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We consider elastic and inelastic scattering of electrons from deformed light nuclei in the Born appro~ma-
tion. For the elastic scattering case, we develop the most general expression for the cross section in terms
of the electric and magnetic multipole moments of the nuclear ground state and the corresponding form
factors, which are expressed by the (spectroscopic) moments of charge and magnetization distributions.
For the inelastic scattering case, the transition form factors are similarly expressed by transition multipole
densities of charge, current, and magnetization in the most general fashion. We also develop a model of
collective vibrations of deformed ground-state charge and magnetization densities which, in the case of
charge vibrations, explains present data and predicts the filling in of inelastic diffraction ~i~ima; in the
case of vibration of magnetization, corresponding transitions are shown to appear at large momentum
transfers only, where they may be identified as such by the action of selection rules. In the Appendices,
we consider relations between spectroscopic and intrinsic quantities, consider static deformed and Helm-
type models, and discuss oblige and m~etic radii. In addition, the previously derived generalized Helm
model is rederived in a simple fashion.

I. INTRODUCTION electron scattering the momentum transfer q is variable,
the static moments are multiplied by form factors which
are functions of q when one calculates the elastic elec-
tron scattering cross section in the Born approximation.
Similarly, the inelastic Born cross section is expressed
in terms of the "transition form factors" which contain
the transition multipole densities. The development thus
outlined is carried out in Secs. II and III. Since the
Born approximation is used, the resulting expressions
are valid for the light nuclei only, up to the s-d shelL
The static or transition multipole moments of densities
which will appear in the theoretical expressions of the
form factors will then have to be calculated from a nu-
dear model or else they will have to be given by a phe-
nomenological expression that produces a fit to the
experimental cross section. The simplest example of
the latter method is the fit of the elastic monopole
form factor'

F(q) = (4 /q) f rp(r) p'prqrqr

0

for a spherically symmetric ground-state charge density
p(r); but phenomenological fits may in principle be
made for all (nonvanishing) multipoles of charge,
current, and magnetization densities, both elastic and
inelastic. Examples of fits will be shown for the elastic
scattering in "B.

For the case of inelastic scattering, with the present
accuracy of the experiments, an excessive amount of
ambiguity would appear if completely arbitrary phe-
nomenological expressions could be chosen for the multi-
pole moments of the transition densities. In Secs. IV
and V, therefore, we introduce a hydrodynamic collec-

e Supported in part by a grant of the National Science
Foundation.

f Consultant.' J. M. Blatt and V. F. %'eisskopf, Theoretical NNclear Physics
(John Wiley 5 Sons, Inc., New York, 1952), Appendix B. ' R. Hofstadter, Rev. Mod. Phys. 28, 214 (1956).
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iLECTRON scattering has proven itself one of the
~ most effective methods of studying the properties

of the energy levels of atomic nuclei. Using elastic
scattering of electrons, one can study the ground-state
properties such as static distributions of charge and
magnetization. For determining these quantities com-
pletely, electrons with energies of several hundreds of
MeV must be used; electrons of &50 MeV suSce for a
determination of an rms "charge radius" and "magneti-
zation radius" only. Using inelastic electron scattering,
one may similarly determine "transition densities, "
corresponding to the initial and final nuclear state in
question, for the three quantities in the nucleus that
interact with the passing electron, namely, the distribu-
tions of charge, current, and magnetization. ' Since the
ground states of atomic nuclei in general possess no
spherical symmetry, and since the transitions are best
described in terms of multipolarities, a multipole
expansion of the density operators is necessary. This
expansion leads to the static multipole densities of the
nudear ground state in elastic scattering or of transition
multipole densities in inelastic scattering (both defined
as reduced matrix elements of the multipole density
operators). The conventional static multipole moments
(and the analogously defined static charge and mag-
netization density functions), given as usual by ex-
pectation values in the stretched configuration, may be
expressed by the static multipole densities. Since in



1566 H. UBERALL AND P. UGINCIUS 178

tive model which is described by incompressible and
irrotational quantized vibrations of the nuclear ground-
state charge and magnetization densities and thus relates
the transition densities to the ground-state densities.
This procedure was first used for a spherically symmetric
charge distribution by Tassie."One may even go one
step further and describe the densities of a nonspherical
nuclear ground state as a collective vibration of this
kind, being "frozen" into the permanently deformed
state. This model is outlined in Appendix B (together
with a further simplification using a "Helm model'"'
distribution for the spherically symmetric density,
Appendix C), but it turns out that such a model does
not produce good fits to the experiments. The collective
model for the transition densities, however, does give a
reasonable result for charge-type transitions, as exem-
plified by the 3+—:4+C2transition to the 6.02-MeV
level in "B.The vibration of the quadrupole part of the
charge density of the deformed ground state adds here
a C4 part to the transition form factor which fills in
the first di6raction minimum, just as the quadrupole
part of the ground-state density itself fills in the
diGraction minimum of the elastic form factor in a
well-known fashion. ~' As to the model of collective
vibrations of the ground-state magnetization density,
it is found that the strong Mi transitions seen in 180'
electron scattering (at relatively low momentum trans-
fer"') can probably not be described this way (in spite
of having been called "collective magnetic transitions"
by Kurath") but should rather be viewed as single-
particle excitations, because the collective vibration of
the dominant, spherically symmetric part of the ground-
state magnetization density does not lead to an Mi
form factor proportional to q& jo(qr) ) as observed but
only to q(j&(qr) ). This absence of collective magnetic
transitions at low values of q seems to be analogous
to the absence of collective Mi photon transitions for
even nuclei as observed by Lipas. ~ However, vibrations
of the deformed part of the magnetization density may
give a (smaller) contribution with a lower power of q,
so that deformed nuclei may indeed show some collec-
tive ML excitation even at low q. More interestingly,
collective magnetic excitations could appear at large
values of momentum transfer and should thus be looked

' L.J.Tassie, Australian J.Phys. 9, 407 (1956);9, 481 (1956).' See also A. M. Lane and E. D. Pendlebury, Nucl. Phys. 15, 39
(1960).' R. H. Helm, Phys. Rev. 104, 1466 (1956}.

e See also M. Rosen, R. Raphael, and H. Qberall, Phys Rev.
163, 927 (1967).

~ See, e.g., B.%. Downs, D. G. Ravenhall, and D. R. Yennie,
Phys. Rev. 106, 1285 (1957).

~ See also L. R. Suelzle, M. R. Yearian, and H. Crannell, Phys.
Rev. 162, 992 (1967).

~ E. Spamer, Z. Physik 191,24 (1966), case of ' B "B.
o L. . Fagg g$ gg. , Bull. Am. Phys. Soc. 11, 64 (1966};12,

664 (196/); Phys. Rev. 171, 1250 (1968); 1'D, 1103 (1968), and
(to be published), case of "Mg, "Mg, "Mg.

» D. Kurath, Phys. Rev. 1M, 1525 (1963).» P. 0. Lipas, Phys. Letters 8, 279 (1964).
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where the values of L are limited by the triangle con-
dition A(J;LJr). The incident and scattered electron
momenta are lr~ and ir2 (we assume k~, k&&m., the elec-
tron ness), and the electron scattering angle is 8=
+(lr~, ir2). The momentum and energy transfer are

q= hg —h2,

au= kj,—kg

(3a')

(3b')

(&y being the energy of the nuclear level excited in
electron scattering, since we neglect nuclear recoil;
&u=0 for elastic scattering); the squared four-momentum
transfer is given by

dP = q' —aP =4kqks sin'(8/2) . (3c')

Z is the nuclear charge, and the Mott cross section of a

"L. C. Maximon and D. B. Isabelle, Phys. Rev. 136, B674
(1964), Eq. (28)."T.De Forest and J. D. Walecka, Advan. Phys. 15, 1 (1966).

for in high-energy (several hundred MeV) electron
scattering at 180'. They may in some cases be identified
uniquely from the selection rules.

A3l the formalism of multipole densities presented in
this paper has been developed in the laboratory system,
so that only projections of intrinsic densities appear
(e.g., one has vanishing projections of quadrupole
moments for spin-0 or spin-s' ground states). A short
discussion is given, however, of the relation between
our vibrating collective model (with laboratory den-
sities) and the well-known P and y vibrations of intrin-
sic densities of even nuclei in Appendix A. Appendix D
discusses charge and magnetization radii.

II. FORMALISM OF SCATTERING IN
TERMS OF MULTIPOLE DENSITIES

In the following the general formalism of scattering
from nuclear moments will be developed using the Born
approximation. It should be noted, however, that many
equations, in particular the definitions of the moments,
will be valid in general rather than in the Born approxi-
mation, and all such equations will be indicated by a
prime on the equation number.

The general Born-approximation differential cross
section of electron scattering, elastic as well as inelastic,
is given by"'4

do lV 1—=4 ~~~ —= 2 I

&~ill�&~(q)

Il~') I*
q'JP ~
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6xed unit point charge is

q)P cos'(8/2)
4kYY sin'(ql)/2)

' (4)

one may also wnte

eZre '(5)= 5 'f Zr J"(r) qrXj (qr)Yrr, (5)

with a=1/137. The spins and spin projections of the
initial and 6nal nuclear states are J;, M; and Jy, My,
respectively; our notation is J;= (2J~+1)'jz. The
reduced matrix elements, or "form factors, " are the
matrix elements of the Coulomb, the transverse electric,
and the transverse magnetic multipole operators (pecu-
liar to the Born approximation):

eZjkeer(q) 'f jr(=qr) Yr, (q)eP'(r)P'r, (5e)

eZrerr'(q!=i f eqr&q 'j (r) ~ jqrX(qr)Y (r)

+qj.(q )s,"(r) Y-"(r)1, (5b)

eZrem (5) e""f5'=r&je(qr)) (r) Yee" (5)

+y, ~(r).vX jz(qr)Yzz, (r)j (5c)

where unit vectors are designated by r= r/r Note .that
we designate operators (operating on the nucleon
coordinates in the nuclear wave function) by a tilde, or
else by the superscript "op." The nuclear charge,
(convection) current, and (spin) magnetization density
operators are given by

eZ1'eer (q) ' f 5'rJ-(r) je(qr)Yee"(q),

with a total current-density operator

J"(r) = j,"(r)+V x t,"(r).

