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be in disagreement but the di6erences may be a mani-

festation of diGering amounts of 'S, '5, 'P, and 'P
waves in the final-state p-'H system.

These results are consistent with a simple model in
which the relative strength of the various configurations
in the final-state P-'H system is dependent on the initial-
state origin of the proton and triton. In the case of
inelastic scattering the final-state p-'H system is formed
from the highly correlated 4He target nucleus, within
which the proton and triton are in a relative 'S state.
No such initial-state correlation exists in the other re-
actions.

The one remaining inconsistency in Table III is the
narrow width reported for this state by Parker et al.'
Meyerhof has analyzed this reaction in terms of the
P-'H phase shifts and finds fair agreement, but some

difhculty with the energy scale. In our opinion the errors

ION. E. Meyerhof, Rev. Mod. Phys. 3V, 512 (1965).

quoted in Ref. 5 are probably too low. The smallness
of the errors arises from the "kinematic ampliler"
eGect discussed by Donovan. " The gain in accuracy
as a result of this eBeet is, however, real only if the
angles of the detectors are correspondingly well known.
In the experiment under discussion any error in angle
would result in an apparent change of both the energy
and width of the state. A reexamination of the data in
Ref. 5 would therefore be useful.
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We have assumed that an effective central potential in place of actual N-N interaction can be used in
general for 6nite-nucleus calculations. By introducing, however, a class of residual two-body interactions, we
have studied the nucleon correlation effect in the independent-particle-model (IPM) wave functions of
nuclei. As an illustrative example, this method has been applied to the deuteron. A shell-model description of
the deuteron is proposed that takes proper account of the nucleon correlation and the residual potential. We
have obtained an adequate agreement with the elastic electron-scattering data even for the deuteron without
using the tensor force. This method should be applicable to many other nuclear problems and result in
interesting predictions.

SSUMING the nucleon-nucleon interaction as
.k that of two free nucleons, one can make calcula-

tions to explain nuclear properties, following the work of
Bruckner, Bethe, and others. ' Since this approach is
extremely dif.Iicult, some approximations have to be
used to make the calculations tractable, and these
cause many uncertainties. In this work we shall examine
the behavior of a nuclear system with a closed shell
plus two particles (or holes). Essentially, we assume
nucleons moving in an averaged central field. This
oversimpliaed 6eld has been corrected with a residual
two-body interaction which leads to the correlation of
the independent-particle wave functions for the system.

can be written as

where
&=&o+~. t,

and

A ( $2
&o= Z I

——v'+'v'
(2m

' 'j

The actual Hamiltonian for a nucleus of mass number A

~ Part of this work was done at the University of Wyoming
during the author's visit in the summer of 1968.

'M. A. Preston, Physks of the NNclels (Addison-Wesley
Publishing Co., Reading, Mass. , 1966), p. 266, and references
therein; G. Breit, Proc. Nat. Acad. Sci. U.S.46, '746 (1960).

U; being the central potential. Since the two-body
interaction V(r;;) depends only on the relative co-
ordinates, the choice of U; here as the harmonic-
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oscillator potential has a particular advantage' because
the eigenfunctions of two nucleons in the nucleus due to
this potential are separable in their relative and c.m.
coordinates. ' W'e have

=r(&/~) C Z I
r' —rf I'+2( 2 r')'] (5)

=x(~/~) Z I r;—r; I'

in the c.m. system.
Hence,

Vh~=sZ CV(r') —4(&/~) I r'i I'].

More realistic forms of V(rq) based on meson theory
are available, but they are quite involved. 4 However,
the interaction potential (6) can be approximated by
some well-known potential functions. As an illustrative
application, we use the form' for V. &(—=Vn) given by

where c is the correlation coefficient to be determined,
N is the normalization constant given by

E' = 1+2c(r/rp)+c'(r'/rp') (11)

and fc~P is the single-particle coupled wave function of
the two extra core particles (or holes) given by

pl pl'=&pg c.g. coeff. a (rplm~m, pa~) a (pplpaq'ra, 'pa~') .

