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Theory of No»inear Effects in Crystals in the Second-
Quantization Representation
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A method for an exact theoretical treatment of nonlinear {anharmonic) sects in crystals in the second quan-
tization representation is presented. The method represents essentially a generalization of Bogolyubov's
method of approximate second quantization. In addition, the Fermi representation of elementary excitation
creation and annihilation operators is given.

INTRODUCTIOÃ

'HE basic idea in the application of the second-
quantization method in theoretical solid-state

physics is to reduce the description of phenomena in a
system consisting of many interacting particles to the
description of phenomena in a gas of quasiparticles.
For this method to be applicable to the calculation of
the relevant physical characteristics of the system, it is
necessary that the quasiparticles obey Bose or Fermi
statistics. In the rigorous formulation of the second-
quantization method, " the creation and annihilation
operators of excitations in molecules (these should not
be confused with the creation and annihilation operators
of molecules in given states) satisfy neither Bose nor
Fermi commutation relations. These operators and the
corresponding commutation relations will be called
quasi-Pauli operators and quasi-Pauli connnutation
relations, respectively. The appearance of quasi-Pauli
operators leads to serious difIiculties in the application
of the second-quantization method to the theoretical
description of phenomena in solids. These di6iculties
are of two different kinds. First, the quasi-Pauli corn-
mutation relations are not invariant with respect to
the standard transformation from the lattice space
into the reciprocal lattice space, and this, as is well
known, is the only transformation which enables one
to use, in the simplest and the most efIicient way, the
translation symmetry of the crystal for finding collec-
tive modes of the crystal. Secondly, even if we could
find another transformation to collective coordinates,
which is canonical for these operators, we would still
be faced with the difhculty that statistics have not
been developed for this type of quasiparticle, and
hence, we would not be able to use the standard statisti-
cal formulas for the calculation of the relevant physical
characteristics of the system. The only way out of such
a situation then is to express somehow the quasi-Pauli
operators through Bose or Fermi operators. In this way,
one substitutes a system of quasi-Pauli particles by an
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equivalent system of bosons or fermions. This equiva-
lence should hold at least with respect to the integral
physical characteristics of the corresponding systems.
Such integral physical characteristics are, for example,
internal energy, magnetization, dielectric constant, etc.
For low excited states, i.e., for low concentrations of
quasi-Paulions, the equivalent system is a system of
noninteracting bosons. Formally, this means that in
this case, the deviation of quasi-Pauli commutation
relations from Bose commutation relations can be
neglected. (see Ref. 1, p. 203.) This approximation is
called the method of approximate second quantiza-
tion."In fact, one may say that until now the method
of second quantization has been successfully used

mainly in this approximation. There exist, however,

physical situations in which the interaction of ele-

mentary excitations (nonlinear or anharmonic eGects)
cannot be neglected, because of their relatively high

concentration. Such a situation exists, for instance, in

the vicinity of the transition temperature in magnetic
and ferroelectric materials and in molecular crystals
when they are illuminated with laser beams, etc. In
these cases the method of approximate second quantiza-

tion, obviously, is not applicable. Because of the
development of experimental techniques, which has
been very intensive in recent years, just those physical
situations, in which the concentration of quasiparticles
is relatively high, are becoming more and more the
subject of interest in both experimental and theoretical
solid-state physics. It is, therefore, necessary to find

an adequate method for the theoretical treatment of
nonlinear sects within the frame of second quantiza-
tion. In this work we suggest such a method.

In Sec. 1, Bogolyubov's method of second quantiza-
tion in theoretical solid-state physics is presented. In
Sec. 2 the exact Bose and Fermi representations of
quasi-Pauli operators are given and Hamiltonians of
dynamic, dynamico-kinematic, and kinematic inter-
action between bosons are formulated. In the Conclu-

sion, we summarize possibilities of application of the
method developed in Sec. 2.

3 S.V. Tyablikov, The Methods of Quantum Theory in Magnetism
PIzd. NAUKA, Moscow, 1965 (in Russian) j.
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I. BOGOLYUBOV'S METHOD OF
SECOND QUANTIZATION

In this section we shall present essential parts of the
second-quantization method in solid-state physics, as
developed by Bogolyubov' '

Let us consider a crystal composed of E identical
molecules. 4 The positions of crystal molecules shall be
denoted by g. In the general case g=—(n, n), where n is the
position vector of an elementary cell of the crystal,
and n denotes the position of a molecule within the
elementary cell. Throughout the paper we shall suppose
that molecules do not oscillate around their equilibrium
positions, i.e., phonon eAects will be neglected.