(8b)

(8c')

p"(r) = Q p&-(r) l' 'J( )r (1Oa')

Reduced matrix elements are deaned by the %ignerem

Eckart theorem:

&JJMf I OOZY I
J Mj&'Jf (J&M;5 LM

I JJMf)

x &J, II &-'&. ll J;&. (9')

The reduced matrix elements of the Born multipole
operators which appear in Eq. (2) therefore contain the
matrix elements of the (charge, current, and magnetiza-
tion) density operators. Before the reduced matrix
elements of the latter can be written down, however,
the density operators must be expanded in terms of
multipole density operators. This is necessary to
incorporate all mu) tipole aspects of the nuclear densities
and transitions: for example, the moments of a per-
manently deformed nuclear ground state. Introducing
the vector symbol w'5'(r) to stand for j;5'(r) or y,oq'(r),

as the case may be, we expand the density operators:

p'5'(r) = e g $L1+r()&oji!(r—r;) (6a') w'5'(r) = Q 6 JJ(r)YJJ ~~(r)
EVE

(lob')

(normalized to Ze), The multipole density operators thus introduced are, of
course, given by the inverse equations

j; (r) =e p )I 1+rs"]S(r—r;) (p;/eJ) (6b')

(JJJ being the nucleon mass), and

y '5'(r) = (e/2rJJ) I jz~ g $L1+r()&')fb(r —r ) ql&o

p (r)= f Y, (q)p"(r)qi,

rqm„( ) = fY„, ( ) m (r)e)q

(11a')

+Jz„g xYI 1—rz&') jil(r —r;) &I")I (6c')

Using the property"

(~+q')jz(qr) Yzz"(r) =o, (7b')

(with the nudeon magnetic moments Jz~=2.78 and
Jz„=—1.91).The vector spherical harmonics contained
in Eqs. (5) are

YzzP'(r) = g (L're, 1Ja."
I
LM) Fz.~(r)e„. (7a')

= P (qp(I )m) f Yr.„(r,)m, ' (r)e(q,
fkt

(11b')

where w.'5'(r) —=e„w'5'(r) is the vth spherical compo-
nent of w'5'(r). One may introduce reduced matrix
elements of these multipole density operators,

&Js II p&(r& II J'&= p, 's(r) (12a )

&Jl II @5& (r) II J'&=JJJJr"(r), (12b—')

and refer to these quantities as the "transition multipole
densities"; they are now functions, not operators, and
are the basic quantities of our theory. (The above
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formalism includes the ground-state densities; but for
these, special definitions and notations will be intro-
duced in Sec. III.) The transition matrix elements of
the density operators needed in Eq. (2), via Eqs. (5),
are thus given by"

(~/~I I
p' (r) I

~&M ') = .fx ' Z (~'~' isis
I ~r~r)

which, by using Eq. (10b) are given by

jo"(r)= ZS (r)Y "'(r), (14b')

j"(r)= Z Z J«-(r)Y)v"*(r),
lies l~~l+1

the former term having the property"

(14c')

Xpg~(r) Fg *(r), (13a')

(Z,u, I
w"(r) I Z;m;) =i; g (S;jd;, i~

I Z,j(f,)
ill'sos

Xte«'~(r)Y~~ e(r), (13b')
using Eq. (9).

%e may separate the convection-current-density
operator into two parts:

j (r) = j "(r)+j"(r), (14a')

p's(r) by the use of the continuity equation'4; in(leed,

j &(r) is the only part of j;&(r) which enters in the
continuity equation

V j'&(r) = —i', p'&(r) j, (17a')

eZ(JI II ~z'(q) II S')=s'+'L '(L+»'"

in which 8 is the nuclear Hamiltonian which operates
on the nucleon coordinates only. If the multipole
expansions are inserted, we find

P~ r' '(d/dr) Pr' 'f« t (r)7—(l+1)'IW~s(d/dr)

XLr'+'y&s(. t (r) j=—slI&, p& (r)g. (17b')

%e also may insert now the multipole expansions,
Eqs. (10a), (14c), and (16), into the form factors of
Eqs. (5) . Taking matrix elements, then, and using the
definitions of the transition multipole densities, Kqs.
(12), the reduced matrix elements (or "transition form
factors") may be expressed in terms of the latter as
follows:

'r(zl II ))ri(e) Il x;) "fefi(=r)»' (~)s~((()~),

V js"(r) =0.

Therefore, we may set

(14d') X ~jr g fp' jl,l g'~ ~ d»

L+~Ll ~LC/2 PgL+1 IP jI,L 1
jo' (r) = wX ~"(r), (15a')

+i q/Pj's(qp)»r'~(r)dr(18b),

gjl g p' yl,l gj g gg —j +qLI

ye(r) =So"(r)~p,"(r).

thereby introducing an "orbital" magnetization density
operator yg&(r), which represents the contribution of
closed-loop parts of the convection current to the total
magnetization density. Adding this to the spin mag- ( ~ II z (&) II ') & ( + )
netization gives us the total magnetization density
operator:

The total current operator, Eq. (8c), may then be
written as

J'&(r) = j'&(r)+@X'' (sr); (15c')

y"(r) = priv (r)Y«"'(r)
lklsss

(16')

for y'&. Equations (15c) and (Sc) show that Eqs. (Sb)
and (Sc) may be rewritten in the same form but with
j,'&, y,'& replaced by j &, y'I', respectively.

While the divergence of js's(r) vanishes from Eq.
(14d), the divergence of j's(r) may be related to

n D. S. Onley J. T. Teynoids, and L. E. Wright, Phys. Rev.
134, B94$ (1964 .

's A. R. Edmonds, Anggler M()ersrdnsr sn Qgonhem Mechanics
(Princeton University Press, Princeton, New Jersey, 1957).

its new constituents j'& and y'& are then multipole-
expanded according to Eq. (14c) for j'& (i.e., they
contain no l= l' multipole component) and in the form

X ~j~z y' pL,~j,'~ t' dr. 18c

From parity and time-reversal invariance, these re-
duced matrix elements are real."Note that there is no
explicit contribution to Tl," from the current j; but
this is only apparent since the appropriate j term has
been incorporated in y by Eqs. (15a) and (15b) . The
corresponding contribution of y to T~' is present and
causes the so-called electric spin-Qip transitions.

In a similar way, the continuity equation (17b) is
expressed as

L~~ r~~(d/dr)Prr zgzr tr~(r)] —(L+1)mr ~s(d//dr)

XPr~jsz~rr~(r) j=so)Lpz'r(r), (19')

i.e., in terms of the transition multipole densities. Using
this equation and partial integration, it is easy to show
that in the limit ~co, where one may approximate
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jz(a2r) ~(44)r) I/(2L+1)!!, the matrix elements are
related by

&Jr II &i'(~) II J'&=L&L+1&/L3'"&Jr II laz(~) II J'»
(20)

as is well known' (Siegert theorem).
The preceding formalism is valid for elastic electron

scattering processes as well; in that special case, how-
ever, it may be developed further by the introduction
of the static nuclear multipole moments. This is done in
Sec. III.

III. ELASTIC SCATTERING FROM
NUCLEAR MOMENTS

For elastic scattering one has au=0 and Jf=J;, which
we shall designate in common by J.%e shall introduce
as the basic quantities of elastic scattering the "(static)
multipole densities" of the nuclear ground state analo-
gously to Eqs. (12) but without the superscripts:

&J II p4(r) II J&=p4(r), (2«')

&J II P» (r) II J)=p44 (r) (21b')

Only p»~q(r) is needed here, not j» (r) or p»(r), since
the latter vanish; the only place where they appear is
the matrix element of fz,4, Eq. (18b).It has been shown,
however, " that this matrix element vanishes in elastic
scattering due to parity and time-reversal invariance of
the interaction. The same argument also shows that
only even or odd values of L occur in the matrix ele-
ments of 9'r, or fr,", respectively, so that only even
charge and odd magnetic multipole moments enter in
the nuclear ground-state distribution.

Conventionally, "these static multipole moments are
introduced by defining the operators

err' = (4 )'&'2 'rr' (r)rrYrrr(Y)4rr, (22a')

24rrr —( r)'4""I='f ('Y rr' (r)]r"Yrrr(r)4rr,

(22b')

the electric and magnetic multipole-moment operators.
The latter contains y &= y, &+~'&, i.e., the spin and
the orbital magnetization. The nuclear charge and mag-
netic moments themselves are defined" as the expecta-
tion values in the stretched configuration:

sQ~= &JJ I Qrs" I JJ» (23a')

(e/2m)Mz= &JJ I
Mzo'2'

I JJ). (23b')

Parity immediately shows that Qr, is nonvanishing only
for even L and that ML is nonvanishing only. for odd L.

"R.H. Pratt, J. D. %'alecka, and T. A. Gri8y, Nucl. Phys.
64, 6n (196').

'
~8 See, e.g., S. De Benedetti, Esckpr Ishmael~ (John Wiley

& Sons, Inc., New York, 1964), pp. 31, 32.' C. Schwartz, Phys. Rev. N, 880 (1955).

