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The variational principle for the energy is used to derive integrodiGerential equations for the two-body
functions which, when combined in the product form, yield the "best" independent-pair wave function for the
a particle. A practicable iteration procedure for finding approximate solutions to these equations is developed
and is used to obtain an approximate ground-state wave function, for an example, four-body Hamiltonian for
which the potential is central. Improvements in the iteration procedure are described which make it a
feasibl method for solving the integrodi8erential equations even when tensor forces are included.

I. INTRODUCTION cipal S and D states of Cohen's classification of the
wave function are retained.

II. S-STATE EQUATION

A. Derivation of the IDE

If the interaction between the nucleons is assumed to
be given by a spin-independent, central potential, the
ground state of the n particle consists only of the prin-
cipal S state of Cohen's classification and the magni-
tudes of the other 16 terms are zero. We write this S
state as

O', =C,F, (rg, rg, ~ ~, rg),

@.=2 '"(s ix2-v ~x)
with

where rl to r~ are the six interpartide distances illus-
trated in Fig. 1, the function F, is symmetric in the
interchange of any two of these six variables, and q»

and q2, which are functions of the spin variables, and

xl and X~, which are functions of the isospin variables,
are defined by Cohen. '

In this section, we drive an IDE for a function f,(r)
so that with the function Ii, approximated by the prod-
uct

(2)

the upper bound to the ground-state energy as given by

(3)E„=(g „Hg,) /(%. , @,)

is the lowest possible for a wave function of this prod-
uct form. The c.m. part of the wave function has been
factored out and cancelled in these expressions.

The spin and isospin variables are easily summed out
in Eq. (3), so that, using the functional form (2), we

get~ Work sponsored by the National Science Foundation.' L. M. Delves and G. H. Derrick, Ann. Phys. (N.Y.) 23, 133
{1963).' A. R. Bodmer and Shamsher Ali, Nucl. Phys. 56, 657 {1964).' L. Cohen, Nucl. Phys. 20, 690 (1960);22, 492 (1961).' A derivation of this set of 32 equations is given by Van Dyke
(Ref. 5) . Actually, 34 equations are obtained, but two of these are
not independent of the others.

'P. Van Dyke, Ph.D. thesis, Lehigh University, 1968 (un-
published) .' E. W. Schmid, Y. C. Tang, and R. C. Herndon, Nucl. Phys.
42, 9S (1963).

& =EIIf.( ), IIf.( )j/LIIt'. ( ), IIf.( )3
m 1 s 1

(4)
where

3'.=Q T(r;)+ Q S(r;, r;, rg)+Q s(rg), (5)
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1OLLOWING the ideas used by Delves and Derrick'
. . and by Bodmer and Ali' to obtain the "best" pair
wave functions for the three-body nuclei, we derive
below the integrodifferential equations (IDE's) for the
best pair wave function for the n particle. An exact
iteration solution of these IDE's is not feasible in the
four-body case, because the integrals in these equa-
tions are five-dimensional. To overcome this, an approxi-
mation is made so that these integrals can be reduced
to one- and two-dimensional ones.

If, as assumed by Cohen, ' the 0. particle has total
angular momentum 0, total isospin 0, and even parity,
the ground state of the 0, particle can be written' as
the sum of 17 terms, each of which has a definite orbital
angular momentum. By generalizing the procedure
that is used in Sec, II and in the Appendix, one' ' ob-
tains 32 coupled IDE's for the 32 two-body functions
which are to be combined to form the best independent-
pair approximation for these 17 terms of the O.-particle
wave function.

The O.-particle wave function consists of only the
principal S state of Cohen's classification and the
magnitudes of the other 16 terms are zero if the inter-
action between the nucleons is independent of spin
and is central. In Sec. II, we derive a single IDE for
the two-body function which is used to construct an
independent-pair approximation for this S state. We
solve this IDE in Sec. III for the example of a four-

body Hamiltonian in which the interaction is given by
the hard-core potential II of Ref. 6. After critically
discussing this example in Sec. IV, we examine the
feasibility of solving the set of two IDE's which are
derived in the Appendix for the case in which tensor
forces are included in the Hamiltonian and the prin-
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or

f'e', d'(ref, (rg) ) df, (rg)
G rg

m dr/ dry

+Le(ri)+~(ri) jf.(ri) =&f.(ri), (7)
where

e

I(~) =[&(~)] '/& &[[If(~.)]
X[4T(re) +T(re) +2$(re, re, rq) +4$(re, re, re)