For the basic system of functions we shall take the
wave functions of isolated molecules, i.e., the solutions
of the eigenproblem

panded in terms of the functions (1.2), i.e.,

% (xl x x&g) =
~ ~ v+Vg v ~ ~

C( 0t.., )O...R„...

X(xl . .x, x»t), (1.4)

2 angl+2 2 ~glggt
gl gIg2

(1.5)

where VgIg2 characterize the interactions of molecules
in the positions gi and g2. In the second-quantization
representation the Hamiltonian (1.5) has the form
(see Ref. 1, p. 191, and also Ref. 3, p. 48)

where C( K„) are the wave functions in the
second-quantization representation.

Taken with an accuracy to two-particle interactions,
the Hamiltonian of the considered system can be written
in the form

(x )=&"V".(*.) (1.1) K= P A„(V&,V2)a„„&a„„,
where kg is the Hamiltonian of the gth isolated
molecule, xg is the set of internal coordinates of the gth
molecules, and v is a set of quantum numbers which
characterizes the state of the molecule. The ground
state of the molecule wBl be symbolically denoted by
v=0.

In further treatment, we shall limit ourselves only
to states of isolated molecules which are described by
antisymmetric wave functions in the coordinates x,.
In most cases, though not necessarily, these are elec-
tronic states of the molecule, i.e., xg are the coordinates
of electrons in the molecule.

I.et us designate by K„g the number of molecules in
position g in the state v and assume that v takesa
finite and ordered set of values v=0, 1, 2, - IV.' I-et
us also form the antisymmetrized and orthonormalized
products

+ "Srvg v (xl xg x&g)

=LB'~)'j '"2 (—I)"&II ~ "(*.) (1 2)

glvlv2

+3 2 +gtgg(V&V2t "3"4)+vlgl +v222
glg2vlv2v8v4

X4&v4224&v2gl ~ (1.6)

The operators a„g are deined in the following way:

8„,C( X„, )= (—1)~(""&&("&sr"2'

XC( 1—~„)
R„&C( K„)= (—1)~&"g &«g&~"'(1 Ot„g)—

X C( 1—K„g ) . (1.7)

They satisfy Fermi commutation relations in both
indices, ' and the matrix elements A„and Bglg2 (gl&g2)
are given by

+ gl(VltV3& tvrgl vvllll ~~glKv2gl 1

Bglgl(V1V2tV3V4) 3' TEd7g, drg2yvIgI Pv2g2 r gIg2VvegI+v4g2
where A is the number of considered objects (electrons)
inside the molecule, which are described by antisym-
metric functions, and I' is the permutation operator
for a pair of objects (electrons).

In order to exclude from consideration the cases when
two molecules in di6erent states are in the same posi-
tion g, we impose the following conditions on numbers
K„g which take values 0 or 1

(1 3)

Any state function of the considered system can be ex-

' N =N'8, where M is the number of elementary cells in crystal,
and $ is the number of molecules in an eleInentary cell.' The case when v takes an infinite number of diferent values
can, in principle, be treated in the same way, but in practical
calculations this leads to complications.

—exchange terms. (1.9)

The operators 8„~ generate Hilbert space (R of
fermino states which is wider than that in which the
conditions (1.3) are satisfied. ' However, we shall con-
sider only the part 5 of the space (R in which the condi-
tions (Eq. 1.3) are satisfied. This subspace shall be

'In Ref. 2, the Hamiltonian (1.6) is expressed in terms of
Pauli operators bvg, which for the same g and v obey Fermi com-
mutation relations, while for di6erent g and/or v they commute.
The connection between operators bvg and Cfvg is:

bvg = (—1)Z(",g')&(v g)&v'g'Svg.

The notation (v'g') &(vg) (v and g are ordered) means: if g'&g
then (v',g')&{v,g); if g'=g then (v',g')&(v, g) if v'&v (see Ref.
1, p. 166).

'The numbers X„, which appear in (Eq. 1.3), are the eigen-
values of the operator X,g= C,g~C„g.