In order to relate this to the usual lowest nuclear
moments Ze (charge monopole), Q (charge quadrupole),
or p (magnetic dipole), given by'

p(r)(Pr=Ze,

r p(r) rs(3 cosV—1)(Pr= eQ,

r pz (r) d()r = (e/2~) p,

(24a')

(24b')

(24c')

we have to clarify how the charge density function p(r)
and magnetization density function y(r) of Eqs. (24)
have to be defined in relation to Sec. II.To be consistent
with the conventions of Eqs. (23) and (24), we must
choose the static charge and magnetization density
functions as the expectation values of the operators in
the stretched configuration (i.e., with the nuclear spin
as close as possible to the s axis):

p(r)=&JJ I p"(r) I JJ),
s(r)=&JJ I I"(r) I JJ)

(25a')

(25b')

LOnly the s component of y(r) exists. g Both p and y
are even functions of r, from parity. %ith this choice,
it then follows from Eqs. (23) and (24) that

Qo=Z,

Q*=&Q,

Mg= p,,

(26a')

(26b')

(26c')

in agreement with the conventions. "9
The multipole expansion of the static densities given

by Eqs. (25) may be given in terms of the multipole
densities of Eqs. (21). We simply use the expansion of
the operators, Eqs. (10a) and (16), and the Wigner-
Eckart theorem, and obtain

RZ

p(r) =2 ' (JJ, LO
I JJ)pz(r) Frs~(r), (27a')

RJ

y(r) =2-' g (JJ, LO
I JJ)p». (r)Y».o'(r).

L 1,odd L~~L+1

(27b')

The restrictions on the sums come about from the
conditions that p, y, be even functions of r and that Eq.
(18b) vanish for elastic scattering (this rules out the
terms p»). The correspondingly defined current
j(r) —= &JJ I

j'2'(r)
I JJ) vanishes, since it may be ex-

pressed, analogously to Eqs. (27), by j».(r), which are
zero for elastic scattering as mentioned before. For this
reason, we may use yo2'(r) in the definition, Eq. (22b),
instead of Lin terms of density functions d la Eq. (25b) j
the customary e4,4(r) —=y, (r) +y, (r), where y, is given
by the expression, appropriate to elastic scattering,
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j,(r) = WX y, (r). One may show using~

(28')

that the use of either p(r) or tjjj,(r) in Eq. (22b)
gives the same result, since on the right-hand side of
Eq. (28) one has (in the elastic case) j,=—j0.

For the special case of spherically symmetric distribu-
tions, where p(r)~p(r) or p(r)~y(r), the multipole
densities reduce to

1.(r) = (4 )'"Jr(r)~ ,

jLzz (r) = (43r)jjmJ(JJ, 10
I
JJ) 'IL, (r)bzibr, 0.

(29b')

q= 2ki sin(3!j/2).

First, introducing the quantity

(32')

1' r(2) =1 g (2L+1)!!fjr(rpr)Fprr(F)p' (r)rjrr

around the latter, wash them out, even though the
spectroscopic moments and densities were defined as
the expectation values in the stretched configuration
which makes the lineup optimal.

Next, we wish to express the elastic cross section, Eq.
(2), in terms of the static multipole moments Qz, Mz
and the corresponding form factors Fzc(q), Fz~(q)
normalized to unity for q-30; and finally, we wish to
express the latter in terms of the multipole densities
pz(r), ILzz (r). We note that for elastic scattering,
A'=q' and

=q-&(2L+ I)!!eZN, j(jrq), (33a)Finally, from the defining equations (23), and the
definition of p(r), y(r) and their multipole expan-

we find that
sions, the multipole moments Qz, and Mz, may be ex-
pressed in terms of the multipole densities: gzjjrc(0) =iz(43r) "LQz)jr'3' (33b')

~()r.=( ) r'L '3 '(BLO(33) fr pp(r)dr, (30p')

(e/2m)Mz= (L/4jr)jj'J '(JJ Lo
I JJ)

re~pi, L q r d r. 30b

The even character of p(r), y(r) in Eqs. (27) shows
again that only QL with even L and ML with odd L
exist. The derivation of Eq. (30a) is straightforward,
whereas Eq. (30b) is a special case of the magnetic
form factor, whose derivation will be described below.

Note the appearance of the projection factor

(JJ, LO
I JJ) =J(2J)!L(2J—L)!(2J+L+1)!j '",

(31a')

which limits the multipolarities to L&2J. For the
case of an electric quadrupole, it becomes

IZ u —i»»
(JJ 2o

I JJ) =
I I, (»b')IJ+i 2~+3]

giving the familiar result that nuclei of spin J=O or ~
may not possess an electric quadrupole moment. This
illustrates the fact that we deal with the spectroscopic
rather than with the intrinsic moments, since our
formalism is developed in the laboratory system. Al-
though these nuclei may have nonvanishing intrinsic
quadrupole moments (or, more generally, intrinsic
multipole moments, or expansion terms of the intrinsic
densities, that are not limited by L&2J), these do not
show up in the laboratory, where the quantum-
mechanical impossibility of lining up the body axis
exactly with the space-fixed z axis, and the precession

"See Ref. j.S, p. 32, footnote.

since

f p rr(0) (—1) fLrrJ' ~ L[r=Fr (r) j, (33)F)

LYLY(r)= [L(L+1)j'j'Yzz~(r). (35c')

Equation (35b) is to be related to the magnetic multi-
pole-moment operator ML)jr'0 of Eq. (22b). In the vector
identity of Eq. (28) we replace j, by J'3' on the right-
hand side, and on the left-hand side we may replace
p, by y'&, since, as was stated before, the di6erence
vanishes if expectation values are taken. The left-hand
side then gives i (4s ) 3(3L(L+1)—Mzjjr'3', whereas the
right-hand side may be transformed by partial integra-
tions into ifzjjr (0), so that finally,

tzjjr (0)= ~ '(L+1)(43r) "LMzsr'r (36d')

for the limit of zero momentum transfer. If further, we
define an elastic Coulomb form factor by

Fz (q) = (J II &z (q) II J)/(J II fzc(0) II J»
(34a)

which has the property

Fzc(0) =1, (34b)

then we find, using Eq. (23a) and the Wigner-Eckart
theorem,

eQzpz (q) = ( —1)L"(4jr)'"L 'J '(JJ, Lo
I JJ)

x &J II t:(q) II J). (34 )

A similar procedure will be used for the magnetic form
factor. %e introduce the quantity

f'L3r~(q) =q zj[L(L+1)]'jm(2L+1)!!eZffair", (35a)

and find the limit, using Eq. (Sb),
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Fz~(0) =1, (37b)

and from Eq. (23b) we get

(e/2rw) Mzjzz~(q) = ( —1)('+')12(4)r)'"(L+1)-'L 'J-'

X(JJ, L0
I »)&J II ~z"(q) II » (37c)

The differential cross section, Eq. (2), specialized to
elastic scattering and after use of Eqs. (33a), (35a),
(34c), (37c), and (31a), becomes

Dd= "
L. ~..~Q" I""'"I*I (2L+1)!!]

(2J)!(2J+1)!
Mz' , L+1 2L+1
4, 1

z" q I'
L L-(2L+,)„]

(2J—L)!(2J+L+1)!
(2J) !(2J+1) !

This is the generalization of the diGerential cross section
given by GriGy and Yu,"and we agree with their Eqs.
(3) as compared to our Eqs. (34c) and (37c) except for
our factor i +'2 ', which comes from a different defini-
tion of the reduced matrix elements, and for our factor
(L+1)-' in Eq. (37c).

We would finally like to express the quantities
eQzP"z, (q) and (e/2')Mzj"z, (q) in terms of the static
multipole densities pz, (r) and pz, z~z(r), Eqs. (21). We
use the definitions, Eqs. (34c) and (37c), and the ex-
pression given by Eq. (8b) for f'z,zz (q), with Eq. (15c)
for J'&(r). The matrix elements of the operators in the
stretched configuration

I
JJ) are expanded as in Eqs.

(13), and the vector identities of Edmonds LRef. 16,
p. 84] are employed. We find:

eQzpz (q) = (4)r)'"q- (2L+1)!!I'J '

&&(J»zoI~~) f"i (v)rl. (')&' 0sb)

Now we define the magnetic form factor by

f'z" (q) = &J II &z"(q) II J&/&J II &z"(0) II J»
(37a)

with the property

Equations (38) are the elastic special case of the general
equations (2) and (18). Equations (30) expressing
the static nuclear multipole moments in terms of the
multipole densities are seen to be just the limit q—:4of
Eqs. (38b) and (38c).

Equations (38b) and (38c) are the most general case
of the nuclear ground-state form factors I of which Eq.
(1) is the simplest case, for a spherically symmetric
nucleus and considering the charge distribution only],
expressed by the static multipole densities pz, (r),
pzz+)(r) which describe the nuclear ground state. The
conventional procedure, which can still be used, has
been to choose reasonable analytic expressions for the
multipole densities Lespecially the monopole charge
density po(r), see Eq. (29a)], insert the form factors
calculated with these expressions into da/dQ, and try to
obtain a fit with the experimental diR'erential cross sec-
tion as a function of q. For the higher multipole con-
tributions, the procedure becomes necessarily succes-
sively more uncertain. We shall discuss examples of this
method.

In principle, inelastic scattering may be treated in
exactly the same way. In other words, the inelastic
cross section to an excited nuclear level, Eq. (2), may
be measured as a function of q, analytic forms may be
chosen for the transition densities pz'I(r), jzz+z~'(r),
and pzzz(r), , and the form factors may be calculated
from Eqs. (18) and fitted to experiment. The method
that has most generally been chosen, however, for an
analysis of the inelastic scattering data has been to
construct a model for the nuclear transition and cal-
culate the transition densities from such a model rather
than just fit them phenomenologically to the data. In
the following sections we will develop a hydrodynamical
model, a generalization of Tassie's model, ' in which we
assume that the transition densities may be described
by quantized incompressible and irrotational collective
vibrations of the ground-state densities (treated as a
liquid drop), the latter being assumed to have been
obtained from a phenomenological fit to the elastic
scattering data.

