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The momentum spectrum of the K electrons ejected during allowed K-capture decay is calculated for
the case in which there is no competing positron emission. It i~ shown that certain relativistic sects,
associated with the spin of the electron, are important in determining the ejected-electron spectrum, even
at low energies. To take these effects into account, the electronic states are described by the solutions
of an approximate Dirac Hamiltonian developed by Biedenharn and Swamy. Preliminary to the calcula-
tion, both the eigenfunctions and Green s inunction of this Hamiltonian are discussed. The results of the
calculation differ appreciably from previous nonrelativistic calculations. Contrary to these previous theories,
the theory presented here is shown to be in good agreement with recent experimental observations.

ment. Consequently, the appropriate nonrelativistic
Coulomb wave functions and Coulomb Green's function
were employed in the description of the various electron
states. The ejected-electron spectrum resulting from
this theory turned out to be virtually identical with
that predicted by the Primakoff-Porter theory for
almost the entire energy range of the ejected electrons-
a rather surprising result.

As has already been pointed out in I, the greatest
source of error in both the Primakoff-Porter theory and
the theory of I is the neglect of relativistic effects.
However, contrary to our conclusions in I, relativistic
corrections are indeed large, as may be made plausible
by an argument originally advanced by Martin and
Glauber' in connection with their discussion of radi-
ative K capture. Their argument is equally applicable
here and simply emphasizes the fact that the electron
ejection process must always involve the essentially
relativistic electron spin. This is because, for an al-
lowed transition" to occur from the K shell, the electron
undergoing capture is required to emit a photon during
a transition from one spherically symmetric state to
another. This cannot be done by a spinless particle;
hence the spin enters in an essential way.

In fact, the inclusion of relativistic effects will tend
to alter the shape of the theoretical spectrum in such
a way as to bring it into doser agreement with the
experimental data. That this is so is most easily seen
from the Primakoff-Porter theory. In this theory the
matrix element for the ejection process is essentially
an overlap integral between the initial and Gnal states
of the ejected electron. For the purpose of the present
argument we may assume the initial-state wave function
to be simply a 1s nonrelativistic hydrogenic wave
function. The screening and correlation factors may be
ignored since, as the Primakoff-Porter calculation
shows, their only effect is to change the atomic number
of the parent nucleus very slightly and to introduce an
over-all multiplicative constant into the matrix ele-
ment. However, they have essentially no inQuence on

I. INTRODUCTION

'T is well known that during orbital electron capture,
.. there is present a continuous spectrum of ejected
orbital electrons. ' The intensity of this electron spec-
trum was 6rst calculated by Primakoff and Porter. '
Their treatment of the problem is a nonrelativistic one
(with the exception of the description of the neutrino)
and is based on the use of the sudden perturbation
approximation. In their approach, the initial two-
electron state is described by a two-parameter vari-
ational wave function, designed to take account of
screening and correlation effects and adjusted to mini-
mize the energy of the initial electronic con6guration. '

Since the development of the Primakoff-Porter
theory, the ejected-electron spectrum has been meas-
ured in four cases~'; however, only the Daniel-Schupp-
Jensen study' of Cs"' and the Pengra-Crasemann
study' of Fe~ have covered a substantial energy range.
In all cases a pronounced discrepancy has been observed
at low energies, the experimentally measured intensities
being lower than those predicted by the Pr'imakoff-
Porter theory.

In an attempt to resolve these discrepancies, we'
have recently developed a new theory in which the
initial-state electron-electron interaction is treated as a
perturbation along with the P interaction. Because the
discrepancies are so large (as much as a factor of 5 in the
spectrum of Fe~) and occur at low electron energies
( &50 keV for Fe~), it was felt that a nonrelativistic
treatment of the electronic motions would be sufficient
to bring theory and experiment into much better agree-

' For a review of recent results, see D. Berbnyi, Rev. Mod. Phys.
40, 390 (1968).

g H. Primako8 and F. T. Porter, Phys. Rev. 89, 930 (1953}.' The presence of L, M, ~ ~ ~, electrons is ignored throughout the
calculation.' J A. Miskel and M. L. Perlman, Phys. Rev. 94, 1683 (1954).' M. Langevin, Compt. Rend. 245, 664 (1957);J.Phys. Radium
19, 34 (1958).

H. Daniel, G. Schupp, and E. N. Jensen, Phys. Rev. 117,823
(196O).' J. G. Pengra and B.Crasemann, Phys. Rev. 131,2642 (1963).' R. L. Intemann and F. Pollock, Phys. Rev. 157, 41 (19
hereafter referred to as I.