LALOV I C, TO%I C, AN D 2A KULA 178

called the space of physical states. The complementary

subspace X of the space (R will be called the space of

nonphysical states. From the structure of the Hamil-

tonian (1.6) it is not diflicult to see that it is closed

inside F.
If we introduce new Fermi operators C„g by means of

the unitary transformation

~t u= Z 80(74 v)~& u (1.10)

where the functions 80( 7,4v), apart from the unitarity

condition, also satisfy the following conditions:

Q 3 PI(vi) VS)801(74IVS)+ BPNS(VSVS,'VSV4)

g22llu22'8 (glv g'Il)

X8gs*(Ovs) 8g (004)8u (74vs)

74=0, 1, 2 .W (see Ref. 1, pp. 194, 196, and 197) and

take into account the conditions [Eq. (1.3)] written in

(R by means of new Fermi operators 0,'„g:

Let us now introduce the operators

+/lg ~Og +lag and 6 lsg Sfsg Cpg e (1.14)

VNI gapa ] plus(+0018vlvs ~gags ~vlgl) I
f

[+VNASPS]= [6'VNS I+usus ]=0 I

+lsl g 1+f21g1 +f2 1g 1 +I74%g 1
t-

+fslgl+Pggl +Ogl@lslgl~f3%gl & Pl+ P2 )
t=" t

gs, ga

PIPS 0101 PNI( OP1) '

In the subspace P the relation (1.15e) becomes

(1.15a)

(1.15b)

(1.15c)

(1.15d)

(1.15e)

It is evident that the operators 6'„,t and (P„g are the
creation and annihilation operators of the excitations
of type p, on the molecule g and, as we said in the
Introduction, we shall call them quasi-Pauli operators.

Since Q,„gf and S„g satisfy Fermi commutation rela-
tions, it can easily be seen that in the space (R the opera-
tors 6'„gt and 6'„g satisfy the following commutation
relations:

fs 0

(1.12)
A,

1 1 PI 1 lvlgl KVNI Cglgs Svlga (1'16e)

so that in this subspace the conditions (1.12) can be
then the Hamiltonian (1.6) can be written in the form:

where

r= —Eo,

3C7 =Kl+Xs+3CS I (1.13)

(1.13a)

l„,=O or 1; P l„0=0 or 1; P l„p&X (1.12a.)

gllsl glgSf7318$

X tvlgl +001+usga +ous+TPIPS(i 7 17 2) ~oui ~PNI

X Q'ogs gags+ PIPS(j 1 i 7 2) VNI ogl

X eo„te„„,], (1.13b)

~l 2 ggl(741I ) ~vlgl r101I71+2 Z [TPNs(741742I 00) Taking this into account, we see that operators(P„g
satisfy in F the following commutation relations:

[PPNIIPusps ]—80102[80102(1 Q 1001)

Pusul PP1PI] I (1'16a)

[Tulsa(3 73 SI 7 30)~01PS ~usus ~suseusul
gl gSlsl PSCQ

+Tglgs(741742i 02 3)+PNI ~usus ~gags@ass

+Tulsa(7410;742743) Ctglus Cous 8030280201

I +PNII+Paus] [+PN1 I+gaga ] 0 I

+f81g16 f8101 +l81gl +f8%g1
t—0

+0NI+psps OI 4 1+( 2) '

(1.16b)

(1.16c)

(1.16d)

(0 ) 2 tg g ] (1 13 )
In addition, the following is true in

(1.17)@81gl ~Angl +fslgl +fsSgl &

Tulsa(747742 i 743744) Ctulus &4303
glg2lsllsRP384

(1.13e)
K—KJ+X2+K3 p

X Q Q (1 13d)
Written in terms of the operators (P„„Hamiltonian
(1.13) has the following form in F:

Sg, (74,0)= Xg,(74)—X„(0),

EO= XPI(0),
TPNS(741742i 743744)

Z usus("1"si "sv4) 01 (744"7) us (742I"2)
111VQ21$214

(1.13f) where

gl glfsli77$gllsl
PCS Z '41(7410)6 0101 611gl+ Z [Tulgs(l 10i 0742)

X8„(743vs)8 (744,v4) (1.13g)3.

ll Let us remark that ig all formulas (j..13b—1.13g), p;Wo.

