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A method foranexact theoretical treatment of nonlinear (anharmonic) effects in crystals in the second quan-
tization representation is presented. The method represents essentially a generalization of Bogolyubov’s
method of approximate second quantization. In addition, the Fermi representation of elementary excitation

creation and annihilation operators is given.

INTRODUCTION

HE basic idea in the application of the second-
quantization method in theoretical solid-state
physics is to reduce the description of phenomena in a
system consisting of many interacting particles to the
description of phenomena in a gas of quasiparticles.
For this method to be applicable to the calculation of
the relevant physical characteristics of the system, it is
necessary that the quasiparticles obey Bose or Fermi
statistics. In the rigorous formulation of the second-
quantization method,"? the creation and annihilation
operators of excitations in molecules (these should not
be confused with the creation and annihilation operators
of molecules in given states) satisfy neither Bose nor
Fermi commutation relations. These operators and the
corresponding commutation relations will be called
quasi-Pauli operators and quasi-Pauli commutation
relations, respectively. The appearance of quasi-Pauli
operators leads to serious difficulties in the application
of the second-quantization method to the theoretical
description of phenomena in solids. These difficulties
are of two different kinds. First, the quasi-Pauli com-
mutation relations are not invariant with respect to
the standard transformation from the lattice space
into the reciprocal lattice space, and this, as is well
known, is the only transformation which enables one
to use, in the simplest and the most efficient way, the
translation symmetry of the crystal for finding collec-
tive modes of the crystal. Secondly, even if we could
find another transformation to collective coordinates,
which is canonical for these operators, we would still
be faced with the difficulty that statistics have not
been developed for this type of quasiparticle, and
hence, we would not be able to use the standard statisti-
cal formulas for the calculation of the relevant physical
characteristics of the system. The only way out of such
a situation then is to express somehow the quasi-Pauli
operators through Bose or Fermi operators. In this way,
one substitutes a system of quasi-Pauli particles by an
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equivalent system of bosons or fermions. This equiva-
lence should hold at least with respect to the integral
physical characteristics of the corresponding systems.
Such integral physical characteristics are, for example,
internal energy, magnetization, dielectric constant, etc.
For low excited states, i.e., for low concentrations of
quasi-Paulions, the equivalent system is a system of
noninteracting bosons. Formally, this means that in
this case, the deviation of quasi-Pauli commutation
relations from Bose commutation relations can be
neglected. (see Ref. 1, p. 203.) This approximation is
called the method of approximate second quantiza-
tion.}? In fact, one may say that until now the method
of second quantization has been successfully used
mainly in this approximation. There exist, however,
physical situations in which the interaction of ele-
mentary excitations (nonlinear or anharmonic effects)
cannot be neglected, because of their relatively high
concentration. Such a situation exists, for instance, in
the vicinity of the transition temperature in magnetic
and ferroelectric materials and in molecular crystals
when they are illuminated with laser beams, etc. In
these cases the method of approximate second quantiza-
tion, obviously, is not applicable. Because of the
development of experimental techniques, which has
been very intensive in recent years, just those physical
situations, in which the concentration of quasiparticles
is relatively high, are becoming more and more the
subject of interest in both experimental and theoretical
solid-state physics. It is, therefore, necessary to find
an adequate method for the theoretical treatment of
nonlinear effects within the frame of second quantiza-
tion. In this work we suggest such a method.

In Sec. 1, Bogolyubov’s method of second quantiza-
tion in theoretical solid-state physics is presented. In
Sec. 2 the exact Bose and Fermi representations of
quasi-Pauli operators are given and Hamiltonians of
dynamic, dynamico-kinematic, and kinematic inter-
action between bosons are formulated. In the Conclu-
sion, we summarize possibilities of application of the
method developed in Sec. 2.

3 S. V. Tyablikov, The Methods of Quantum Theory in Magnetism
[Izd. NAUKA, Moscow, 1965 (in Russian)].
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1. BOGOLYUBOV'S METHOD OF
SECOND QUANTIZATION

In this section we shall present essential parts of the
second-quantization method in solid-state physics, as
developed by Bogolyubov!:?

Let us consider a crystal composed of N identical
molecules.* The positions of crystal molecules shall be
denoted by g. In the general case g=(n,a), where nis the
position vector of an elementary cell of the crystal,
and « denotes the position of a molecule within the
elementary cell. Throughout the paper we shall suppose
that molecules do not oscillate around their equilibrium
positions, i.e., phonon effects will be neglected.

For the basic system of functions we shall take the
wave functions of isolated molecules, i.e., the solutions
of the eigenproblem

3Cgevg (xa) =E,; ¢ (xa) y (1' 1)

where 3C, is the Hamiltonian of the gth isolated
molecule, x, is the set of internal coordinates of the gth
molecules, and » is a set of quantum numbers which
characterizes the state of the molecule. The ground
state of the molecule will be symbolically denoted by
v=0.