In the remainder of this section we will show examples
of ground-state fits for ' B. Figure i presents data of
the Coulomb form factors, measured by Stovall,
Goldemberg, and Isabelle. ~ They are plotted versus the
squared "effective momentum transfer" q,(r", where

(e/2rrz) Mzpz~ (q) = LL/(L+ 1)]'I'(4s ) '"q' z
q.((——

qL1+$ (aZ/kzR) ], (39)

X(2L+1)!!L)J '(JJ LO
I JJ) (L+1)'"I '

X r'jg y y pl,r $ r dr —L''L '

in which R is the radius of the (assumed uniform spheri-
cal) charge distribution. The factor in parentheses
roughly corrects~ for the fact that the Born approxi-
mation overestimates the nuclear-charge radius as
compared to the more exact phase-shift analysis. The

~ T. A. Gri8y and D. U. L. Yu, Phys. Rev. 139, B889 (1965).

» T. Stovall, J. Goldemberg, and D. Isabelle, Nucl. Phys. 86,
225 {1966).

~L. R. B. Elton, Nuclear Sixes (Oxford University Press,
Oxford, England, 1961).
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l.O figure plots the expressions (for the "B ground state,
J=3+)

e' Q'
"

1/i
Fa= IFe'(q) I'+ ——

I Fe'(e) I'
75Z

(40c)

O. l (solid curve), and plots the quadrupole contribution
alone,

(75) 'Ir z' I
F* (0) (40d)

0.0I

O.OOI
2 4 6

qsffCF' )

Fjo. 1. Charge form factor F,h of the deformed ground-state
charge distribution of ' 8, measured by Stovall, Goldemberg, and
Isabelle (figure taken from Ref. 22, including the fit), and fitted
with a p-shell harmonic-oscillator charge distribution (solid
curve). The broken curve gives the contribution of the deformed
part. The value co=1.66 F corresponds to a root-mean-square
charge radius (Ref. 22) of a=2.45 F.

data were taken at angles mostly less than &9=90', so
that the magnetic terms in Eq. (38a) gave only small
corrections. After the usual experimental (Schwinger,
bremsstrahlung, and ionization) and theoretical correc-
tions (center-of-rn~~~ motion unfolding of proton
charge distribution), Stovall et ol.~ found that the form
factors could best be 6tted, assaying only monopole
and quadrupole contributions, with the following
densities. For the L=O part of p(r) of Eq. (27a) Lace
also Eq. (29a)),

se(r)=(4s)'IV „, I 1+a —,Iexp( —re/&),
eZ 2 f r)

(broken curve), calculated from Eq. (38b), using the
charge distributions of Eqs. (40a) and (40b) .The quan-
tities ne and Q are taken as parameters, and the best fit
determines their values as ac=1.66 F and Q=6.84 F .
It is also possible to consider the deformed charge dis-
tribution &(r) as arising from a hydrodynamic vibra-
tion of the undeformed shell-mode1 distribution,
p(r)=(4w)-'~'J-'se(r), which is frozen into a per-
manently deformed statea (see Appendix B). This
procedure, however, does not lead to a good 6t~ for the
"Bground-state form factor (see Fig. 2).

The charge distributions pe(r) and Pr(r) which gave
the best St, Eqs. (40a) and (40b), are plotted in Fig. 3,
normalized in such a way that pe(0) = 1.This figure also
shows the ground-state magnetization density of "B
obtained from the elastic scattering experiments at
8=180' of Rand, Frosch, and Yearian. ~ Their data
are presented in Fig. 4. At i80', the Coulomb terms in
Eqs. (38a) drop out, and the rest is plotted versus q',

I.O

O.I

(40a)

with a=(Z—2)/3. This is the harmonic-oscillator
charge distribution (os= oscillator potential-well radius)
which was used by Hofstadter to fit the 1p-shell nuclear
form factors, especially those of nc and "O. For the
L 2 part of p(r), the best fit was achieveda by

4 sQ„
(JJ, 20

I JJ) 3z"5'" ser

(40b)

0.0

0.09 0

0
20F

r I I I I I I

2 4 6
q~CF l

which is the density given by the spherically symmetric
oscillator shell model with incomplete p shells. "The

R. Hofstadter, Ann. Rev. Nucl. Sci. f 231 (1957),
rI U. Meyer-Berkhout, K. W. Ford, ancf A. E. S. Green, Ann.

Phys. (¹Y.}8, 119 (1959).

Fro. 2. Attempts to fit the charge form factor P,h of the '0B
ground state with a deformed ocillator charge distribution, for
various values of the quadrupole moment Q. (Figure taken from
Ref. 22, including the fit.)

II R. F. Rand, R. Frosch, and M. R. Yearian, Phys. Rev. 144,
859 (1966).
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normalized to unity for q
—4; i.e., the quantity plotted

1s

I.O

0.5

with the notation for the octupole moment being
M3=—O. The data are consistent with a vanishing octu-
pole contribution, which is compatible with a spheri-
cally symmetric distribution of magnetization; but
they also admit a maximum possible value 0/y=0. 9 F',
and the corresponding upper limit of the magnetic
octupole contribution Lsecond term in Eq. (40e)j is
shown as a dashed curve. The data, after unfolding the
form factor of the nucleon, and after center-of-mass
correction, have been 6tted by Rand et cL~ with a
spherically symmetric distribution of the p-shell har-
monic-oscillator type, Eq. (40a), but with different
values of ep and 0., namely, a&=1.42 F and a=2.0. The
quantity plotted in Fig. 3 (broken curve) for this
distribution is essentially the function p&o(r) of Eq.
(27b) Lsee also Eq. (29b)], normalized in such a way
that

0.2

O.I

0.05

0.02

O,OI

0.005

(40f)

lOB

l.4—

l.0

( )r
r~

P (r)

0.6

0.2

0.4 0.8 l,2
r/l. 66 F

I.6 2.0

FIG. 3. Plot of the monopole part po(r) and the quadrupole
part ~(~) of the "3pound-state charge distribution, and of its
spherically symmetric magnetization density y&o(r) (broken
curve).

One notices that the magnetization tends to be located
more on the edge of the nucleus, since the inner shell
couples to angular momentum zero and thus does not
contribute to the orbital magnetization. However, the
6t shown here need sot be ueiyce.

The dashed curve of Fig. 4 gives the octupole mag-
netic form factor evaluated~ with a corresponding
magnetization function p~(r) of the form of Eq. (40b).
%e shall neglect it for our purposes and shall assume
the spherically symmetric magnetization density that is
compatible with the data. In the following sections, the
preceding densities for the ground state of ' B shall be

0.002

O.OO I h
0 I 2

qa, tMOMKNTQN TRANSFER) g F

Fzo. 4. Magnetic form factor F ~~ of the ground-state magneti-
zation distribution of 'o3, measured by Rand, Frosch, and Yearian
(figure taken from Ref. 26, including the fit), and fit by a P-shell
harmonic-oscillator charge distribution, for values 0/pa=0 or
0.9 FI. The broken curve gives the maximal contribution of a
magnetic octupole term.

employed as the input of a hydrodynamic model which
is used to describe the electroexcitation of electric and.
magnetic levels, both in general and applied to ' 8 ag I,n
example.

IV. INELASTIC SCATTERING AND
CHARGE VXBRATIOSS OF A

DEFORMED NUCLEUS

At the end of Sec. III, it was shown how the static
nuclear densities may be obtained by phenomenologi-
cally Gtting the form factors, calculated using assumed
distributions, to the experimental data. %e have stated
that in principle a similar procedure may be used for
obtaining the transition densities, which are contained
in Eqs. (18),by 6tting the cross section, Eq. (2), which
contains the form factors of Eqs. (18), to the electro-
excitation data. This procedure appears, however, to be
less unique here than in the elastic case, and it has been
customary to postulate models for the transition den-
sities which are based on the ground-state densities. In
this spirit, we shall develop a hydrodynamic model
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which describes the transitions of a deformed nucleus

by the incompressible, irrotational vibrations of its
ground state. For a spherical nucleus, such a model
was introduced by Tassie. '4 In our general case, we deal
with the nonspherical ground-state charge density

p(r) of Eq. (27a) (only charge vibrations will be con-
sidered in this section). Together with the convection

expansion in Eq. (46a) is justified and that

P(~=('zi /LR™ ~(„/IR' (46b')

From this and Eqs. (45b) and (44b), we have

p(r) = —g ((z(„/fR'~) Vfr'Fi ~(r)]~ Vp(r). (47a')

current
41a Quantizing this thus-far classical treatment, (z( is

changed from a harmonically varying function of time
v(r) being the velocity field, p(r) satisfies the conti- into the operator
nuity equation

(47b')

VXv(r) =0, (43a')

permits the introduction of a velocity potential C (r),

v(r) = VC (r), (43b')

which, due to Eq. (42b), satisfies the Laplace equation,

V%(r) =0,

with the regular solution

The motion of nuclear matter will now be taken as
incompressible and irrotational. Incompressibility im-

plies

dp(r)/dt= v(r) ~ V—p(r)+pap(r)/Bt]=0 (42.a')

Combined with Eqs. (41), Eq. (42a) leads to

V.v(r) =0. (42b')

The assumption of irrotational Qow,

with a~ t the creation operator of a multipole phonon
(l, (ii). The numerical factor Ci in the Bohr-Mottelson
theory~ is a combination of inertial and restoring-force
parameters, but we shall here simply consider it an
adjustable parameter determining the amplitude of the
collective vibration. The quantized hydrodynamic
model now takes p(r) on the right-hand side of Kq.
(47a) as the ground-state charge density, and the entire
expression (47a) then represents the transition density,
in view of the appearance of the expansion coefBcients
a~ which create or absorb phonons.