67); s P. C. Martin and R.J.Glauber, Phys. Rev. 109, 1307 (1958)."We shall only consider allowed transitions in this paper.
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the shape of the ejected-electron spectrum. Further-
more, it is important to note that Primakoff and Porter
could just as well have used an angular-momentum
eigenstate of the unperturbed Hamiltonian rather than
a scattering state to describe the ejected electron (even
when screening and correlation effects are included).
In this case their integration over the possible di-
rections of the ejected electron is replaced by a sum-
mation over all possible 6nal angular-momentum states
which, owing to orthogonality, reduces to the single
term with /=0.

To assess the e6ects of relativistic corrections, let us
replace the nonrelativistic Coulomb eigenfunctions ap-
pearing in the overlap integral by their relativistic
counterparts, i.e., by the corresponding solutions of the
Dirac-Coulomb equation. As Stephas and Crasemann"
have shown, this results in a substantial increase in the
value of the absolute squared matrix element at all
ejected-electron energies, even in the low-energy "non-
relativistic" region. However, while the increase is sig-
nificant at all energies, it is, as is to be expected,
greatest at high energies. Since the experimental data
are usually arbitrarily normalized to the theoretical
curve in the high-energy region, the net eGect of the
relativistic corrections on the shape of the spectrum
will be to bring about a relative lowering of the theo-
retical curve in the low-energy region (by roughly a
factor of 2 to 3). This will indeed tend to bring theory
and experiment into much better agreement,

Therefore, it is the purpose of the present paper to
provide a more accurate theoretical treatment of the
problem, one which includes all significant relativistic
eGects. At the same time, we wish to avoid using the
eigenfunctions and Green s function of the relativisti-
cally exact Dirac-Coulomb Hamiltonian to describe the
various electron states. The difhculties encountered in
using these functions are well known and render an
analytic solution to the problem impossible. In an
attempt to get around such diKculties, Biedenharn and
Swamy" have recently developed an approximately
relativistic "symmetric Hamiltonian. "As these authors
have shown, the eigenfunctions of the symmetric
Hamiltonian diGer from the exact Dirac-Coulomb
eigenfunctions by terms of order (Za)' and therefore
provide a basis for calculating the spectral intensity
distribution of the ejected electrons to a relative
accuracy of order (Za)'. As we shall see, this approxi-
mation is sufBcient to include all important relativistic
eEects. The great advantage in using the solutions of
the symmetric Hamiltonian lies in the fact that these
functions are no more difBcult to work with than the
solutions of the nonrelativistic Coulomb Hamiltonian.

In Sec. II we discuss the eigenfunctions and Green's
functions of the symmetric Hamiltonian. Section III
is devoted to the reduction of the transition matrix

"P. Stephas and B.Crasemann, Phys. Rev. 104, 1509 (1967)."L.C. Biedenharn and N. V. V. J. Swamy, Phys. Rev. 133,
B1353 (19~)

element brought about by the use of the approximate
solutions of Sec. II and the neglect of retardation
eEects. In Sec. IV the ejected-electron momentum
spectrum is calculated in detail. In Sec. V the results
of the theory are presented and comparison is made
with both previous theoretical results and recent experi-
mental observations.

II. EIGENFUÃCTIONS AND GREEN'S
FUNCTIONS OF THE SYMMETRIC

HAMILTON'

The symmetric Hamiltonian is a Dirac Hamiltonian
which approximates the exact Dirac-Coulomb Hamil-
tonian to within an error of order (Zu)'/x. We shall
not attempt to present the actual motivation which led
Biedenharn and Swamy to introduce the symmetric
Hamiltonian; the reader is referred to their original
paper~ for such a discussion. Instead, following Bieden-
harn and Swamy, we shall simply de6ne the symmetric
Hamiltonian H, from the "non-Hermitian Hamiltonian"
8 defined by"

8=SPHp =IexpL —y r—sinh '(a/E)]](e P+P), (1)

where E is Dirac's operator. The Hermitian symmetric
Hamiltonian is then de6ned by

H,=S, '8S, =—S,HpS, . (2)

&2 c/2 sf~p

=($E )&~2 aE„~(n'/a' —1)"'
~
F„«,&(r)

n L1+E„(1+a'/x') '~']'I'

(4)