X+ulul + +CAPTsualu (~u7su 2)+1Plus+0302

+s2T0NS(737742i 00)71'PNI 8'0202 ]I (1 Iga)
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X2 2 2 [~Pigs(PI3 SI I 3 )+plgl +psgl+usps
gl g2fs1fx2fx3

+Tgigs(3413 Si 343)+SIPI +usus +usus

+TPIP2(3110 I ISSI43)+ulg I +PSPI+PSPS

+Tplps(0311I 342343)(Puspi(PPIps (Pusus] I (1.18b)

XS= 2 Z ~PIPS(34&SI ISSI44)
gl fI2Isl is2P3P 4

X&PIPI CPuspICPusgs Puips (1 18c)

It is obvious from the procedure presented above that
the operators 6'„, are introduced in order to include as
many terms of the fourth order (in operators 8„P) as
possible into the quadratic (in operators (P„g) part of
the Hamiltonian. Since the quadratic part of the
Hamiltonian describes essentially the system of non-

interacting quasiparticles, the transition to the opera-
tors (P„, makes it possible to include most of particle
interactions into the energy of free quasiparticles. On
the other hand, the transition to the operators 6'„,
leads, as we have already stated, to de.culties in con-
nection with the commutation relations for these
operators, which are of neither Bose nor Fermi type.
The 6rst difBculty arises when one attempts to diag-
onalize the quadratic form (1.18a). In order to ac-
complish this diagonalization, the quadratic form has
to be expressed either through Bose or Fermi operators.
This can be achieved, of course, simply by substituting
Bose operators „, for quasi-Pauli operators O'„,. Such
an approach is called the approximate second quantiza-
tion method. Obviously, the substitution O'„,=S„,
introduces a certain error, because the commutation
relations for I„,and (P„, are not identical. This error,
however, is small insofar as we consider only states for
which (J„g)=0 (34/0). It can be easily seen from the
relation (1.16a) that in that case the substitution
(Pup=Sup is justifiable. The same condition (1„p)=0,
p, &0 which gives us right to make the substitution
(P„,=I„,requires, on the other hand, the rejection of
terms XS and XS in the Hamiltonian (1.18) so that the
approximate second quantization method can be con-
sistently applied only for the description of the system
of noninteracting quasiparticles. For the description of
the quasiparticle interaction effects (nonlinear or an-

2. BOSE AND FERMI REPRESENTATIONS
OF QUASI-PAULI OPERATORS

The states of the physical system with the Hamil-
tonian (1.18) are described by vectors from F. For
practical reasons, however, it is more convenient to
work with the whole space (R= FSX, generated by the
operators C„,t. In that case it is necessary to exclude
the contribution of states from K, which are considered
as nonphysical. In order to accomplish this, instead of
working with the Hamiltonian BC' in the space F, we
shall work with the Hamiltonian

r =GGCrG (2 1)

in the whole space (R= FX, where G is the projector
on the 5, i.e., G= 1 in 5 and G=O in X. The Hamil-
tonian fCr has the form

where:
XI—Xl+XS+Xs I (2.2)

harmonic effects), it is necessary to find an exact transi-
tion from the operators 6'„, to Bose or Fermi operators,
i.e., if we express (P„, as functions of Bose or Fermi
operators, then these functions must satisfy all the
commutation relations (1.16a—1.16e). The next section
is devoted to the solution of this problem.

We shall end this section with the explanation of the
origin of the term "quasi-Pauli operators, " used here.

Assuming that, besides the ground state, only one
excited state (say pp) of the crystal molecules is effective
(two-level scheme), one gets for the corresponding
operators 6'„0, the following commutation relations:

[6'upgi 6'.Pgs'1= (1—26'ugpi'6'uppi) &pi p (1 20a)

[P„o „6'„P,]=[8o,2,6' o,t]=0, (1 20b)

(1.20c)

The operators which satisfy these commutation relations
are called Pauli operators. In view of the fact that the
commutation relations (1.20a—1.20c) are a special case
of more general commutation relations (1.16a—1.16e),
we have found it convenient to use term "quasi-Pauli
operators" for the operators satisfying (1.20a—1.20c).
Let us note that for the Pauli operators there exist the
exact Bosee and Fermi representations. "

Xl 2 ggl(3410)fgl+PIPI +41PIGI+ 2 [TPIPS(@10;0142)fglPPIPI DPI PPSPPSPSQPS+ 2 TPIPS(i4,342 I 00)
glfI20182