+2$(re, re, re) +4s(re) +s(re) jlI f, (r„), (8)

Q g Cj s Q Fg g oo

0+%,, t car

FIG. 1. Coordinates with nucleons at points marked 1-4.

in which the symbol (e,j, k) means that the sum is
over all possible values of i, j, and k, so that r;, r;, and
rI, form a triangle;

T(r;) = (f'ee/ere) r;—'(Pr /Br s-)

r{ +re —r4 dfi(re)

r r2 dry

(10)

S(r; r;, re) = —(fP/2rre) [{(rs+rP —ree)/ra"](8 /Br,8r )

s(r) is the central potential, and the scalar product
(, ) is an integral over the six-dimensional space of the
interparticle distances with the volume element and
limits of integration that are given by Cohen and
Willis'

The variation of the functional form of the f. to ob-
tain the minimum of E„leads to the condition

rgdrgbf, (rg)
0

Xf,(r,) =0, (6)

where the integration over the variable r& is arbitrarily
chosen to be written separately and integrated last.
The total volume element rjdrjdre and the limits of
integration are thosen given by Cohen and %illis~
and mentioned above. In establishing Eq. (6), we use
the Hermitian property of the operator 3'. and the
symmetries of the Hamiltonian and wave function.
The ground-state value of the Lagrange multiplier X
is equal to F.„.

Since the variation of the function f, is arbitrary, we
conclude that

' L. Cohen and J. B.Willis, Nucl. Phys. 18, 125 {1959).

B. Approximate Equation

It is not practicable to solve Eq. (7) exactly by
iteration, because the integral terms, I, G, and 8 are
6ve-dimensional integrals which require excessive com-
puter time to evaluate by numerical integration. In-
stead, we choose to approximate these terms by re-
placing the functional form of f, (r) by

f,(r)~N exp( —ar'/2) (11)

in those parts of the integrands which depend only on
the average behavior of the function f, and are not
sensitive to the details of f, Thus, this. substitution
(11) is not made in the expressions T(r)f, (r) and
s(r)f, (r) .

As a result of this approximation, the lowest eigen-
value ){, of Eq. ({[) is no longer equal to Z„of Eq. (3) .
The criteria for choosing the parameter a are discussed
as part of the example in Sec. III.

With the substitution of expression (11) as described
above, the expressions (8)-(10) become

I(r) =[ (r)]e'f {4exp(-aRp)f (r )[2'(r )+e(r )]
Xf, (re) +exp( —aRee) f, (re) L T(re) +s(re) jf.(re)

0%
exp( —aR') (4re'+re' —rP) I dre, (12)

2' (G(r, ) =—
~

exp( —aR4e)f, (r4)
ennea(r, )

r{e+ree ree df, (re) {—
X dre, 13

rye dre j
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and

B(r ) f exp( —2P)4

Expression (15) is further manipulated by carrying
out the elementary integrations over re and 8 to give

B(r)) =42r"'(3a) ~"exp( —2arP)

where »+2 !x Z (g)"'* Z 2-'"
( )() (k»+1) ! ( )~e

IV =Q re and Ifs'= If4 rs-'
im

xg ( —1)' (—1)"

~ ($»4 —f)!l!~ ($»4-k) %!(2k+»—»4+1)The above integral expressions as written in the
interparticle distance coordinates r~ to re are compli-
cated by inseparabilities introduced by the volume
element and the limits of integration as expressed in
these coordinates. Cohen and Willis' introduce new
coordinates to remove these inseparabilities, but these
are not convenient variables to use here because the
interparticle distance which is labeled re and is skew to
the side labeled rj in Fig. 1 cannot be chosen as one of
his coordinates. Thus, those integrals which contain
operators'in re can not easily be evaluated. To overcome
this, we'introduce the coordinates r), r4, r4, f, 8, and ()2

as shown in Fig. 1, for which

( 1)2'r ere+2'

Xg . . .J(», »4, l j,a, r&) 2» tS j) Ijl2i

where

J(», »42 fej, a, r, ) =r&-("+2+" ds z"+2
rl

rp'=r)'+r4'-2r)r4 cosf,

r44 =r44+r42 —2r4r4 cos8,
and

r44 =rP+r4'+r4 -2r4r4 cos8 —2r&r4 cmP

+2r,r4(cosf cos8-sing sin8 cos((p) .
In these coordinates, the integrations involved in

expressions (12)-(14) can be partially carried out.
To illustrate this, consider Eq. (14) in these coordinates;

p(r) =1(rex exp( —2erp) J prx, 'exp( —4erp)
0

X
0 0 0

X exp 40fr~r4 c 40fr4re cos8
0

+2«)r4(sing sin8 cosy —cos()! cos8) j. (15)