The two-component spinors p„& are the usual spin-
angular functions of the Dirac theory,

C(l(~), 2,j;p tn, m, p) Y~&,~&~i""&x«—2, (5)
~+1/2

and satisfy
(6)

(&)

(g)

(9)

~ As in I, we employ units in which m=c=h=1 and e =n=
1/137. The Dirac matrices are defined as y= —iPa and y4=P;

and Q=pt

Biedenharn and Swamy" have already studied the
discrete part of the spectrum of H, and have shown
that the energy eigenvalues and normalized energy
eigenfunctions are, respectively,

E„=(1+ /ae') "', O' ...„=Sg '4 ...„, (3)

where 0'„,„„is the eigenfunction of 8 corresponding
to the same eigenvalue and is given by

+st,a, its
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where $(e) denotes the sign of e. As in the nonrelativ-
istic theory, the energy levels depend only on the
principal quantum number e= 1, 2, 3, ~ - ~ . As usual,
I andj are related to e byj =~~

~

—~s; l(e) =e for e)0
and l(e) = —e—1 for e&0. The quantization condition
restricts x to the range —n& x&e—1. Finally, in terms
of the conQuent hypergeometric function, the radial
functions are given by

F„, «&(r) =Ce ~'(2k„r) 'F( N+—I+1, 21+2,2k„r),

(10)
where k„=aE„/n and C is chosen so that

r ( F„( ('r'dr=i.
0

The method used by Biedenharn and Swamy to
determine the bound states may also be used to de-
termine the eigenfunctions of the continuous part of
the spectrmn of B,. The analysis is similar and leads
to the following results for the associated +'s:

( $1+W(—1+a'/e') "jF«,) (Pr) P." )
+„,„(Pr) =N,

~

(P [(1+a'W'/P'e')'~'
[ F« .~(Pr)P .")

(11)
where W is the total energy, P=(W' —1)"', and the
radial functions are now given by

, „~ 1(1+1—iaW/P)
~

(s j (21+1)!
X (2Pr)'e ' 'F(iaW/P+l+1, 2l+2, 2iPr). (12)

%ith the continuum eigenfunctions normalized to the
"Pscale" Li.e., by the condition (4'„,„(Pr),0', ,„(P'r) )=
b(P —P') j, the normalization constant is

N, = }2ji+W(1+a'/e')'"j
Xt W(1+a'/ )e+o(W'(I++'/e') —I)'"/I ~ Q} '".

(13)

Now, let us consider the Green's function Gz'(x, r')
associated with the eigenvalue problem for B,. It
satisfies the equation

L& (x) EjG '(x x') = —v&(x —x') (14)
and its adjoint

Ge'(x, x') y4LH, (x') Eg = —b(r —x') . (15)—

Like the eigenfunctions of H„ the Green's function
Gz'(x, x') is most easily found by applying the ap-
propriate projection operator to the corresponding
Green's function gz( x, x') of the second-order equation
obtained by iterating either (14) or (15). To obtain
this equation, we first rewrite the adjoint equation,
with the aid of (1) and (2), as

S&Gz'(x, r') S& '(i~ P'+1 Ey4$& ')—
= —5( r —r'), (16)

where we have made use of the fact that S~y~S~=y4.
If we now iterate this equation by multiplying through
from the right with iy. P' —1—Ey4Sj ' and make use
of the anticommutation relation

}iy P, y4$~ '}+= 2—u/r, (17)

gs(0, r) =—e &' ds e~~'s &(1+s)&, (22)
21I 4

with y= (1—E') "' and g =aE/p. The Green's function
Gz'(0, r) is now completely determined by (20) and
(22).

The eigenfunctions and Green's function described
in this section diGer from the corresponding Dirac-
Coulomb functions by terms of order (Za)'/! e ~. They
therefore provide a basis for performing Coulomb field
calculations in which relativistic e6ects are included to
first order in (Za) beyond the nonrelativistic limit.
For many applications, this is suQicient to include the
major e6ects of relativity. At the same time, the
mathematical structure of these functions is such as to
make calculations employing them no more dificult
than those employing nonrelativistic Coulomb func-
tions. This is in sharp contrast to the situation in which

"R. J. Glauber and P. C. Martin, Phys. Rev. 104, 158 (1956).

we obtain the desired second-order equation

fV"+(& 1)+2—oE/r'jgsr(x, x') = —8(x—r'). (18)

The Green's function S~Gg'S~ ', which satisfies the
first-order equation (16), is obtained from the second-
order Green's function gz by the application of the
projection operator iy. P' —1—Ey4S~ '. From this we
finally obtain for Gg',

G&'( x, r') =S,—'L(i Y.P' —1—Ey4$& ') gz(x, x') ]S~.