Xlgl PIPI~9PI9PSPusgs rgs+2Tglgs(I I 1I 2) rgi+PIPI rpi rgs+usps r„], (2.2a)

[~Plus(P132I I 3 )9gl+Plgl +IISgllglfgs+gsgs Ygs+~glgs(t IP2I OI43)fgi+SIPI VPIPgs+usgs (Pusgs9gs
Plg2818288

+~Plus(141 I ISSI43)fPl+glgi +psg19PI Pgs+usgs9gs+ ~Plus(OIslIISSISS) 9gl+usgl YPI PgsCPuius CPusus Pgs] I (2.2b)

2 pigs(ISlp2I 341144) I gl~ gipl ~ usgl l pl 1gs~ gsps ~u4psf ps I (2.2c)
gl Q2Islfx21x8fx4

V. M. Agranovic and B. S.Tosic, Zh. Kksperim. i Teor. Fiz. 53, 149 (1967) I English transl. :Soviet Phys. —JETP 2p, ]04 (1968)j"B.S.To& and R. 3.2akula, Phys. Status Solidi 2?, 623 (1968).
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and"

(2.2d) W

P„,= (1—Q Z„.,) Y„,"'B„„ (2.7)

Let us further introduce the operator functions

P„g,P„,t, andX, „g.

All the physical results which one can obtain working

with the Hamiltonian (2.2a—2.2c) in the space (lt are
identical to the results which gives the Hamiltonian

(1.18) restricted to the space F.

&.u'= (1 Z—Z'g)B.u'Y.u'"

p'y O, p,

(2 g)

(2 9)

A. Bose Repxesentation of Quasi-Pauli
Operators

Let us introduce Bose operators B„g~ and B„g which

satisfy the well-known Bose commutation relations:

where - (—2)'
Y„,= P B„;tB„;.-'(+ )l

(2.10)

We shall first show that in S~ the following is true:

LBulgrl&B»us 3 ~grus~sr»&

(B„„„B„„,j= fB„„,',B„„,tj=0, (2.3) ~.u=P.ut&-=(1 Z&'u—)&-=Au (2 11)
y'&o, u

A

where the eigenvalues E„gof the operator%„g =B„g~B„g
take values 0, 1, 2- -, etc. In the Hilbert space S,
which is spanned by eigenstates of the operators N„g,
we define the operator function Z„, in the following way:

- (—2)'
B.u'+"B.u'+' ~-' (1+p) l

(2.4)

The operator Z„, is diagonal in the representation of the
occupation number X„g and has eigenvalues 0 for all

states with even number of bosons and eigenvalues 1

for all states with odd number of bosons. '
From the Hilbert space S we shall single out a sub-

space S~ in which the following condition is satisfied:

(1—Z Z'u)

also has eigenvalues 1, and thus, for these states L„g= i.
Hence the operators X,„u and 2„g are equal in tat, since
they have the same eigenstates and the same eigenvalues.

We shall now establish the commutation relations for
the operators P„u in the space St. Let us first show that
the following is valid:

Since
~ulul~usul ~slur ~»gl (2.12)

Indeed, for all states in S~, for which Z„g=0 the
operator X,„u has also eigenvalues L„u=0, while for all
states in S~ for which Z„,=1, the operator

Q Zug=0 or 1. P»gl usgr (1 Z ' l)ugulul ulul

The complementary part of the space S we shall
denote with the symbol Ss ($=$tBS.).

Let us now introduce the projector on the space Si'.

(2.6)

It can easily be seen from the properties of the operator
Z„, that the condition IIu'= ll, is satisied and that ftg
has eigenvalues 1 in Sj. and 0 in S2.

"Strictly speaking, in Eq. (2.2a-2.2c) one should put the projec-
W-I

A A
tors yg'= II II (I—X„,X„g). However, it can easily be seen

a+&

that the following is true in (R:

X (1 g Zu'gr) Yusgr ussr ( )

it can easily be seen that the operator (2.12a) applied on
the states for which X»gr is even (i.e., for which Z»„——0)
is equal to zero, because after the action of the operator
8»„ the operator Y»„' ' acts on the state with an odd
number of bosons of the type p2g and thus gives zero."
If X»gr is odd (i.e., Z»u, = 1) then X»«must be even
(in (Br) and the action of the operator Y'»„'" on such
states gives zero because the operator Y»„'~' is zero
on the states with an odd number of bosons. With the
same kind of reasoning one can easily show that the
operators (2.12a) give zero for the states for which
X»„and X»„are even. With this the proof thatI ygggI pygmy 0 is completed for all the states from S&~

and

A r A r A A A r f A r A
Vg +.gag = Va(p~gVg Vg (p~u~Vg = Vg+~g~VO

A A A A A A
'Ya(P.O'Vg Vg(P~ gag = 'V g(P~g~+» O'Va-

"The operators $ '~' have eigenvalues 0 for the states with an
odd number of bosons and eigenvalues (1+%„g) '" for the states
with an even number of bosons (for details see Ref. 9).
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I et us now prove the second part of the assertion (2.12),
I.e.)

8'

P»uq P»ua = ( 2 u'u8»uz»ui
y'Wo, pl

)&(1—Q Z„.u,)B„,u,tf'„,u, 'I'=0. (2.12b)

For the states for which X»„is odd the relation (2.14)
is fulfilled due to presence of the operator V»01' '. For
the states for which $»« is odd, the relation (2.14) is
fulfilled because B„„,~Y„„,'I' does not change the
value of the number Nplpl and the operator

8 01

Let us first consider the states for which all %apl are
even. After the action of a11 operators standing in
Eq. (2.12b) on the right-hand side of the operator

gives zero when applied on such states. For the states
for which one of the numbers X„„(y,'W ptpu) is odd we
obtain zero because of the action of the operator

8 +nasl 0
Is 01

P 01

a state is obtained for which all Z„pl are equal to zero
except Z»„and Z»«, which are equal to unity (i.e.,
X»u, and 1V»«both are odd). For such a state the
operator

Zp 01
P u Pluo

gives zero. If we now consider a state for which N„„
(pW pi, pu) is odd fall other X„«(p'Wp) must be even),
then the operator

01

gives zero for such a state, because the application of
the operator B»01 Y»0, ' ' does not change the value
of the number X„«. If N»u is odd (and all others are
even) then (2.12b) is satisfied as a result of the action
of the operator f'»„'Iu. Finally, if E»« is odd (and all
the others are even), we conclude that the operator
B„„,P„„,'" does not change the number N»«and
therefore

and the fact that the operator B»«Y»«'" does not
change the value of the number X„„(p'Wpuu2) and
finally, if all lV„01 are even, then after the application of
all the operators which in Eq. (2.14a) are standing on
right-hand side of F»01' ', this latter acts on the state
with odd Npl pl and thus gives zero.

Let us now consider the commutator:

z = (P„„„P„„,t~. (2.15)
A

g&+g2, then X=0 because Bose operators with
different indices commute. If gl=g~, and p1&p, ~, then
from Eq. (2.14) follows:

PRPl @101' (2.15a)

LP»m~P»uz j= 1 Z Pu'ut Pu'uz P»ug +mug (2 15b)

which reduces to

Hence, it remains to consider the case when gl=g2 and
p, 1=p,2. For this case we shall show that

W

ZIs 01

W'

PwuiP»ut =1 Z Pu'us Pu'us ~ (2.15c)

gives zero for such states. With this we have completed
the proof of the relation (2.12b).

On the basis of the above proof and the fact that the
Bose operators when related to different g commute, it
follows trivially that

[i„„,P„„,j=[P„„t,P„„,tj=0. (2.15)

Taking into accounts Eqs. (2.7), (2.8), and (2.11), the
relation (2.15c) can be written in the form

(1—g 2„.„)(1+8„„,)V„„,

(2.15d)

Let us now prove that in 1

P&1pl~ &201
—0, +1+i"2 ~

From Eqs. (2.7) and (2.8) follows:

S'

»ux»ux = ( 2 u'u3»ui »ux

(2.14)
From Eqs. (2.4) and (2.10) it can easily be seen that

fs101 fs101 fs 1pl is101 (2.16)

from which it follows that

Is101 Isl01 &101 &101 Is101 Is101~P101 8101 (2.17)

Taking into account the spectrum of the operator 2»u,
one can conclude that in 1

Z. u 73. u,
'= &».,'(1 ~.„,) (2.18)
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By combining Eqs. (2.17) and (2.18), we obtain

(1+%„,u,) Y„,g, = 1—Z„xg, .