We proceed by expanding the part of the last exponen-
tial factor which contains re,

exp j 2are[cos8 (2r4 —r) cosf) +rz sing sin8 cos()2)I,
in a Taylor series in powers of its total argument. After
the integration over y is performed term by term, this
series can be further expanded, by using the binomial
expansion theorem, in powers of r), r4, r4, cosf, and
cos8. The resulting series is

III. AN EKQKPLE

As a test of this method, we use it to construct a
product function of the form of Eq. (2) for the ground-
state function of a four-body Harniltonian in which the
potential expression is given by $ the sum of the singlet
and triplet parts of the hard-core potential II of Ref. 6.

The product function so obtained is used in Eq. (3)
to calculate an upper bound to the ground-state energy

cxs m/8 sos/2 ss-Ns

g (2«4). g ~2-g g g (—1))+~
sss(even)M L~ ~ i~

r ~+'(2r )"~2'(cos()!)"+'(cos8)'~~
X

($»4 l) !l!($»4——0) !!t!(» »4 j)!j!——

X dr4r4" I+' exp —40, r4'-sr4
0

in which the substitution s=r) cos)fp is used. The rates
of convergence of this series for B(r,) and of the
corresponding series that are obtained for I(r)) and
G(r)) are rapid and independent of the values of the
variable r~ and parameter e. In all cases, the error is
less than $% if the sum over» is cut off after seven
terms.

There is one signi6cant diBerence between the
method of evaluating the integral expressions for I(r)
and G(r) and that described above for B(r). Since the
approximate expression (11) cannot be used for f, (r4)
in part of the integrand of Eq. (12) for I(r&), the inte-
gration over re in such terms must be performed numer-
ically because f, (r4) is speci6ed only numerically from a
numerical solution of Eq. (7) which is carried out in
the previous cycle of an iteration procedure. Similarly,
in some of the integrations over r4 in Eqs. (12) and (13),
the function f, (r4) is taken to be this same numerical
solution from the previous iteration cycle.

With this reduction of the integral expressions, an
approximate solution of Eq. (7) for the function f,(r)
can be obtained by the iteration procedure which was
alluded to above. At each cycle of the iteration, the
approximate forms for G(r) and I(r) are determined
by the procedure just described, and then Eq. (7) is
solved numerically for the function f, that is used to
determine G(r) and I(r) for the next cyc!e. Five such
cycles are sufBcient in the example reported in Sec. III.
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2o0$ e '~ W V

for the Hamiltonian in which the Coulomb repulsion
between the protons has been included. A Monte Carlo
method of integration similar to that described by
Herndon and Tang is used to evaluate the integrals in
this expression. For 100 000 random samples, the
uncertainty in the value of E obtained is less than
0.1 MeV as judged by the variance.

The wave function, and therefore the energy limit
E that is obtained, depends on the parameter 0. that
appears in the Gaussian approximation to the function

f, which is given by Eq. (11). This dependence of the
energy is illustrated in Fig. 2. If we apply the usual
variational-method criteria, the best value of e is that
at the minimum of this curve: +=0.105 F '. Since the
minimum of the curve in Fig. 2 is so broad, it is clear
that the value of e is not critical. We give the reasons
for this in Sec. IV.

Fortunately, it is not necessary to calculate the
values of E for a range of a as was done in this example
for illustrating the method. A value of a near that at the
minimum of the curve in Fig. 2 is given as the solution
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function f(r) and its Gaussian approximation
for three values of a.

R. C. Herndon and Y. C. Tang, in Methods ie Cme
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Fro. 2. Upper bound of the energy given by Eq. (3) for a range
of the Gaussian parameter a. Vertical lines through points repre-
sent the possible range of values as estimated from the variance
found in the Monte Carlo sampling.
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Fro. 4. Nonlocal potential E(ri) for two values of the Gaussian
parameter a. For comparison, the local potential o(ri) is shown.

and four-body systems, respectively, with the same
interaction between the nucleons. SufBciently accurate
values of B3 and B4 can be obtained by the procedure
described by Mang and Wild. "

In the example reported here, we use expression (16)
for r) 7 F and use Eq. (7) to continue the function for
smaller values of r.