(19)

For allowed transitions, the Green's function which
appears in the matrix element for electron ejection has
the particular form Gz'(0, r) and is seen to satisfy a
reduced form of (19):

Gz'(0, r) =fy r(8/Br) 1 y&jgrs(0—, r)—. (20)

In obtaining (20) we have made use of the fact that
ge(0, r) is a spherically symmetric function. This is
clear since it satisfies

t V'+(E' —1)+2uE/r jgsr(0, r) = b(x). (—21)

For IC-capture transitions of interest (those for which
there is no competing positron emission),

~
E ~&1 and,

as has already been mentioned in I, the Green's function
does not represent a freely propagating wave, but
rather is a function which decreases rapidly away from
the nucleus. The solution of (21) which satisfies this
boundary condition has already been obtained by
Glauber and Martin" and may, for our purposes, be
written
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similar calculations are carried out using the exact
Dirac-Coulomb functions.

III. MATRIX ELEMENT FOR X-ELECTRON
EJECTION

The total matrix element foi E-electron ejection has
been derived in I. In that paper the electronic motions
were described nonrelativistically, in which case it was
expected and, indeed, demonstrated that retardation
e6'ects do not contribute to the initial-state electron-
electron interaction. Since the distances involved are
small, we expect that, even as a relativistic correction,
these retardation eGects will be quite small when com-
pared to the relativistic spin corrections. We shall
therefore again neglect such retardation eGects in the
present treatment. Under these circumstances, the total
matrix element for E-electron ejection, for allowed
K-capture transitions, is again given by Kq. (17) of
I 16

)(' «GD= Pg'—(0)$ f
—drG (0, r)«y(r)

X dr2&f r2 + r& r2
—'—r»~

—' . 23

Since both gzz(0, rz) and &(rz) are spherically sym-
metric functions, the integration over the angles of
r» may conveniently be carried out at this time. To do
so, we 6rst rewrite S» in the form

with
S»=A, —B,y. rg,

A, ={(1+(zz/)(')»"-+1 Jlz/v2,

B =L(1+(zz/Kz) llz 1)llz/Q2 (2g)

which follows from the definition (1).If we now substi-
tute (27) for Sz (noting that )(=—1 for the state &)
and, for 1/r», the integral representation

1 dk expLzlr (rz —rz)g
r»2 '=lim—~ 2zr' kz+z' (29)

into (26), and carry out first the rz angular integration
and then the integration over the angles of k, we obtain
for the transition matrix element the Anal form

k'dk
M = —4aG{ 1—P»Q'(0) S rzdr gzz(0, r)k'+e'

X {L2Az( jp(kr) —1)—Bzkjz(kr) 78()

+f~zkja(kr) —2Bz jz(kr) Pz}(f)z(rz), (30)
To describe the electron states, we shall use the

approximate relativistic wave functions and Green's
function discussed in Sec. II. The matrix element may
then be expressed in terms of the second-order Green's
function gs(0, rz) by substituting into it the expression
(20) for Gs'(0, rz). After integrating over rz, by parts,
we obtain

dray~ r + r jp kr,

draff r~ r j»kr yr. (32)

M = —aGL1 —P»Q'(0) 8
I' 8

d1'gg 0, r» —y r ——1—Ey4
Br

X P, («r )f dray~(r )&(r) (r ' —r„'). (24)

In order to proceed further, let us introduce the trans-
formed wave function 4zz=Sz&z. From (4) it is clear
that, for a E electron, & reduces to a spherically
symmetric spinor whose lower two components vanish.
Under these circumstances, the equation satisled by

» ls

fy r(a/ar) +1 EyzS,~~=0, — (25)

as readily follows from (1) and (2) . Using these results,
we find that (24) reduces to
M = —aGL1 —P»Q" (0)S

X d1'Qf 1'g Q 1g dfgg 0, r»

X {2(r» '—rz ')+y rz{ (8/Brz)r» 'g}Sz(}Iz(rz). (26)
Ifi The factor y4 was set equal to 1 there since we were using a

nonrelativistic approximation for the electrons. Throughout this
paper, we use the same basic notation as in I.