(12)

The creation operator a~(nlm~pN, ppp&) Cthe corresponding
annihilation operator a(pplmgpa, ppp~) appears in the case
of a hole] creates a particle in the Nl harmonic-oscillator
state with the orbital, spin, and isospin magnetic
quantum numbers m&, m„and m&, respectively. The
factor Np is unity unless the particles are in the same
orbit, in which case it is )v2. Also, the two-body inter-
action operator V~ is written as

V~= kZAi(1) 4 pp(2) I V(12) I e~(1)e~(2)

Xapp apq appapp, (13)

where the p» are single-particle wave function of Hp
belonging to the eigenvalue e given by

—V„=Vp, f„'(r)+Vp, f„'(r)g ap, (&) Ha&(p) =Wp(p). (14)
where r=x;, =r;—r;, and fn' and fn~ are central and
spin-dependent parts of the potential, respectively. If
f~ is assumed to be the same for both dependences, then

—V~= (p V(+)V,)+(p Vg —
p V,)g. ap, (g)

where

V = Vp„exp( —r'/rp ') Ca —b(r/rp)'"],

with ppp denoting the spin multiplet —triplet (t) or
singlet (s); and Vp are adjustable parameters not
exceeding the free value of Vp for given a, b, and v. The
range parameters are chosen to be' rpg=1.36 fm and
rp, =1.76 fm.

The usual shell-model wave function of a closed-shell
nucleus is a Slater determinant of single-particle
functions determined from a central-field model. Here
we use the method of second quantization' by taking the
closed shell to be the vacuum state,

I 0).This method is
particularly favorable for the correct description of
holes. Thus, the correlated wave function in L-S
coupling that we have chosen for this work can be
written in this formalism as

+~= (I/&)fi~P(1+c(r/«) ) 10), (10)

'One could also use some other potential, e.g., A. E. S. Green,
G. Darewych, and R. Brezdvin, Phys. Rev. 157, 929 (1967).

g I.Ta~m~, Helv. Phys. Acta. 25, 185 (1952).'N-E Interaction Conference, Rev. Mod. Phys. 39, Session
D (1967).' L.R.B.Elton and M. A. K.Lodhi, Nucl. Phys. 06, 209 (1965}.' L. R. B.Elton, l&rudac&ry NNctear 2'keory (%.B.Saunders
Co., Philadelphia, 1966).

7 G. E. Brown et a/. , Nucl. Phys. 22, 1 {1961).

It can be easily shown that the wave function (10)
is still an eigenfunction of L, L„S', and S,. It is
obviously an eigenfunction of S' and S., since the
correlation factor does not alter the spin part in the
wave function P. For L' and L„we know that the
angular dependence of ro is the same as for 1/rg,
which is diagonal in L and L,. To maintain the shell
model, we may use the variational principle that the
expectation value of the energy is a minimum when we
have the correct wave function, P given by (10), which
is properly antisymmetrized. %ith this wave function
the energy of the system is given by

IV= (I/&') (0 '(1+c(r/«) ) I H14 '(1+c(rlr ) ))

where

8=H+c((r/rp)H+H(r/rp) )+c'(r/rp) H(r/rp). (16)

The total energy 8' of the system is obtained by
minimizing with respect to c, using the uncorrelated
wave function (12) for a given L as a basis.

The correlated wave function can be modified to
simulate the collective motion of the nuclear matter
through its correlated part, and the resulting correction
to the energy in the independent-particle model is of
the order of several MeV. The wave function (10), in

'D. M. Brink and G. R. Satchler, Nuovo Cimento 4, 549
(1956}.

~ K. A. Brueckner et a/. , Phys. Rev. 118, 1442 (1960).
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Frc. 1. Dependence of correlation
coefBcient c on Vo for the values of X
given in Table I as determined by
the potentials (18). The variation in
c for a variation of O.OS in X is in-
distinguishable on this scale.

general, can be used for any number of particles, pro-
vided a suitable correlation between the extra core
particles (or holes) is introduced. In this paper, how-

ever, the purpose is simply to describe a system with a
doubly closed shell plus or minus two particles —in
particular, the deuteron, for which this scheme with the
wave function (10) is particularly convenient.

To demonstrate the correlation effect, the above
technique has been applied to the deuteron by using the
independent-particle wave function as the basis. This is
the only nuclide which can be treated equally well by
either of the two aforesaid descriptions, viz. , the closed
shell with two partides or two holes. From either
approach we get the same result identically, as expected.
(Perhaps for those who frown on the independent-
particle description of deuteron, the 0, core as vacuum
state with two 1s holes will be acceptable. ) The energy
of the deuteron, using the usual shell-model wave
function for the state (1s)' is thus obtained from

(15) as

1 r)V=2+ —(V„)+2c —V„)
¹ ~0

(rp/r) exp( r'/rp')—,

e~y( —r'/rp'),

(r/rp) exp( —rp/r '),

(r/rp)' exp( —r'/rp')

[1 0 35(r/rp—)7 e. xp( —r'/rp')

(18a)

(18b)

(18c)

(18d)

(18e)

1.0

where m is the nucleon mass. Clearly, 5'~2~ as V»~,
and hence c is also zero.