IV. DISCUSSION

A. Comyarison with Other Methods

The example discussed in Sec. III was selected be-
cause other calculated values for the binding energy of
the four-body system with this same interaction are

~ The asymptotic behavior of the a-particle wave function is, of
course, very complicated. This simple behavior (Ref. 11) is
correct only within the limits of the validity of the independent-

air approximation. A complete discussion of this for the three-
y systems is given by Bodmer and Ali (Ref. 2).' H. J. Mang and %'. Wild, Z. Physik 154, 182 (1959).

to the condition that the rms radii obtained for the
function f,(r) and its Gaussian approximation in Eq.
(11) be equaL This condition can be made part of the
iteration process that is used to solve for f„and so the
computer time to solve the entire problem is reduced
to the time that is used to obtain any one point shown
in Fig. 2. That this criterion yields a value for e close
to the value at the minimum of the E„-versus-n curve
is demonstrated by the curves given in Fig. 3, in which
the function f, and the corresponding Gaussian func-
tion are compared for three values of the parameter 0,.

The errors in the evaluation of the coeKcients G(r)
and I(r) in Eq. (7) which are due to the replacement
of the Gaussian function for f, (r) increase as r becomes
large. Fortunately, the correct asymptotic behavior
of f, (r) is known9 to be

f,(r) r "exp t
—L(m/65') (B4—BI)]'I'rI (16)

where B3 and B4 are the binding energies of the three-
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availableB" for comparison. We get (with the Coulomb
repulsion between the protons included in the Hamil-
tonian)

E„=—30.07&0.10 MeV,

while one of us obtains"

E„=—3039~0.15 MeV

by another method.
If, as described in Sec. III, the parameter a is deter-

mined to give a consistent rms radius as part of the
iteration procedure that is used to get an approxi-
mate solution to Eq. (7), it takes about 2 min on a
CDC 6600 computer to carry out 6ve cycles of this
iteration. While this is slightly longer than was used to
solve the same example by the method described in
Ref. 11, it is not yet clear which of these methods is
better when noncentral forces are included in the
Hamiltonian.

3. Future Improvements

As noted in Sec. III, the wave function and the
energy E that are obtained do not depend sensitively
on the value of the parameter a which appears in the
expressions that are used to approximate the coeK-
cients I(r) and G(r) in Eq. (7). The reason for this
insensitivity is that the nonlocal terms G(r) and I(r)
are small, smooth, slowly varying functions of r which
have only a small effect compared to other operators
in Kq. (7) such as the potential s(r). This condition is
particularly true for I(r), which is nearly constant, as
illustrated in Fig. 4, and therefore the effect of this
nonlocal potential is to contribute to the eigenvalue X

without signi6cantly affecting the wave function. Thus,
even though these nonlocal potentials change as 0. is
varied (see Fig. 4), the solution for f, (r) does not change
much.

Because the solution is not sensitivily dependent on
the terms I(r) and G(r) and these terms are smooth
functions anyway, one is justified in replacing I(r)
and G(r) by simple analytic functions which are ad-
justed to be equal to the values calculated for I(r)
and G(r) at a few values of r This repla.cement reduces
the computer time signihcantly so that one can realis-
tically attempt to solve the two coupled IDK's (A3)
and (A4) for the two pair wave functions which are
to be used to form the best independent-pair approxi-
mation to the dominant S and D states of the e-particle
wave function. Even with this simpli6cation, we esti-
mate the time needed to solve these coupled IDE's to
be about 20 times that used to solve the single equation
for the S state alone. We plan to carry out such a cal-
culation soon.

APPENDIX

In this Appendix, the potential between each pair of
particles is assumed to be of the form

V(j, I1) =p(1+I',), ) V()(re)+$(1—I'f& ) VL(rfs)

+S V (r;.)]Lk(1+&,")],
"R.Folk, Nucl. Phys. A122, 353 (1968).

where ~;I, is the distance between partides j and k, and
I';» and P;~' are the spin- and space-exchange oper-
ators, respectively. The terms Vz(r;&) and V1(r,f,) are
the triplet- and singlet-central even potentials and the
term S;BVr(r;f,) is the tensor-even potential, where

S;» 3——(a; r, )B(aB rfs)/r;B' a—; a„

We may retain here only the spatially symmetric S
and D states of Cohen's classification, ' since, as others"
have argued, the magnitudes of the other 15 states are
small. The structure of the space-symmetric 5 state
is given in Eq. (1) and that of the space-symmetric
D state is