From Eq. (2.19) and the fact that in Sz

Zwai~r ssi ~~igAi»

(2.19)

(2.20)

On the basis of Eqs. (1.16a—1.16e), (2.21), (2.13),
(2.12), (2.14), and (2.11) we can establish the following

correspondence between the operators (P„, from 5'~ and

the operators I'„, from SI'.

(2.22)

This correspondence shall be called the Bose representa-
tion of quasi-Pauli operators.

Let us now de6ne the operator:

where
~~r =&i+JI2+JJ3,

EIg ——Kg((P ~P),

H2 ——ac~((P —+ P),

a,=X,((P~8).

(2.23)

(2.23a)

(2.23b)

(2.23c)

The notation R((P -+ P) means that we get the opera-
tors H when we substitute for the operators 6'„, the
operators P„, in the corresponding X from Eqs.
(1.18a—1.18c).

Since the operators/„, in (B~ have the same commuta-

tion relations as the operators 6'„, in f~, the Hamiltonian

Br in I~ is the Bose equivalent of the Hamiltonian Xr
in F. For practical reasons, however, it is more con-

venient to work with the whole space =S~Q2. In
order to exclude in that case the contribution of states
from 2, which are considered to be nonphysical, and
which correspond to nonphysical states from R, we

shall, instead of working with Br in Ij, work in the
whole space Iwith the Hamiltonian:

8,=8,+B,+P„' (2.24)
where

(2.24a)

(2.24b)

(2.24c)

The notation (2.24a—2.24c) used here has the same

meaning as in formulas (2.23a-2.23c).

we finally conclude that the left-hand side of the ex-

pression (2.15d) is identically equal to its right-hand

side. All the derived properties of the commutator k
can be written concisely in the following form:

PII112~8%02 j
41I72L~P1PS(1 2 ~Pfil) ~»01~Plglj (2 21)

On the basis of the results obtained, one can say
that 8», B»t, and 8r are the Bose equivalent of
the system of quasi-Paulions with the Hamiltonian
(1.18a—1.18c).It is obvious that the correspondence be-
tween spaces 5~ and S~ is not isomorphic. In view of this,
the mentioned equivalencey has a limited meaning, i.e.,
it can be said with certainty that it is valid only with

respect to the statistical mean values of the physical
characteristics of the system. As for other characteristics
of the system (the dispersion law, for example), the
question remains open whether the real excitations in

the crystal are bosons or quasi-Paulions. The dilemma

exists, of course, only in the case of high excited states
of the system, because for low excited states (small
concentrations of elementary excitations) the diBerence
between quasi-Paulions and bosons is negligibly small

(see the Introduction and Sec. 1).
If the Hamiltonian (2.24) is expanded into a power

series in terms of Bose operators (the details of the ex-

pansion of the function Y„,'I' into the power series
are given in Ref. 9) we obtain:

Bg= hg('&+hg('&+ +hg('"&+

+2—h2(3)+h (&)+. . .+h (3+2a)+

Bg ——hg('&+hg('&+ . +h~(4+»&+

(2.25)

(2.26)

(2.27)

where the index m denotes the order, in Bose operators,
of a given term. For example, h&&'& contains only the
products of four Bose operators.

The Hamiltonian h~&'& is identical with the Hamil-
tonian of the approximate second quantization method
of Bogolyubov et al. (see Refs. 1, 2, and 3). The re-
rnaining terms in Eq. (2.25) are called the kinematic
interaction because their appearance is the exclusive
consequence of the specific commutation relations for
the quasi-Pauli operators. The Hamiltonians h2('& and
h3&4& represent the dynamic interaction of elementary
excitations and the remaining terms in Eqs. (2.26) and
(2.27) shall be called the Hamiltonian of dynamico-
kinematic interaction. The appearance of the Hamil-
tonians of the kinematic and the dynamico-kinematic
interactions is characteristic for the Bose representation
of quasi-Pauli operators. It is important to note that
the effect of projector is felt only in the terms of the
sixth and higher order in Bose operators. Hence, if we
limit ourselves to work with an accuracy up tothe
terms of fourth order we then can leave out the pro-
jector in Eq. (2.24)."

'~ 3. S. Tosic, Fiz. Tverd. Tela 9, 1713 (1967) t English transl. :
Soviet Phys. —Solid State 9, 1346 (1967)j.