These last integrals may be further simpliled by intro-
ducing the transformed wave functions g and $1, as
before, and expression (27) for Sz

dr f~ C.+D.y r jo kr,

dray C, D,yr j» kr y r, (34)

with C, =A,Az+B.Bz and D, =AzB,+BzA,.

IV. EJECTED-ELECTRON TRANSITION RATE

We begin our evaluation of the relative diGerential
transition rate for E-electron ejection with the evalu««

ation of the integrals 8'0 and 8», for which purpose we
must introduce detailed forms for the electron states
which appear. For g, we choose a K-electron wave
function, while, for the ejected electron, we choose a
continuum angular-momentum eigenfunction 4'~(Pr)
of the symmetric Hamiltonian. This is appropriate,
since we are not concerned with the direction in which
the electron is ejected but only with its energy prob-
ability distribution, which may be obtained by summing
over all possible final angular-momentum states of the
ejected electron. As we shall see, in our approximation
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very few such states actually contribute to the tran-
sition rate.

The appropriate wave functions are obtained from
(4) and (11) and, after substitution into (33) and
(34), lead to the result

with

s.=S.(k) g., =O, i (35)

S„(k)=E)o (ao/s )"'E,IC,[f+W(1+a'/E') 'I'jR», «g)

—PS(K) D, (1+a'W'/P E') '"E„,((,) }, (36)

in which the radial integrals are de6ned by

'c)

E„,)(„)= r'drFg(, )~ Pr e ~&'j„kr .
0

The angular integrals g„are given by

(37)

(38)

O.

~o&

'CI

Ao = (4~)"'bg.oA,-i (39)

with 60=i and 8j.=y.r.
In writing (38), we have suppressed the indices E

and pr upon which the g„depend. With the use of (5),
the angular integrals are easily evaluated, with the
result

o»2

I I I

o.+ o.s o»e
P (unite of mc)

I.o

&~= —&(4~)'"c(1»j o »») (I v I/&)~.g..k.«.)

(40)

From these results we see that the only final states
available to the ejected electron (in our approximation)
are those for which E= —1, +1, —2, and we must
therefore evaluate our transition matrix element only
for these three types of states. Using the results (35),
(39), and (40), we then obtain, for the transition
matrix element (30),

M= —8 «'a'"Ll —P»W" (0) (f)g

XISA., ,—oC(l, k, j;0,», »)(I &lb~)@4«.)}»(+),

Fro. i. Partial rate curves contributing to the predicted momen-
tum spectrum of E electrons ejected during K capture by Fe85.
The theoretical end point is at P = 1.015.

I
M & I'= (2'a'/E') GoE~'a'B B»

I
F ( I' (44)

+f o~ yi~lo~l

I
M. I' = (2'+/+) G'a'a'B B'

Sf~I E~g~ol

x Ic(1,4, j;0,», »)I IB.I, E=+1, —2 (45)

two emitted leptons and the two initial K electrons.
The calculation is easily carried out using standard
techniques and, for unaligned nuclei, leads to the results

with

~ k'dk
r'dr gE(0, r) e E&'So

ko+oo

XL2A~I jo(kr) —1} B(kj)(kr) j, (4—2)

for those 6nal states contributing to the process. The
corresponding differential transition rate may then be
obtained from Eq. (22) of I

du. /dP=8s'P'(1+Q W)'g
I M. I' —(46)

~ k'dk
8,= rodr gE(0~ r) e~E&iS&(k)k'+g

XLAxkjo(kr) —2B&jq(kr) g, (43)
and with

where Q is the energy released in the decay process.
In order to obtain the relative rate for K-electron
ejection, we must also know the transition rate for
allowed K capture. In the approximation de6ned by
the eigenstates of the symmetric Hamiltonian, this is
easily found to be

xi(+) =I«] n))r ——(G'ao/E') E '(1+Q—E )'B B». (47)

To determine the transition rate, we must sum the
squared absolute value of M over the spin states of the

Combining (44)-(47), we obtain for the relative tran-
sition rate for the ejection of a K electron into the
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)o'

io'

«10
6

o Io

IO

I.O

o.l 0.2 0.5

E {units of mc~)

o.e o

for ejection in a Pi~& state is only about 10% of that
for ejection in a pi~i state; however, at higher momenta
these two rates do become comparable.