At this point, one may generalize Kq. (47a) to include
monopoles, l=0 In this. case, the form of C (r) will be
changed so that it is no longer a solution of the Laplace
equation, implying that the condition of incompressi-
bility is relaxed. The new expression is

(47c')

(44b') ~here k(=28(0, and where we define

Monopole vibrations (l=0) are excluded by the as-
sumption of incompressibility, but by relaxing this con-
dition for the monopole case, we shall incorporate the
monopole case below. %ith harmonically vibrating den-
sities ~ exp( —irut), the continuity equation becomes

V('~p(r) =t Vp'p(r)],

In this form, we 6nd

I,=O

l&1. (47d')

V.
t p(r)v(r)]=i p(r), (45a')

(47e')

and using Eq. (42b), we have

(45b')

Collective vibrations of this kind will lead to a har-
monically varying deformation of an originally spherical
reference surface r= ro imbedded in our nuclear matter,
given by

r=rof1+ Q ai„(ro/R) ' iF(„(r)] (46a')

with harmonically varying expansion parameters n&,
which are rendered dimensionless by the use of a suitable
reference radius R. Calculating (8r/Bt), =—84/8r from
Eq. (44b) and Eq. (46a,) and equating, we see that the

with all terms in the sum on the right-hand side of Eq.
(47c) integrating to zero, including the monopole. This
implies (classically) that the deformation is matter-
conserving" (which for l&1 simply means volume-
conserving) . Quantum-mechanically, it serves to satisfy
the Schucan condition, "as will be pointed out below.

Finally, the form of Eq. (47c), which is the basic
equation of our hydrodynamic model, will now be taken
over for the operators of the densities in the sense of
Sec. II, and the multipole charge-density operator will

"A. Bohr and B. R. Mottelson, Kgl. Danske Videnskab.
Selskab, Mat. -Fys. Medd. 27, No. 16 (1953).' C. Werntz and H. Qberall, Phys. Rev. 149, 762 (1966).

'9 T. Schucan, Nucl. Phys. 61, 417 (1965).
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be found from Eq. (11a), i.e.,

pr. (v}=—rp~ (r}dr Q,
~m '~+&ij&'+" '

It operates on a hybrid representation described both
by the nuclear coordinates (to give the classical
densities) and by the collective variables (to describe
their quantized collective vibrations, i.e., phonons).
Using the equations and techniques of Edmonds, " the
differentiations in Eq. (48) may be performed explicitly.

In the intermediate steps, the following relations were
found useful:

Yzt (r) 'Ymir (r) = (4}r) I (—1) + 2J /l'

X Q (—1)zL '(/0& l'0
i LO) (JM, J'M'

i LMz)

XW(J1L/'; /J') Yzjr~(r), (49a')

YzP~(r) = ( 1) r+i z+-Mzr ~(r) . (49b')

%e obtain the transition multipole charge-density
operator:

EX00 a)~ )Ir'2l —1)'r'-
pzjr"(r) = — —[r'pz~(r)] P —

( ~

Pr' ' g (—1)~'+"(/tag /'m'
~
LM)

(4s) '"r' dr r im(4, w) '('LR'-'5 l i r~r

X f [(l'+ 1) (2P+3)]' 2(l 10, P—+10
~

LO) W(l1Ll'+1; l il') r"(—d/dr)

X[t '7}r (r)]—[l'(2l' —1)]'I (l—10, l' 10—
~
LO)W(liLl' —1; l il')r "—'(d/dr)[r"+'p, (r)]I. (50')

Note that the expansion (10a) has been used for p&(r), so that the multipole charge-density operators p(, (r)
appear in Eq. (50). The transition multipole density function pz, '~(r) is obtained from Eq. (50) by the definition
(12a). Acting on the ground state

I J;M;), the operator a~ creates one phonon of the collective vibration,

whereas the final state
I JIMf) has one phonon X coupled to the ground state,

~
JfMj) Q (J'M' )ip [ JfMf) [ J M ) I gp).

(51a')

(51b')

The transition matrix element of the product a~ p~ (r) is therefore

(JIM' I a~„pp (r) I J~;)=CONJ; ' g (J;M, /m I JIMi) (J;M;, /' n' rI JiM )pr(r), (51c')

which by use of Eq. (21a) contains the multipole densities of the ground state, p&. (r). This gives the transition
multipole density

d 1}}ll2 „$r ) J-I 2Jl
pz'r(r) = —(4w) "'C(}(/q qr ' —[r pz. (r)] (4}r) "'Jr g C~ —

~

Pr
~

—
~

W(J;PJr/; J;L)
dr &I l I (Rl (&m, even

X I [(l'+1) (2/'+3) ]'1~(/ —10, l'j10 I LO) W(l1Ll'+ 1; l 1/') r"(d/dr) [r-—"pr (r)]
—[P(2l' —1)](12(/—10, l' 10 I LO) W(llLl—' 1; l 1/')r "——'(d/dr) [r"+'pr(r)]I, (52')

expressed in terms of the ground-state multipole den-
sities p& (r) by virtue of our hydrodynamical model. It
is to be used in Eq. (18a) for a calculation of the
Coulomb transition matrix element.

Because of the orthogonality of initial and final states,
the condition

(53a')

must hold for the monopole transitions I.=0, as pointed
out by Schucan. ~ This is satisfied by our Eq. (52); for
the Co term this follows by direct integration and shows
that our monopole contribution in Eq. (47c) was

d(Jg J,). (53c')

This is in essence the result of Tassie, which, however,
did not include the monopole case L=O. With pz'f(r)

correctly chosen. For the C& terms, one has I'=l if
I.=O; the first of the two terms in braces vanishes
because (l 10, i+10

~
00) =—0 and the second term

integrates to zero.
For a spherically symmetric ground state where Eq.

(29a) holds, one finds the multipole transition densities

pr, 'f(r) = CzJ,r(r/R) +~& r.V—(~}p(r), (53b')

together with the triangle condition
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given by Eq. (52), it is now straightforward to evaluate the Coulomb matrix element of Eq. (18a) . We find

$RJ
aZ&JI II 2c,(q) II Ji&= -s'(4 )-"&el~,~,I»z (q) —s'(4 )-'Isj, g C,I (2/ —I)//]usi Z t W(I,/'I, / I;L&

Ql l~M, even

X I I (V+1) (2/'+3)]' '(/ —10, /'+10
I LO) W'(/1L/'+1; / 1/') I—z&p "(q)

—D'(2P —1)]'~'(/ —10, /' —10 I LO) W(/1L/' —1; / —1/') Iz tt
" '(q) I (54a)

in which the integrals Iztt "(q), obtained by partial
integration, are defined by

I„,,"(g)=ej sr~, ,(r)r~'
Q

X fjz+t(qr) (L+—/+I+1) (qr) 'jz(qr)]. (54b)

The coefiicients C& may be chosen so that Eq. (54a) is
rea1. Note that in these equations three different kinds
of multipolarities are involved which should not be con-
fused, namely, (a) L, the multipolarity of the transition
caused by the electroexcitation, (b) /, the multipolarity
of the collective nuclear vibration whose amplitude is C~,
and (c) P, the (even) multipolarity of the expansion of
a deformed ground-state density according to Eq.
(27a). Since the corresponding moments pt. (r) are here
assumed to be known from a fit to the elastic scattering
cross section, the only u~»own quantities in our model
are the amplitudes C~ of the collective vibrations.

As an example of inelastic charge scattering, we shall
here consider the transition of 'B from the J;=3+
ground state to the Jf=4+ level at co=6.02 MeV. The
transition is electric quadrupole, J= 2, but as we shall

see, the deformation of the ground state causes an
additional I=4 component to enter which is propor-
tional to the quadrupole moment Q. The form factor of
this level was measured by Fricke, Bishop, and Isabelle'
at angles between 8=50' and 135' where the Coulomb
form factor is dominant over the transverse electric one.
%e used the l'= 0 and 2 components of the ground-state
charge distribution given by Eqs. (40a) and (40b) and
the quadrupole moment Q= 6.84 F . Only a quadrupole
nuclear collective vibration, /=2, was assumed, so that
the only unknown parameter contained in the model
was C~. The Coulomb matrix elements which contribute
to the example considered are given by.Z&Ii II @,(q) II I,&= (4 )-~'sC, (3/7us)

X I Issss+ (3'I'/4) L(3/7) I,ss'+Isss-'] I (55s,)

eZ(JI II 94(q) I I I;)= —(4s)-'~'Cs(330/7s) 'I'I4ss'.

(55b)

The leading term in (Ms) is Isaac which depends on ps(r)
of the ground state. The three other I's depend on
ps(r) and are proportional to Q. Using ps, ps of Eqs. (40),
the integrals may be performed analytically. The quan-
tity F;, (q) given in Ref. 30 is in our notation given by

F'.*(q) =4 &' '(A'/q')' Z I &J~ II'(q) III'& I'.

Jo 2

I t j i

0 04 08

l

I I a ~

l.s 2.0
q{F ')

I

l.2

II
I

I

2.4 2.8

Fso. S. Inelastic squared charge form factor Pi I of the Jy=
4+, so=6.02-MeV level of 'OB, measured by Fricke, Bishop, and
Isabelle (Ref. 30), and fitted with the hydrodynamic model of
Sec. IV. Broken curve: Q 0, and amplitude of quadrupole collec-
tive vibration Q 0.41. Solid curve: Q 6.84 FI and Cil 0.36.