B. Fermi Representation of Quasi-pauli
Oyexatoxa

Let us introduce pairs of Fermi operators F„, and
f„,which commute with each other and let us form out
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of them the following operators:

Q.g
= (fgu+f»')(1 2—F'u'F'u)&'gu (2.28)

Q-'= (f-+f-')F-'(1 Z—F..'F'.), (2.29)

D-= Qg. 'Q.u= (1 Z—F'.'F'u)F. u'F. u (2.30)

These operators are de6ned in the Hilbert space qh

which is the direct product of the Hilbert spaces
generated by the operators F»t and f„gt From. the
space f15 we shall single out a subspace pi by the condition

P F»tF»=0 or 1. (2.31)

By the similar reasoning, as in the case of Bose repre-
sentation, it can be shown that in tf s operators Q„, and

Q„,t satisfy the following commutation relations:

(QgsgsiQgsus ] bususLhgsgs(1 Z &gus)

—Q„g, Qgsgf] s (232)

LQ. u, Q.*.s]=LQ. g,',Q»...']=o,

QgsgsQgsus= Qgsus Qgsus =0
&

t

QgsusQgsgs =0 ~

In addition, the following is valid in pj ..
A

D.u
=Q.u'Q-= F-'F-

(2.33)

(2.34)

(2.35)

(2.36)

Let us also introduce the projector on the subspaceft»

Is j V™e+&
(2.37)

and the operator H which is obtained from Eq. (2.2)
by the substitution:

6'su~ Q»s +gg ~Qgg and '9g~ fu ~

The operator B in the space P is the Fermi equivalent
of the Hamiltonian (2.2) in the space (R. As in the case
of the Bose representation, one can say that the opera-
tors F„„F„,t, f», f»t, and H are the Fermi equivalent
of the system of quasi-Paulions with the Hamiltonian
(1.18).

CONCLUSION

The Bose and Fermi representations of quasi-Pauli
operators which are developed in Sec. 2 make it possible
to study the nonlinear eGect with the desired accuracy.
In this way, the basic ~i&culties preventing further
progress in application of the second quantization
method in studies of solid state phenomena are solved.

These dHIiculties, as we mentioned in the Introduction,
are, 6rst, noninvariance of the quasi-Pauli commuta-
tion relations with respect to the transformation which
performs the transition from the lattice space to the
reciprocal lattice space, necessary for the diagonaliza-
tion of the quadratic part of the Hamiltonian, and,
secondly, nonexistence of statistical formulas for
quasi-Paulions.

The Bose representation of quasi-Pauli operators
represents, in fact, a generalization of Bogolyubov's
method of approximate second quantization L1], L3).
This generalization enables us to study the eGects of
interactions of elementary excitations in crystals. At
the present time these sects are becoming more and
more one of the central subjects of investigation in
solid state physics. The Bose representation of quasi-
Pauli operators is especially suitable for the descrip-
tion of the nonlinear eff'ects in those cases in which the
concentration of elementary excitations is suKciently
high (of the order of 10 '-10 4) that the nonlinear
effects cannot be neglected but is still sufBcientlylow
that the physical situation can be adequately described
by using first few terms of the Hamiltonian (2.24), ex-
panded into the power series in terms of Bose operators.
We have such a situation, e.g., in nonlinear optics where
the laser beams can produce concentrations of excitons
of the order of 10 4. In nonlinear optics the Bose repre-
sentation of quasi-Pauli operators is also convenient for
another reason. The proper description of nonlinear
optical sects requires the examination of the whole
system consisting of the crystal, the field of transverse
photons, and their interaction. Since photons are
bosons, this interaction can be most conveniently
taken into account if exciton operators are expressed
in terms of Bose operators (for details see Ref. 2).

The method developed here can obviously be applied,
in a straightforward manner, in the quantum theory of
magnetism and also in studies of ferroelectric phe-
nomena in crystals. What concerns the 6rst application,
the method presented here represents a generalization
of the method developed in Ref. 14. This will be dis-
cussed in more detail in forthcoming papers.

The Fermi representation of quasi-Pauli operators is
suitable for the description of critical phenomena in
magnetic and ferroelectric materials, because the con-
centration of elementary excitations in the vicinity of
the transition temperature is close to unity, and in the
Fermi representation the highest-order terms of the
Hamiltonian of the system (taken with the accuracy to
two-particie interactions) are of the fourth order in
Fermi operators.
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