As a result, the total differential transition rate is
largely determined by the a= —j. contribution to it.
Indeed, since the shapes of all three curves are roughly
the same, we expect the shape of the total rate curve
to be essentially the same as that of the x= —1 curve.
This is borne out by a plot of the total rate curve
which, on the scale used in Fig. 1, yields a curve which
almost completely overlaps the ~= —1 curve. For this
reason, we have not included it in the figure.

Finally, it should be pointed out that a comparison
of any experimental data with the theoretical spectrum
is most easily accomplished by employing a construction
analogous to the Fermi plot used in the analysis of P
spectra. The idea was first suggested by PrimakoG and
Porter' in connection with their theory and, in the case
of the present theory, consists of plotting

f AT(E)/Pw[I IP-i I'+'
I g i I'+'-'

I g-i I']I"'

versus E, in which N(E) is the number of electrons
ejected with kinetic energy E. According to (48), such
a plot should yield a straight line which intercepts the
E axis at E=Q.

FIG. 2. Theoretical energy spectrum of K electrons ejected
during K capture by FeIIII. Curve I represents the result of the
nonrelativistlc theory of I, while curve II represents the result
of the present theory. The theoretical end point is at Q=0.42S.

IP3

momentum range dI'

dw, /dP= war
' g (dw—./dP)
a~1,+1,—2 Io'—

t'1+ —W)'

&1+Q—Ei&

The evaluation of the remaining integrals, F i, g+i,
and g 2, is carried out in the Appendix and leads to
the final results given by (A7), (A12), (A13), and

supporting equations. Since the final forms are rather
complicated, we shall not repeat them here. These
results, together with (48), completely determine the
ejected-electron diGerential transition rate per E-cap-
ture event.

Figure 1 illustrates the form of the partial rate curve
(dw. /dP)/wx for each of the three terms (x= —1,
+1, —2) which contribute to the transition rate for
the case of Fe~, which has a maximum ejected-electron
momentum of 519 keV/c. The dominant term, as ex-
pected, is the one for which the electron is ejected in
an si~& state, while the rate for ejection in a pi~& state
never represents more than about a 10% correction.
Furthermore, at low momenta (P &0.2 mc) the rate

ChI-z
IO

O

1.0

I

30 60
I I

90 I20

E (~ev)

I
I50

I

I80 2IO

Fro. 3. Spectrum of electrons ejected during the electron-ca-
ture decay of Fe Ltaken from Pengra and Crasemann (Ref. 7)
The closed circles represent measurements with a solid-state
detector; the remaining points were obtained with a proportional
counter. The solid curve represents the theoretical spectrum
predicted by the present theory.
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V. RESULTS AND CONCLUSIONS

The energy spectrum of E electrons ejected during
IC capture is obtained by transforming (48) to the
energy scale and is illustrated, for the case of Fe55, by
curve II in Fig. 2. For comparison, we have also
plotted the spectrum predicted by the nonrelativistic
theory of I."This spectrum is represented by curve I
in Fig. 2. The present theory predicts the ejection of
substantially more electrons at all but the very lowest
energies (the increase increasing with energy) and,
more importantly for current experiments, it predicts
a spectrum whose shape is signidcantly diferent from
that predicted by the nonrelativistic theory.

The most extensive experimental study on the spec-
tral distribution of electrons ejected during electron
capture has been that of Pengra and Crasemann. '
These investigators have measured the ejected-electron
spectrum arising from the decay of Fe~ over a wide
range of energies. The results of their measurements
are reproduced in Fig. 3. For comparison, we have
also plotted the theoretical energy spectrum predicted
by the present theory. The theoretical curve has been
normalized to the experimental data in the high-energy
region by employing the construction described at the
end of Sec. IV.

It is clear from Fig. 3 that there is complete agree-
ment between the spectrum measured by Pengra and
Crasemann and the spectrum predicted by the present
theory. We have also examined the earlier and less
extensive data of Daniel, Schupp, and Jensen' on Cs"'.
Here too we have found good agreement between the
measured values and the predictions of the present
theory.