(55c)

Figure 5 shows our results, compared with the experi-
mental data. For Q=O, only the L= 2 term is present,
and adjustment of our curve to the data at q=1.0 F '
determines Cs—-0.41. Using the exPerimental Q= 6.84 Fs

requires a s1ight readjustment to C&=0.36 due to the
small additional terms Issss and Isss ' in (Ms). In addt-
tion, a large L=4 term (M4) appears which completely
fills in the dip to zero in (Ms) at q~2.2 F '. This ex-
act sero is due to our use of the Born approximation,
but its filling-in due to a use of phase-shift analysis
would only be very slight~ for a light nucleus such as
"B.Although the data do not extend to large enough
values of q to completely confirm our predictions, the
highest data points do go in the right direction; and if
we compare with the elastic scattering situation, Fig. 1,
the effect of the ground-state deformation on the inelas-
tic form factor seems to be quite analogous. " It is

G. Fricke, G. R. Bishop, and D. B. Isabelle, Nucl. Phys. 6f,
187 (1965)."A sinai&ar filling-in of the Born mi~i~um of inelastic form
factors due to the egects of a ground-state deformation was re-
cently obtained also on the basis oi the Helm model [R. Raphael
and M. Rosen (to be published} g.
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desirable that inelastic form factors of deformed light
nuclei" should be investigated experimentally at large
enough momentum transfers to confirm the filling-in of
the di6raction minima by deformation eGects and to
verify the predictions of the hydrodynamic model.

follows from a dyadic Gauss theorem'~:

Q V+(By/N) =0.

If Q is written as the column matrix

(56c')

a
y r aPr+ r dA=O, (56a')

V. EXISTENCE OF COLLECTIVE MAGNETIC
TRANSITIONS

In this section, we wiO investigate the properties of
any collective magnetic transitions, similar to the collec-
tive charge transitions of Sec. IV, provided they exist.
It will turn out that the observed Mi transitions at low
momentum transfers can probably not be explained by
collective vibrations of the magnetization density (of
the quadrupole type, /= 2) but should be single-particle
excitations. However, collective quadrupole-type vibra-
tions may show up as M1 transitions at high momentum
transfer, and one may look for them there. (To the
author's knowledge, no study of M1 transitions at
0=180' and q)100MeV/c has been undertaken as
yet. ) If the vibrating ground-state magnetization is
deformed, the deformation may sometimes contribute
some transition strength even at lower values of q,
however.

One may derive a continuity equation for the mag-
netization density y(r) also, since

(56d')

then Eq. (56c) reads

V F;+ (at).;/at) =0; (56e')

i.e., the usual continuity equation holds separately for
each (Cartesian) component of y, since

FC= PsV. (56f')

Hence, the derivations for p(r), Eqs. (41) through (47),
hold equally well for y(r), and we have

+ha"r=-
(„(/+k()R'+" '

By the same argument as before, and using Eq. (11b),
we have

g~~. "(r)= Z (L), t
I JM) f vr;, (r)dr

where the Row of magnetization is

$(r) = s(r) v(r) (56b')
(5&')

which is a dyadic. The desired continuity equation
Again, the transition multipole density function is ob-
tained as before:

2l—1 '~'- (rlt-~
pazrP(r) = —(4)r) )~C&g, pe —pr yzz (r)]+ (4)r) 'ts( —1)~z'JrL g C& Pr

(

—
)

dr l k~]

2J4
X Q /'W(J /'Jf/; JL)W(/O'L1; LV) fL(P'+1) (2/"+3)]"(/ 10, /"+—10 I

L'0)
t/' C, odd t~~ t~yi

XW(/1L /"+1; / —1/") r'"(d/dr) [r '"tp.u(r)] Pl" (2/" 1—)]'~'(/ —10—, /" —10
(
L'0)

XW(/1L'/)) —1; / 1/")r-"'—-'(d/dr) Lr"'+'yr) (r) ]); (58')

this function is expressed in terms of the ground-state
multipole magnetization densities p& r. (r) by virtue of
our hydrodynamical modeL It is to be used in Eq. (18c)
for a calculation of the transverse magnetic transition
matrix element, or in Eq. (18b) for a calculatiou of the
transverse electric spin-Hip transition matrix element.

The analog to the Schucan condition~ has to be

For medium-heavy and heavy nuclei, a substantial Q&~g-in
of the di8raction ~i~imum occurs due to the distortion of the
electron wave function (as shown by phase-shift analysis results)
which may mask or overwhelm the additional 611ing from de-
formation eGects.

satisfied for the L= 1, L'=0 transitions:

which again follows from the orthogonality of the initial
and final states. One may easily show that the condi-
tion is satisaed by our transition density, Eq. (58).

For a spherically syaunetric ground state where Eq.

I P. M. Morse and H. Feshbach, Methods of TheoreSca/ Physics
(McGraw-Hill Book Co., Inc. , New York, j,953), Vol. 1, p.
66, Eq. (&.e.&8).
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(29b) holds, one finds the magnetic multipole transition
densities:

pzz''~ &r) = (—1)z+z'J;JrL(J,J;, 10
~
J;J;) 'Cz

Xr(r/R)z'+~~' 2W(J, 1JrL', J,L)r W(z"y, (r).

we may write the transverse magnetic matrix element
of Eq. (18c) as

eZ&Jr II
2'z" (q) I I

J'&=i~'q(L+1)'"L '

&Vzz-r(q) —i 'qL'"L '8zz+~(q) (60b)

Introducing the notation

((r:(q)= f &j (v')~r"(~)«.
0

(59b')

(60a)

and the electric spin-Hip part of the transverse electric
matrix element of Eq. (18b) as

«&Jr II ~z'"
ll J'&= ~'qgz, z, (q) (60c)

For Eq. (60a) we obtain

gjz'(q) (kl') '"C((b g, g,Kz'2zz' '(q) + (—1)~z'(4n ) '~'jrL Q C([(2l 1)/—I]'I'PR

KSJ;
X Q Q 1'W(J;l'Jfl; J;L)W(ll"Li; LV) I[(l"+1)(2l"+3)]'~'(l—10, P+10

~

L'0)
l~~l, odd l~~~LI+1

XW(liLV'+I; 1—1/")Kr. n t '"(q) —[f"(2P—1)7(2(l 10 I 10
I
I.O)W(liL l 1i l 1l )Kz'u'&" ( '(q)I

(60d)

in which the integrals Kz, «( "(q), obtained by partial
integration, are defined by

E,.„., "(q)=gf d„, , () '+

0

X[i'+~(qr) —(L'+i+I+ I) (q ) 'i'(qr) 3 (60e)

As in the case of the charge transitions, one has the
transition multipolarity L, the nuclear collective vibra-
tion multipolarity I (as defined by the amplitude pa-
rameter C(), and the multipolarities of the (deformed)
ground-state magnetization (l'l"); for practical' pur-
poses L' is just an index. Again, the moments p~.("(r)
are assumed to be known from a fit to the elastic
scattering cross section at 180, and the only unknown
quantities in our model are the collective vibration
amplitudes C~.

It is instructive to consider the limit for small values
of q for the transition matrix elements given by our
model of vibrating magnetization. From Eqs. (18b) and
(18c) one sees that normally

for the electric spin-Qip transitions and

&Jr II
q'z" (q) II J'&"q' (6ib)

for the magnetic transitions. This limit need not be
realized in the vibrating model. From Eqs. (60) we find
the limits for g-4 given in Table I, for the lowest
multipolarities of magnetization vibrations l, and the
lowest transition multipolarities (L&2, except for
monopole transitions l,=0 where L=3 is also con-
sidered) .

Columns 1 and 2 list the multipolarity of matter
vibration /. Columns 3 and 4 list the magnetic or spin-
Qip electric matrix elements that were found nonvanish-

ing in our model and their transition multipolarities L,
and column 5 gives their lowest power of q in the limit

q—:0,from Eqs. (61).Column 6 shows the actual limit-
ing power of q given by our model, Eqs. (60), and one
sees that the lowest possible power of q is not reached
by the M1 transition T& for /= 0 monopole vibrations
as well as for /=2 quadrupole vibrations. Column 7
presents the ground-state multipole densities contribut-
ing to the low-q limit of the TI, or Tl,'I" in our model,
and column 8 gives the corresponding ground-state
moments M~= p or M3=R Column 9 lists the accom-
panying Racah coefficient that involves the initial
and final spins of the transition.

Dipole vibrations of magnetization, /= 1, are of course
possible only if part of the nuclear matter oscillates 180
out of phase against the other part. These involve the
familiar isospin, spin-isospin, and spin wave modes,
shown schematically in Fig. 6, which have been exten-
sively discussed elsewhere. '4" %e only wish to remark
here that, owing to Morpurgo's selection rule, " spin
waves do not appreciably get excited in electron scatter-
ing, and the other two modes involve only AT=1
transitions. For the magnetic vibrations considered here,
it is mainly the AT=1 spin-isospin wave that contrib-
utes.

The conventionally termed "surface oscillations" are
the quadrupole vibrations, L=2, which are possible
in phase as well as in the three modes~ of Fig. 6. Many
experimentally observed M1 transitions, e.g., that' to
the or = 7.477-MeV level of "B,exhibit the q' dependence
of Tp allowed by Eq. (18c),but Table I shows that our
vibrating model only allows a q' dependence. (To the

'4 H. Cberall, Nuovo Cimento 41B, 25 {19%}.
'6 H. Uberall, Nuovo Cimento Suppl. 4, 781 (1966).~ G. Morpurgo, Phys. Rev. 110, 721 (1958}.~ R. Raphael, H. Qberall, and C. Werntz, Phys. Rev. 152, 899

(199}.
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TABLE I. The lowest nonvanishing matter-vibration and magnetic or spin-Rip electric multipoles, the limiting q dependence for ~o,
and the contributing ground-state densities and moments.

Matter
vibration

Multi-
polarity

l
Matrix
element

Transition
multi-

polarity I.