VD = 4DPD (r1, rs, ' ' ', rs), (A1)

r =$(r,+r&), 2-c/2& @=2-'I'rd

and where the spin function y~ and the isospin functions
y& and y& are de6ned by Cohen. ' The function F&,
which is symmetric, is approximated by the product
form

IIf (r') (A2)

which is the same structure as is given for F, by Eq. (2) .
In this case the requirement bE„=O for arbitrary

bf, (r1) and bfD(r1) yields a pair of coupled IDK's

and

where

+SB (rl)f, (r1) +&SD (&1)fD (rl)

IDD(r1)fD(r1)+ISD(r1)f, (r1) =0,

(A3)

(A4)

d e

sfs(n) f&'LIIf (~)]-(@
I
+—

& l@)IIf (~)
i 2

d d

f* ( )=f& LIIf ()j( If(—
I .o)?If ~(.),

d d

I- u(, ) fd, Iffy(r;) (+ Ij&—I Ie )Pf (r).
1'm

The scalar product ( ) is a sum over the spin and
isospin coordinates.

& G. Abraham, L. Cohen, and A. S. Roberts, Proc. Phys. Soc.
(London) 68, 265 (1955).

where

CD = (2)-'"I q)D (L22],ss) ~—((D (L22], aa) xs},

B)D(L22],aa) =D(in, ~),
SD(t'22], SS) = (3)-'fs(D(r, r) —)D(y1, @)—$D(@,~) )

D(a, b) =L(a1 a) (as b)+(as a) ((t) b)

—X(~1 as) (a.b)]SL
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It is interesting and important that, as pointed out
by Cohen, ' the expressions obtained by this sum over
the spin and isospin coordinates depend only on the
interparticle distances r~ to re. In particular, these
expressions do not depend on the Euler angles which
can be used to give the orientation of the tetrahedron
that is deaned by these six interparticle distances. Thus
we are spared the horrendous task of converting the
kinetic energy operator to the interparticle distances
and K.Ger angle coordinates as is done by Derrick"
for the easier three-body problem. Nevertheless, the
spin sums lead to a very long expression for the kinetic
energy part of L~~.

A technique for simplifying the spin sum procedure
is described by Irving'4 and by Van Dyke/ For L&8
we get

obtained for L~~ becomes very long, and, since it is
given in Ref. 5, we do not give it here.

By rearranging the various terms in La& and L»,
we can write Eqs. (A3) and (A4) in the form

, &(g.( )) df. ( )
ra drP dr)

+{s(r~)+I(rh) jf, (r~)+ fn(r)) =))f.(r~) (A7)
Isn(rz)
8 rg

and

——r ' +K(r ) +M(r, )f (r,)
f5 dt'g ding

where, in exPression (5) for the oPerator &, we sub- where G(r,), 1(r~), g(r~), and Lsn(r, ) are given,
stitute s(r) =$LV, (r)+V()(r)j. respectively, by Eqs. (8), (9), (10), and (A6), and

Kith the spin sums carried out, the operator La~ is

XPD f, (r;)f~(r;) j{r4 'Vs (r4) [ )r4'(rP+rP—+r4'

+rP+re' —2ra') +r+e'+r&bz' —rgr52 —rq rgb

~ G. H. Derrick, Nucl. Phys. 15, 405 {1960)."J.Irving, Proc. Phys. Soc. (London) 66, 17 (1953).

The terms K(r~) and M(r~) are integral expressions
X[—)n'(r, '+er, '—tr')+sr, '(r,' —r,')]—2f tt which are the Parts of the oPerator Loo(r ), which is

given in Ref. 5, that are not given explicitly in Eq.
e (AS) .

The iteration solution of the two coupled IDE's
(A7) and (AS) for the pair functions f, (r,) and fn(r~)
proceeds in a manner similar to that described for
solving Eq. (7). A second Gaussian approximation in

++&~V&(re)[(—)A(rP+4rf —2rP)+2r, '(rP —rg)]I. addition to that given by Eq. (11) for f,(r) is used for
f~(r), i e , fn(r) N. o.s ~'". The Gaussian parameters

(A6) can be efhciently determined by the conditions that the
functions have the same rms radii as their corresponding

After the spin sums are performed, the expression Gaussian approximation.
By incorporating the time-saving techniques which

are discussed in Sec. IV 3, this iteration procedure for
obtaining f, and fn becomes a practicable method.