The importance of relativistic eHects in the electron
ejection process is now clear. Although retardation
effects are of no consequence, relativistic spin e6'ects
play a most important role. In the nonrelativistic theory
the electron can only be ejected in s&/2 states. Relativistic
efFects allow for ejection in pi&s and pcs states as well,
although, as we have seen, it is the relativistic correction
to the s~/2 state amplitude which accounts for almost
all of the changes in the theoretical spectrum.
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APPENDIX

In this Appendix we shall evaluate the integrals 5 ~,

/+i, and g 2, which appear in our final expression for
'6 The spectrum predicted by the theory of I is virtually iden-

tical to the one predicted by the Primako8-Porter theory.

the transition rate. In order to outline the basic steps
involved, let us consider 6rst 5 ~. With the introduction
of the representation (22) for git(0, r) into expression

(42) for F i, the radial integration becomes elementary
and yields the result

ti t1+s)& " k'dk

s & „k'+e'

where ir =ti(1+2s)+aEi, and where, from (36), Sa(k)
is now

So(k) =E '(o'/1r) '"¹{CiL1+W(1+8') "')RQ 0

+PDi(1+a'W'/P ) '"Ra
i I . (A2)

The radial integrals Ro, i are given by (37), with Fi(Pr)
given by (12) . Introducing the standard integral repre-
sentation for the conRuent hypergeometric function, '~

we may carry out the radial integration in Ro, i, again
by elementary methods, obtaining

R Pssawl2P(2P) i
i'(l+1) !

(2s) si'

[ I'(l+1+iaW/P)
)

I'(l+1+iaW/P)

dt( t) l iaw/P(] —
t) I+iawlPk 1—

C

( 1 (—1) i

(k+s~) i+2 (k-i~) i.

with li=aEi+iP(2t 1). The conto—ur of integration C
encircles the branch cut extending from 0 to 1 along
the real axis in the positive sense and must satisfy the
requirement Imt(aE&/2P to ensure convergence of the
radial integral.

To perform the k integration we observe, from the
above results, that the integrand of the k integral falls
oE sufficiently rapidly for large values of k to allow us
to close the k-integration contour at inhnity. The use
of residue theory then leads to the result

pP~ p&) /

S(2s)"' s 4P'

(
I'(2+iaW/P)

( . ds (1+s'l"
X I' iaW P)

I'(1+iaW/P) s a' L s l

x I Ci(1+W(1+a ) '~'jTi+iPDiTRI, (A4)

"L. J. Slater, Ccmgleot Hypergeometric Factions (Cambridge
University Press, Cambridge, England, 1960), p. 40.
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with

t -iow(P i t iaw(P !4iPAg

22g+Bg~'t

c u(t —t.)' (t—t,)s J'

(AS)

dt( t)1 iaw-IP (1 t) 1+iowIP

C

nitions:

0=CEg~

td=aW/c,

P~ =1&co,

py =3&co~

P =P/e,

B,=B,/e,

A=A/e,

2 =Z/e,

pt= 1+P p

ps =Ct(1+W/Et) /c,

ps=P'+&,

ps =2Cs(1+W/Es) /e,

X +/ SsPAt 3(2At+Bttr) )
A6

&u(t —t,) s (t—t,) &

In writing the above results we have made use of the
de6nitions of ~ and X and introduced

to= LP+s( uEt+o) j/2P.

The t integration may now be carried out in a similar
manner. From the structure of the integrands in (AS)
and (A6), we see that we may freely add to the contour
C a circular contour at in6nity and, again, evaluate
the integrals by residue theory. The results of the
integration, together with a change in the remaining
integration variable s to x=s/(1+s) and a good deal
of algebraic manipulation, finally allow us to write 5 &,

in terms of certain fundamental integrals, as

in terms of which the coeScients are given by

F =I'LBt(e+a)+ aAQ/2eo,

I' =2i'fB e'p —2AtDt7,

(A118)

(A11b)

Fs=A'Qg(4At+e'Btp )+s'8tpsDt —2AtDty+j, (A11c)

F4=2Atk['psy —Dt(y++toP )j,
Fs ——2A tptQs —DtP+j.

(A11d)

(A11e)

to+t =L+tLQ Ad. +Asjt+AoA], (A12)

The reduction of the two remaining integrals, to+t and

g s, may be carried out in a similar manner, with the
6nal results

S,=L,[rl+g F~„j, (A7) 8-s=L-sLQ R8 +AA+RAj, (A13)

in which L ~ is determined from"

2iaWpEto
L„= ()us) tlo e ~'~sN, F (1 !s!+saW—/P),

xLVZ~

(AS)

' dx x-s(1—x)"(e —m)J =
(1+y») n+s

os=1, 2 (A14)

in which there appear the two additional fundamental
integrals

with A=ts+aEt and Z=P'+(2aEt+tt)'. The funda-
mental integrals which appear are defined by

I=, , (A9)
'dxx s(1—x)(1—m)