Lowest
possible
power
of q

Lowest
power

model

Ground-
state

densities
contributing

Corres-
ponding
ground-

state
moment

Dependence
on

Js, Jy

Monopole

Dipole

Quadrupole

q1

f
q

ql

p1o& gu

kho

P1O

ploy pu

p1o& pu

~JsJf

W(J;1Jf1;J;1)
W(J;1Jg1;J;2)

W(J;1Jy2; J;1)
W(J;3iJy2; J;1)
W(J;1JI2;J;2)

W(J;3JI2; J;2)

same order q', the Tq" transition will also contribute, as
shown in the following example. ) A q' dependence only
is allowed also for T~'" furnished by monopole matter
vibrations l=O, which, however, are expected to lie at
higher energies owing to the small nuclear compressi-
bility. We must conclude, therefore, that the M1
transitions observed at small momentum transfers can-
not be explained by collective vibrations of nuclear
magnetization but should be interpreted exclusively as
single-particle transitions. The electric spin-Rip transi-
tions, however, do assume the minimal power of q in our
model. They possess an intrinsically higher power of q
than the transverse electric charge transitions, which
behave as

&~r II ~z"(q) II~')~q~' (61c)

according to Eq. (18b) and have not yet been conclu-
sively identihed. (They are characterized, besides their

q dependence at low values of q, by the absence of a
longitudinal matrix element. )

The matrix elements considered so far receive their
contribution to the low-q limit mainly from the domi-
nant spherically symmetric ground-state magnetization
density pro(r), i.e., from the static dipole moment y.
For the case of the M3 monopole transition, however,
we find that its existence at low-momentum transfers is
based exclusively on the higher moment p3&(r), i.e., on
the presence of an o.-.tupole magnetic moment 0.

The absence of collective l= 2 M1 transitions at q~O
in our vibrating model is analogous to the absence of
collective M1 photon transitions (q=ar) which was
shown by Lipas" for even nuclei. The situation there is
diferent from our case, however, since no spectroscopic
magnetization densities are involved (although the
orbital magnetic-moment operator considered by Lipas
is incorporated in our theory) .

It is interesting to point out, however, that although
l= 2 M1 transitions furnished by our model of a vibrat-
ing ground-state magnetization density will not be very
conspicuous in experiments at low momentum transfers,

they could appear at large values of momentum transfer
and should be looked for in 180 scattering experiments
at high energy. The q' dependence of T& however (see
Table I) will make them appear as if they were M3
transitions —unless the latter possibility is explicitly
prohibited by the selection rule A(J;2Jr) . For example,
a transition ~+~~+ that appears at 180 with a low-q
dependence T ~ q' should only be an (l = 2 or l=0) M1
transition as described by our model of a vibrating
magnetization. A 1+~1+ transition with T~ q' may be
an (l=2 or l=0) M1 transition caused by a vibrating
magnetization, or an (l= 2) E2 spin-fhp transition
possibly, but not necessarily, caused by a vibrating
magnetization. If the selection rule permits several
values of L, then, for example, an M1 and an M3
transition may (incoherently) add together with the
same low-q dependence T~", T3"~ q' on the vibrational
model. This is the case in the following example.

Here we consider a 3+~2+ transition in ' B and cal-
culate the cross section at 180 assuming the model of a
vibrating magnetization density which was described
after Eq. (40e) for "B

I
o0=1.42 F, a=2 0; only .p&0(r)

is assumed to be present). We assume a dipole vibration

ISOSPIN N4VE SPIN+SOSPIN MNEME

SPIN NAVE

Fzo. 6. Three possible modes of collective dipole vibrations
(Refs. 34 and 35) of nucleon Buids p f, p $, e t, e $ (arrow
indicates spin projection). Only the spin-isospin mode (hT 1)
contributes appreciably to the magnetization vibrations con-
sidered in the text.
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Ml MAGNETIC Vl8RATION

Cp"-I

l.O

4

~h h

$Q

0.01

0.00l I I I I

2 4
fl2tF-a)

I I t l

6 8

Fzo. 7. DiBerential cross section at &9= j.so' of a hypothetical
3+~2+ Mi transition in ' 3 caused by a quadrupole (1=2) collec-
tive vibration of a spherically symmetric ground-state magnetiza-
tion distribution.

of the magnetization, l=2, and calculate dn/dQ at
8=180' from Eq, (2), using the matrix element Eq.
(60b) of our model. From Eqs. (60) it turns out that
both I= 1 and I.=3 transitions will take place with the
same q dependence T~", TI ~ g. After the corrections
for the nucleonic form factor and the center-of-mass
motion were made following Ref. 26, the results

«(Jr II ~i"(q) II J'&= (4~) "CJr—
X li"(J;IJr2; J;I)qKsno'(q), (62a)

eZ(Jq I I
1'I"(q) II J;)= 2i( 4s)—-' 'ICJr

XW(J;1JI2;J,3)qICmm'(q) (62b)

led to a differential cross section (do/dQ)use' plotted
versus q (taking the vibration amplitude C~=1) in
Fig. 7. Its maximum is about one order of magnitude
smaller than that of the Mi cross sections that are
found' at low momentum transfers with q dependence
T~ ~q', and the form is probably similar to con-
ventional M3 transitions, so that it may be distin-
guished from the latter only by the action of selection
rules, as pointed out above. It is practically certain that
the diGraction minimum would again have been filled
in as in the case of charge vibrations, had a deformed
ground-state magnetization density been assumed.

VI. SUMMARY

On the basis of the Born approximation, w'e have
given the most general expressions for the cross sections

for the elastic and inelastic scattering of electrons by
deformed nudei of arbitrary spin. The latter were
described by multipole expansions of their static charge
and magnetization densities, and the elastic cross section
was given in terms of the static moments, multiplied by
the corresponding electric and magnetic form factors.
Examples are quoted for ground-state charge and
magnetization densities of ' 3 obtained by fits to the
experimental form factors. Inelastic cross sections are
likewise expressed in the most general fashion by transi-
tion multipole densities of charge, current, and mag-
netization. Since these may not be determined from
experiment as unambiguously as the static densities, we
developed a model of collective vibrations of the static
charge and magnetization densities for describing the
transitions. For charge transitions this is a generaliza-
tion of Tassie's model to deformed nuclei (and to in-
clude monopole vibrations and transitions), and it is
shown to lead to a filling in of the diffraction minima of
inelastic form factors due to the ground-state deforma-
tions, similar to the familiar filling in of elastic diGrac-
tion minima by the deformation. Collective vibrations
of the magnetization density are often found to behave
for low momentum transfers according to a higher
power of q than conventional magnetic transitions (so
that the conventional magnetic transitions must be
explained by single-particle rather than collective
eifects), but these collective vibrations will show up at
larger momentum transfers, where they may be dis-
tinguished from higher-order magnetic transitions if the
latter are forbidden by selection rules.

In the following Appendices, me shall consider some
individual problems related to the main topics of the
paper: A: connections between spectroscopic and
intrinsic nuclear quantities, 8: ground-state densities
described by a collective deformation, C: relation of our
theory to Helm-type models, e and D: definitions of
root-mean-square charge and magnetic radii of the
nucleus.
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APPENDIX A: INTRINSIC VIBRATIONS

The theory of this paper has dealt exclusively with
spectroscopic quantities such as moments and densities,
so that, for example, Qz will not exist for nuclei with
J;&,L, due to the projection factors (J;J;,LO

I
JA').

Likewise, in our model of collective vibrations of a
deformed nucleus, Cq in Eq. (47b) is the vibration am-
plitude of a spectroscopic density. For even-even nuclei
which are intrinsically deformed, we know that there
are, for example, two types of quadrupole (l=2) vibra-
tions, P and p type, upon either of which rotational
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bands may be based. By a rotation through Euler
angles 6, one transforms the spectroscopic vibration
amplitudes dL3„(r) to the intrinsic ones eg (r ) according
to

eQdL»(g) g=f rj (gr) p(r)dr (82a)

moments and form factors of Eq. (3Sb) as follows:

(r)= ZD--'(e)o -(r'), (A1')
eQzP'z, c(q) = (4r2) L'jPz, (2L+1)!!L'q' zRs z

APPENDIX B:STATIC DEFORMED NUCLEAR
MODEL

We may assume that a static deformed charge dis-
tribution is described by exactly the»~d of incom-
pressible, irrotational collective vibration treated in
Sec. IV of an originally spherically symmetric charge
distribution p(r) with the vibration then "frozen" into
its static position. We may then simply use Eq. (53b)
for the static multipole densities pz(r) and exclude
monopole vibrations, since they do not cause a deforma-
tion. The I-=0 multipole density is simply given by the
original spherical distribution. For the deformation
amplitudes, we introduce appropriate constant param-
eters Pz„so that we may write for the densities pz(r) of
Eq. (27a):

po(r) = (4 )"Jp(r),

pz(r) = P~(JJ LO
I
JJ—) ~(r/R) p'(r)

(81a')

I&2.

(Blb')

This leads to expressions for the electric multipole

where r' denotes the intrinsic coordinates. For quadru-
pole vibrations, l=2, the operators ~—=~ ~ create the

p vibrations, and the operator 620=Pp+82p. creates the

P vibrations, where Po gives the constant equilibrium
deformation. If, in Eq. (51c), a& (r) is replaced by the
expression of Eq. (A1) and the rotational wave
functions

( J;jLf;)= (83r ) 'j'J;D|r,x, '(e)xjr, '(r'), (A2a')

~
Jjjff)= (Sgr')-'jVjD, ,~&(e)zz,j(r'), (A2b')

are used Lwhere xdr(r') are the intrinsic wave functions j,
then the functions DjILr~(B) may be integrated out, and
we regain precisely the right-hand side of Eq. (51c),
but this time with the explicit expression for the vibra-
tion amplitude C~.

Cg J;Jj '——(J;K;,2'"
~
JjKj)(xrrjj

~
as ~

~ zjr, ').

(A3')

For P vibrations, m" =0, the factor (J;K;, 20
~
JjKj)

therefore introduces the familiar selection rule Ey= Jf;,
and for y vibrations, (J;K;, 22

~
JjKj) introduces the

selection rule Kj=Kd+2. This example shows that our
spectroscopic amplitude factor C~ is not an arbitrary or
arti6cial quantity, but if considered in greater detail
may be expressed by the properties of the familiar
intrinsic vibrations if so desired.