In order to evaluate the matrix elements in (17), the
following form factors have been used in the potential
given by (8) and (9):

fP r'
+c' + —Vgp, (17)

t'0 St t'0 0.1

Tmm I. The correlation coefBcient c for the optimum value
of Vog and Xg. No information can be obtained about the singlet
parameters in this way.

Potential Vo(MeV) X
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Fzo. 2. Correlation effects on the elastic electron scattering form
factor. Fo is the form factor with uncorrelated wave function.
Curve (e) coincides with Fo on this scale.
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The variational calculations have been performed for
each of these potentials to determine the correlation
coeS.cient c belonging to the minimum energy value.
The parameters X =r~ (a being the harmonic-oscillator
parameter) and V0 were varied in the ranges 0.5 &X & 1.0
and 10 MeV& Vp&100 MeV. For the optimum values
of A. and Vp, the coefficient c is given in Table I. The
value of c is rather insensitive to large Vp in each case.
(See Fig. 1.)

The nuclear form factor, as obtained from the high-
energy electron scattering by the deuteron, has also
been calculated. Using the wave function (10), we
obtain

1 c
F (q) = —exp( —q'/4o. ') 1+ exp(q'/8a')S' (2s) "9.

+'s(2N+3) qFq ( —n —1; -' q'/8a')) + —3——
(19)

where q is the momentum transfer, and ~E~ is the usual
con6uent hypergeometric function. Clearly with c=0
the form factor reduces to exp( —q'/4a'). Comparison
of our result with the experiments" removes the
degeneracy in selecting the potential parameters avail-
able from the energy calculations. Figure 2 shows a
great deal of discrepancy between the uncorrelated
form factor Iip and the observed points. However,
fairly good agreement with experimental data has been
obtained by using correlated wave function with a
suitable residual potential. F(q) is enhanced for any
nonzero value of c, negative or positive. We And that
the negative c enhances F(q) more consistently with
the data. That is what one might have foreseen, too, by
looking at the expression (19). Of course, the right size
of c, belonging to minimum. energy, can be obtained
from any one of the potentials (18) or otherwise if no
restriction is imposed on the adjustable parameters Vp

and A, . However, since we have already fixed rp, we
cannot vary Vp and A. indiscriminately. Consequently,

' J.A. McIntyre and G. Burleson, Phys. Rev. 112, 2077 (1958);
R. M. Littauer et g., Phys. Rev. Letters 7, 141 (1961);J. A.
McIntyre and S. Dhar, Phys. Rev. 10{i, 1074 (2957).

only certain reasonable values of Vp and X are ad-
missible for correcting Fo(q). Under these conditions,
the correction in F(q) "prefers" the potentials given by
(18) in the order (c, a, b, d) (see Figs. 1 and 2),
rather than (a, b, c, d) as one might have expected
naively.

It is well known that the central and spin-dependent
forces which give rise to the S state of the deuteron
cannot fit the form factor. An admixture of the D state,
which is due to the inclusion of tensor forces, improves
the calculations. " We have been able to show in a
qualitative manner that potential form factors as
simple as (18) without any tensor force are capable of
6tting the data (see Fig. 2) when nucleon correlation
is taken into account. Such agreement cannot otherwise
be obtained without including the tensor force itself, in
quite involved calculations. ""

To sum up, we have shown that the beneficial eGect
of nucleon correlation in the nuclear wave function in
independent-particle-mode the (IPM) is rather signi6-
cant if a suitable residuaI potential is used. %e have also
shown that the role of the tensor force, at least in the
case of the deuteron, can be simulated by a local central
potential" (residual) which is manifested through the
enhancement of the nuclear form factor as obtained
from the elastic electron scattering. Besides, it seems
to be indicated by this analysis that elastic electron
scattering can also be useful for the study of the S-E
correlation. " This kind of information is generally
believed to be available from inelastic electron scatter-
ing, and that has been shown to be true in some cases."
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