+s'v, ') "'. Terms of
the Hamiltonian transformed according to the Bogo-
liubov-Valatin transformation are given, for example, in
Refs 1 and 3'o

Using the Hamiltonian transformed according to Eqs.
(8), the expression (9), and the property

~- I4(z) &=o, (11)
"Care must be taken in the different definitions of the anti-

symmetrized particle-particle and particle-hole matrix elements
of the interaction used in Refs. 1 and 3;namely, we have gg{abcd) =
—4G(abed J) and fJ (abed) = —4' (abed J).
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it is very easy to construct matrix elements of the
Hamiltonian between generating functions and from
these, by Eqs. (3)—(5), to derive matrix elements be-
tween corresponding "projected states" through inte-
grations in the complex plane.

Of course, for JWO, "generating functions" (9) are
orthogonal to each other; consequently, the correspond-
ing "projected two-qp states" are also mutually orthog-
onal and can be taken directly as a good basis on which
to diagonalize the Hamiltonian.

The situation is different for J=0. In this case, gen-
erating functions

~ f(s) ) and
~ P~(«; s) ), and hence

projected states also, are no longer orthogonal to each
other and we have to build an independent and ortho-
normal basis set from the projected states

~ p») and

~ P»,00(«) ) through a Schmidt procedure. In principle,
this is a simple procedure since, by Eqs. (3)—(5), we
can express all scalar products between "projected
states" in terms of calculable integrals in the complex
plane. %e have to make sure that, if there are n "pro-
jected two-qp states" corresponding to an n-subshell
problem, only n —1 are independent of each other. In
fact, it is immediately seen that

2i N.~. I A. .~(«) )=o (12)

After building the basis vectors as linear combinations
of

~ p») and of n —1 among the e "projected two
states, " we can construct, by Eqs. (3)—(5), matrix
elements of the Hamiltonian in the space spanned by
the vectors so obtained. Collective 0+ states will be
obtained in this model by diagonalization of this matrix.

3, NUMERICAL RESULTS AND CONCLUSIONS

Numerical applications have been performed for a tin
isotope with A =116.This nucleus has a half-6lled shell
and hence the effects of nonconservation of the particle
number must be particularly important. W'e have used a
conventional 6nite-range residual force, namely, a
Gaussian force:

V(1 2) = Vo exp) —(rip/t'p) ](P +IPSE),

(13)
Jh

where ri~ ——
~
ri —r~

~
and P, and P, are the singlet-even

and triplet-odd projection operators. The parameters
are fixed at V0=31.0 MeV, F0=2.0fm and t= —0.555
(a Rosenfeld force). The five single-particle subshells
we consider are 2d~/2, 1g7/2, 3s&/2, 2d3/Q 1k~~/2. The neu-
trons and protons in subshells other than the above ones

are considered as an inert core. We keep single-neutron
energies as in Table (5a) of Ref. 6, ED~20= —2.45,
E7/2 = —1.95, Eg/2 =0.0, E3/2 0.80 and EU/2'= 1.25
MeV. The unperturbed single-nucleon wave functions
are of a harmonic-oscillator potential as given in Ref. 6,
The assumed range parameter of the harmonic-oscillator
wave functions is v'"=(Mu/fi)'"=0454 fm ' The
BCS solutions for the coefficients N, and e of the Bogo-
liubov-Valatin transformation and the single-qp ener-

gies corrected by self-energy terms are determined
consistently with the residual interaction used.

In Table I, we give results for the excitation energies
(in MeV) of the 0+, 2+, and 4+ lowest-lying levels. The
first column refers to TDA calculations (with the 0+
spurious state projected out) and the second one to the
corresponding PTDA calculations. Numbers in paren-
theses denote percentage weights of components, with
nucleon number equal to 16, of states calculated in
TDA. For simplicity in both cases, we have taken the
lowest 0+ state at zero energy. Actually, the effect of
nonconservation of the particle number lowers the
ground-state energy in PTDA by an amount of 0.82
MeV with respect to the BCS energy. This seems in
qualitative agreement with the results obtained by
Dietrich et cl.' and by Bang et al." The di5erence
between the ground-state energy in PTDA and the
energy of the BCS component corresponding to 2p = 16
is very little and negligible (0.07 MeV in our case).
Experimental values are not given since, for reproduc-
ing the experimental data, a better parametrization of
the single-particle states and, in some cases, mixing of
higher excitations are certainly necessary. " Through
these results, we only want to compare TDA calcula-
tions with the corresponding ones of PTDA, in order to
decide whether the effects on the energy spectrum aris-
ing from nonconservation of the number of particles are
important or not. From Table I it can be seen that the
effect of the spurious components is more important for
higher stages. This general trend assumes relevance for
the J=0 case, as we can expect, since we know that the
spuriousness due to the particle number nonconserva-
tion affects especially 0+ states.
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