L)2. (82b)

In the limit q-+0, we recover the static moments:

e() = f p(r)de»=Le, (83a')

eQe=(g ) "'3 Lj(e ef
»er 'p(r)der, L)2, (33 ))2

which shows that the deformation amplitudes Pz are
uniquely related to the static moments Qz, for a given
spherical density P(r). As was shown in Fig. 2, this
"frozen deformed" static density, with P(r) obtained
from a spherical harmonic oscillator, could not 6t very
well the experimental charge form factor of ' B.Never-
theless, it represents a possible m.odel which may work
better elsewhere.

One may equally well assume a collective deformation
of an originally spherically symmetric magnetization
density jd,(r) frozen into a static deformed state.
Starting from Eq. (59b) and introducing appropriate
constant deformation parameters yl, , where I'= I-~ i,
one may write Lsee also Eq. (29b) j

F20(r) = (42r)'j2J(JJ2 10
~
JJ) 'jd, (r), (84s,')

pzz'(r) = —yz. J(L'02 10
~

LO) (JJ, LO
~
JJ) '

Xr(r/R) z'~jd, '(r), (LL') ss (10). (84b')

Using this, we obtain the form factors

(rig~) 32»(g"(2) = f2 (gr) p.(r) 3'»

+(2 j3)P'rpg fdj, (gr)p (r)dr(Me). ,

(e/2') j(fzpz~(q) = (42r) 'j'L(2L —1) I!&P LR~z

X er (2L 2) '&'f r jr (gr)p(r)dr— ,

J&3

(85b)

+ex»(2L+3) e'2( ' f rerj'i(gr) p(r)dr,
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r'~'p, , r dr, L&3 (B6b')

with the yL, related to the static moments Mi..
APPEÃDIX C: HELM-TYPE MODEL

The original Helm modeP" combines a simple
assumed (static or transition) distribution with a
folded-in surface smearing. The latter is often assumed
to be of Gaussian form,

pz(r) = (2'')-'/' exp( —r'/2g') (C1a')

g being a surface thickness parameter. This assumption
has the consequence that all form factors get multiplied
with the Fourier transform of p, (r), i.e.,

fo(V) = exp( —gV/2) ' (Clb')

this is true also for the transverse form factors, as has
been shown in Ref. 6. The original distributions which

p, (r) gets folded into we shall designate by a superscript
(0) . In the spirit of the Helm model, one may choose for
the spherically symmetric part of the charge density,
py(0)(r), a step function 8(r R) w-hich cuts off at a
radius 8; we de6ne

8(z) =1, z(0

and the static moments (~0):
(e/2m)bf = fp, (v)Pr (=e/2m)g, (36a')

(e/2m) Mz = (4s ) '+yz iL (2L—1) '/zR~

(30b) for normalization, one has

pzo( ) (r) =3(kr) '/~J(JJ, 10
I JJ) '

(ep/2m) R-'8(r —R), (C5a')

pzz z()(r) = (4rrL) '/'J(JJ, LO
I
JJ) '(eMz/2m)

XR-~)8(r—R), L&3 (CSb')

also taking a di6erent radius parameter R. %e may
consider Eq. (CSb) as a direct consequence of the
"frozen deformed" model of Appendix B, Eq. (B4b),
which by comparison gives the deformation parameter

yz z ——$(4s/L) "(L 10,—10
I LO) 'R' z(Mz/p).

(CSc')

Since only one type of parameter pl, is involved, Eq.
(C5c) immediately gives an expression for yz+&, which
from Eqs. (B4b) permits the calculation of Izzz+i(')(r)
with the result

wz+z")(r) = —(4 ) '"(L+1)'"(L+2) '

XJ(JJ, LO
I JJ) '(eMz+2/2m)R ~'8(r R), —

L& 1. (CSd')

This leads to the static magnetic form factors

Jz (q) =f.((f) I (3/re)i i(re)+k(MI/I ) ff j'~(qR) }

(C6a)
~ "(q)= (2L—1)!!(qR)' 'f.(q)-

X Ij z, z(qR)+5&/(L-+2) 7(Ma+2/Mz)

=0 x)0. (C2') XR 'jz+z(gR) }, L&3. (C6b)

The higher moments which, for example, in the frozen
deformed model are given by derivatives of 8e( )(r) one
may take proportional to b(r —R). With the proper
normalization obtained from Eq. (30a). we have

po")(r) =3(4)r) "sJeZR '8(t R), (C3—a')

pz(0)(r) (4s.)-|/2(JJi LO
I
JJ)—)LJR

XeQz8(r —R), L&2 (C3b')

which immediately leads to the static charge form fac-
tors

The expressions for pz(r) and pzz. (r) given by the
frozen deformed model, Eqs. (B1) and (B4), or by the
Helm model, Eqs. (C3) and (CS), may also be used to
6nd expressions for the integrals Izu "(q), Eqs. (54b),
and lt "z q &"(q), Eq. (60e), of the collective vibration
model.

It is noteworthy that our previous results' of the
Helm model for inelastic electron scattering from
spherically symmetric nuclei can quite easily be derived
from our general Eqs. (18) for the inelastic form factors.
For example, by assuming

Iro'(8) = (3/VR)f. (8)i z(qR),

~z'(8) = (2L+1) "(8R) 'f.(8)iz(P),

(C4a)

L&2.

(C4b)

(C7a)

&Ji II &z(q) II J')=Pzf. (q)ji(qR) (C7b)

pzir (r) = eZi zPzR-'8(r R-)—
(and folding in the surface smearing), one has

Note the assumption is implied that the surface smear-
ing p, (r) remains undeformed. The same procedure may
be used for the magnetization density, which is likewise
convoluted with p;(r) (one assumes greg): using Eqs.

our previous result. The quantity )tiz is here simply
understood as an amplitude parameter, to be determined
by experiment, and we thus avoided de6ning it in the
somewhat vague manner of our previous derivation. '
Furthermore, setting

'I H. Crannell, R. Helm, H. Kendall, J. Oeser, and M. Yearian,
Phys. Rev. , 123, 923 (196i). yzz;«(r) =eZi z'(yzz /2ez) 8 'b(r —R), - (C7c)
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one obtains from Eqs. (18) our previous results' for the
transverse magnetic transition matrix elements,

&Ji Il ~~-(q) II J'&= —(q/2~)fo(q)L '

X{1.'Isrr~j~, (qR)+(L+1)'( ylr &jr &(qR) I,

Jo(qr) ~~1 qr'/6+ ~—~ )

one fmds from Eq. (38b)

Fo'(q) =1—(q'/6) &+&.,

with a, mean-square charge radius

(e ),= (4 )"'(EeJ) 'f e'ee(r)de.

(D1')

(D2a)

(D2b)

Since higher moments enter only to order q', the electric
part of the elastic cross section, Eq. (38a), may be
expanded as

(do/dQ) ~Z'(r~I 1—(q'/3) (r'),+O(q4) g, (D2c)

again with yLL, a simple constant-amplitude parameter.
For the electric spin-fiip matrix element, one 6nds

&Jl II &r,'"(q) II J')= (q//2m)rll f (q)js(qR), (C7e)

as before. As to the transverse electric matrix element
due to the convection current, we note that in Ref. 6 it
was shown that the continuity equation of curl-free Qow
could be sati~~ed only with jz~~'~(r) —=0 and jar, 'I (r)
proportional to the ground-state density ~(')(r) in the
Helm model, i.e., 8(r—R). From Eqs. (18), we thus
obtain the previous result

&JI II
f'~"(q) I I J'&=4~{.(1+1)/I j')l(~/q)f. (q)j~(qR)

(C7f)

the factors (especially the appearance of Pz,) being
determined by the condition that for ~au, Ml, and TI,'&
should satisfy the Siegert theorem, Eq. (20).

APPENDIX D: CHARGE AND MAGNETIZATION
iUQ)II

For the ground-state densities at sm~L& momentum
transfer, one cannot determine the entire shape but
only one parameter characterizing the spatial extent of
the density, i.e., a root-mean-square radius. Expanding
the Bessel function

valid to order q. For the model of Appendix B, Eq.
(D2b) becomes

(e').= (Ze) 'f -e'e( )eP

and for the Helm model,

(D2d)

&").= (3/5) R'+3g'. (D2e)

This equation gives a connection between the radius
parameter E, usually taken as 8=1.10A'I'F, and the
surface thickness g after the charge radius has been
determined from experiment.

lf we deane a mean-square radius (r')))r for the mag-
netization density by

FP(q) =1—(q'/6) (~&~ (D3a)

then Eq. (38c) gives (through an expansion of the
Bessel functions):

(r')))f ——(4s )"'De/2m) pJj '(JJ, 10
I JJ)

X r'I4xo(r) dr+( '2/))5r'p&2(r) dr . (D3b)
I

Higher moments contribute to order q' only, so the
magnetic part of the elastic cross section, Eq. (38a),
may be expanded as

(do/d0) ~~~osr (1+2 tan'Q) (q'/ke') (p'/3)

XI (1+1)/J]L1—(q'/3) (r &)(r+(r(q') j. (D3c)

Since at 8=180 the magnetic cross section alone sur-
vives, this formula may be used for determining the
magnetization radii of light nuclei.

For the model of Appendix 3 the mean-square radius
is given by

(') =L'(ej2ee)eej '(1—(4 )-'eee)/eee, (e)4

(D3d)
and for the Helm model, by

(r'&))r = (3/5) R'—(2/15) (lkf s/n) +3g'. (D3e)

For the magnetization, one may choose 8=1.25A'I'F.
From the experimentally determined (r'&~, one then
gets a relation for the surface thickness g, which,
however, involves the ratio of the octupole moment NI
to the dipole moment p,.