1+Xx '

with N=(2aW/P) tan '(P/aEt). Using our previous
definitions, we 6nd for the two sets of coefBcients

d» x-s(1—x) "uI„=
s (1+)x)"~(1+ex+iix')"

in which

A, =A,g'p /cps'I' (A15a)

As=5'LAt(2Dtps+psy+) —2Btpsj/eps'lo, (A15b)

(A10) As LL'(At(Dtpsy +——pop++(apop )

28t(2Dtps+psy+—) j/eps'I', (A15c)

and

X = (ts aEt)/»—
s=2(ts' —4a'E '—P') /Z

8=LP'+ (ts —2uEt) 'j/Z

y=(2aW/P) tan '! !t

P(1—x)
k (ts+2aE&) +(ts—2aEt) x&

A4=AI Atpt(psp++Dtps)

2B,(Dop~ +psy—++psoop ) j/eps'», (A15d)

As =—2Btptttjoop++Dtpsj//epstlo (A15e)

As = —A qZosAs/4Bqeopb (A15f)

Ao =I'eAs/2coptE (A15g)

To simplify the writing of the coefBcients appeariag
in (A7), we first introduce the following set of defi-

and

Rt =Ath4+4 —3Dsl/4P, (A 168)

' In writing L„we have omitted the phase factor ) I'(( a j+
@p/6') I/r(l s I+i'/E), since only

l
I; l' appears in the

transition rate.

Rs ——&+4(A ty~ —2') -Ds(3A ty~ —Atps —68t) j/4P,

(A16b)
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1

P„= Ch ~~(1 x—) f„(x)
0&4= &[@4{AN+pa 28—(v++~P )}-

—Ds I A un(3P++pgP') 28'—(3pg+6P+ —(up3) }]/4P,

(A16d)

(A16e)

Detailed examination reveals that the f„(x) are rela-

tively slowly varying functions over the interval 0&x& i
for aO cases. The structure of the integrand then sug-

gests that, if f„(x) is expanded in a Maclaurin series,
the resulting series for F„will converge quite rapidly.
Performing such an expansion, we obtain

Bs=B&f—p4P+pi+D2~(3P++~) ]/2P,

(A161)ate = Ax&'[y4P+ Da(—3P++ps) j/gP~,

Rr = —28|RE/Agh. (A16g)

+=E'[jog(Agy++A ga)P —28gy+) as employed in I. Ke observe that all the fundamental
integrals are of the form—Ds f Ag(31n+6P+ —a)pg) 2—8~(3y+ ~) }j/4P)

(A16c) (A17)

To complete the analysis we must evaluate the funda-
mental integrals (A9), (A10), and (A14). Although
this cannot be done in closed form, rapidly converging
series expansions are obtainable using the same method

from which the various fundamental integrals may
then be evaluated.

PHYSICAL RE VIE% VOLUME 178, NUMBER 4

Triton Reactions near 2 MeV: Elastic Scattering
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Tritons have been elastically scattered from a number of light nuclei, and the data have been analyzed
in terms of the optical model. Geometries have been found. which are applicable to IBe, ' "B, and '~C,
and to»F and IGNe. The real central well depths are approximately 140 MeV, and the spin-orbit vrell depth
is greater than that expected from theoretical considerations. Ambiguities in the parameters are discussed.

1. INTRODUCTION

& tHERE has recently been much interest in the..scattering and reactions induced by mass-three
particles. Because of the success in describing the elastic
scattering of deuterons and 0. particles with the optical
model, a similar analysis for the scattering of 'H appears
plausible. Many optical-model analyses of 'He scatter-
ing have been performed, ' but there have been relatively
few analyses for tritons. ~ The present paper is con-
cerned with an optical-model analysis of the elastic
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scattering of tritons with bombarding energies near
2 MeV.

Although the triton energy is low, the scattering from
the target nuclei 'Be, '0B, "B, ~C, '9F, and Ne gen-
erally exhibits structure that is capable of yielding
optical-model parameters which may be further tested
by their employment in distorted-wave Born approxi-
mation (DWBA) calculations. In order to reduce the
region of the parameter space searched, the results of
other analyses have been used to obtain starting points
for the calculations. Additional constraints on the
acceptable solutions are supplied by the theoretical
model, which suggests that the optical potential for a
complex projectile should be the sum of the nucleon
optical potentials for its constituents averaged over
their internal wave function. ~~

In Secs. 2 and 3 the triton experiments and optical-
model analysis are briefly considered. In Sec. 4 there
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