In further treatment, we shall limit ourselves only
to states of isolated molecules which are described by
antisymmetric wave functions in the coordinates x,.
In most cases, though not necessarily, these are elec-
tronic states of the molecule, i.e., x, are the coordinates
of electrons in the molecule.

Let us designate by 91,, the number of molecules in
position g in the state » and assume that » takesa
finite and ordered set of values v=0, 1, 2, --- W.5 Let
us also form the antisymmetrized and orthonormalized
products

\I’---ﬂlyg...(xl- ce Xyt .xN)

=[a)Je % (=DPPII euolx), (1.2)

where A is the number of considered objects (electrons)
inside the molecule, which are described by antisym-
metric functions, and P is the permutation operator
for a pair of objects (electrons).

In order to exclude from consideration the cases when
two molecules in different states are in the same posi-
tion g, we impose the following conditions on numbers
I, which take values 0 or 1

2 Me=1; 2 MN,=N. (1.3)
v vg

Any state function of the considered system can be ex-

* N=MS$, where M is the number of elementary cells in crystal,
and 8§ is the number of molecules in an elementary cell.

¢ The case when » takes an infinite number of different values
can, in principle, be treated in the same way, but in practical
calculations this leads to complications.
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panded in terms of the functions (1.2), i.e.,
‘I’(xl"'xg"'xzv)= Z C(--'E)'l,,,,”-)‘ll...m,,,...
"'fﬂma"'
X (212 -an), (1.4)

where C(---91,,---) are the wave functions in the
second-quantization representation.

Taken with an accuracy to two-particle interactions,
the Hamiltonian of the considered system can be written
in the form

3(3:2 JCgl-f-% Z /Vawz;
g1

g192

(1.5)

where V,,,, characterize the interactions of molecules
in the positions g1 and gs. In the second-quantization
representation the Hamiltonian (1.5) has the form
(see Ref. 1, p. 191, and also Ref. 3, p. 48)

=32 Ap(1,v2)a10,' 00

g2

+4

> Byyg2(v1v2; vav4) @00, ragyt
01927 avs

(1.6)

The operators a,, are defined in the following way:

X yigsQragr -

QC(- My - )=(—1)Z0' <00’
XC(-+ 1=, - )
@tC( - Ty - )= (=120 0)<en T o' (1—N,,)
XC(-+ 1=, --). (1.7)

They satisfy Fermi commutation relations in both
indices,® and the matrix elements 4,, and B,,,, (g15%g2)
are given by

Atn(”l:”‘«‘): /dTm‘vax*gcaﬂv’vzm ) (1.8)
Bﬂlal(VlV2 vave) = /dTaxdTaz¢vnax* Prags’ V 01000v3018402
—exchange terms. (1.9)

The operators @,,' generate Hilbert space ® of
fermino states which is wider than that in which the
conditions (1.3) are satisfied.” However, we shall con-
sider only the part & of the space ® in which the condi-
tions (Eq. 1.3) are satisfied. This subspace shall be

¢In Ref. 2, the Hamiltonian (1.6) is expressed in terms of
Pauli operators byg, which for the same g and » obey Fermi com-
mutation relations, while for different g and/or » they commute.
The connection between operators byg and Qg is:

brg=(—1)Z06".0)<0.) M0’ Qrg.

The nosation (g)<(vg) (» and g are ordered) means: if g’ <g
;heu l(gé)g’)<(v,g ; if g'=g then (v,g") <(v,g) if »'<» (see Ref.

, P-
7The numbers 9,,, wl'u'ch appear in (Eq. 1.3), are the eigen-
values of the operator J0,,= Q' @,q.
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called the space of physical states. The complementary
subspace 91 of the space ® will be called the space of
nonphysical states. From the structure of the Hamil-
tonian (1.6) it is not difficult to see that it is closed
inside .

If we introduce new Fermi operators @,, by means of
the unitary transformation

w
Qo= Z on(ﬂ"’)anu; (1-10)

#=0

where the functions 6,(k,v), apart from the unitarity
condition, also satisfy the following conditions:

> Aunps)fa(urs)+ X

o2v1vave (917%92)

Bios(vivayavs)

Xooz*(OW)oaz(OW)eol I"Vz)
= No1 ()05, (uyv1) 5 (1.11)

u=0, 1, 2---W (see Ref. 1, pp. 194, 196, and 197) and
take into account the conditions [Eq. (1.3)] written in
® by means of new Fermi operators Q,:

w
2 N=1;

u=0

Z myo=1v, (112)
7]

then the Hamiltonian (1.6) can be written in the form:

3Cr=3C1+3C+3Cs, (1.13)
where
JCr=3C—E,, (1.13a)
3= 2 501(/‘110) &mol\‘aumd"% Z, [Tmn(ﬂlﬂﬁ 00)
g141 O102K4143

X a“wlt@%l@uszaoaz"' Taun(ooi #1#2) G;onfamax
X Qoga! Quagst2T g105(1110; Ouz) Qurorf Qogy
X Qo,,f(i,,,g,] ’ (1~13b)

Je.=4% )3y [Tamz(ﬂllﬂ; 480) Ruygr! Rugos! Rogs Qunn

0102010203

+ T o102(p1u2; Opts) Gurgr! Rusos! GusgsCony

+ T o102 (110 12148) Rois01' Qogs’ Ruisos Bson

F T 5102(0u1; p213) Rogy! Guros! @uaga@usar ], (1.13c)

3(38:% Z’ Tawz(ﬂvlﬂﬁ #3“4) amnt@uzaz'
010261126384
X CQuig2Cusors (1.13d)
501(‘»"0) = )‘ax(ﬂ)_ >‘01(0) ) (1.136)
Eo=\ (0), (1.13f)
T 510a(uaps; psps) ”

= Z Bamz(”l”ﬁ;V3V4)oax*(l‘ls”l)ou*(I‘Z,W)

vivoravs
X 00y (13,78)005(14,04) « (1-133)8
8 Let us remark that in all formulas (1.13b—1.13g), u;#0.

LALOVIC, TO3IC, AND ZAKULA

178

Let us now introduce the operators

Cuy= Qo' @, and @,,'=Q.u'Qo,. (1.14)

It is evident that the operators ®,,' and ®,, are the
creation and annihilation operators of the excitations
of type u on the molecule g and, as we said in the
Introduction, we shall call them quasi-Pauli operators.

Since @,,' and @,, satisfy Fermi commutation rela-
tions, it can easily be seen that in the space & the opera-
tors ®,,' and @®,, satisfy the following commutation
relations:

(@101 aos’ 1= 8010aFo0i0urus— Qsor Buror),  (1.15a)
[®u10:Pr203]= [®rsor,Prsgs’ 1=0, (1.15b)
®10:Pu301= Prusoy Py’ =0, (1.15¢)
Cu10:®usor’ = Rogy Rpyor Qusost , 1713, (1.15d)
@101 Prsor =Ty (1= Fogy) - (1.15¢)

In the subspace § the relation (1.15¢) becomes
G)mmf(vuwx: lmal= Eﬁuwl= am«nt Q01 (1- 16e)

so that in this subspace the conditions (1.12) can be
written as

w
lL,=0o0r1; > l,=0o0r1; >1,<N. (1.12a)
p=1 Ko

u#0

Taking this into account, we see that operators ®,,
satisfy in & the following commutation relations:

w
[(P“lﬂlid)ﬂiﬂzf]-—— 6010![6l‘l“2(1 - Zl ll‘ﬂl)
p-

= Puaos'®pror], (1.162)
[Pu101Pusor]=[CPusor,Pusas’ 1=0, (1.16b)
Cu10:Pus01= Puror' Pusar' =0, (1.16¢c)
Cu10Pusor’=0, (u17p2). (1.16d)

In addition, the following is true in &:
Qo Rusor=Prio Pusor, 17512, (1.17)

Written in terms of the operators ®,,, Hamiltonian
(1.13) has the following form in &:

3C=3C1+3Co+3Cs, (1.18)
where
3= Z 801(#10)0111011@:41“"" Z’ [Tawz(#lo; 0#2)
s g1028142
X @nwlt@uza{‘*‘% T 4165(00; p1442) P10, Pusngs
+ 35T 010a(rusz; 00)@“1,1’0,,,,7] , (1.18a)



S
9102411203
+ Tor0a(pape; 0113) P10, Przos Prsos
F T 51021105 p2ut3) Py 1 ®us01Puson
+ T 5102(0us; #2#3)(})”:01@#102?(?#:02];

Z/

O102K1420314

[Taws(ﬂlﬂ2; #30)@“1“T(}>“'01(})”“7

(1.18b)

3C;=3% T proo(piapae; psis)

X G)mm*(pmm@uzazf@maz . @ -18(3)

It is obvious from the procedure presented above that
the operators ®,, are introduced in order to include as
many terms of the fourth order (in operators @®,,) as
possible into the quadratic (in operators ®,,) part of
the Hamiltonian. Since the quadratic part of the
Hamiltonian describes essentially the system of non-
interacting quasiparticles, the transition to the opera-
tors ®,, makes it possible to include most of particle
interactions into the energy of free quasiparticles. On
the other hand, the transition to the operators ®,,
leads, as we have already stated, to difficulties in con-
nection with the commutation relations for these
operators, which are of neither Bose nor Fermi type.
The first difficulty arises when one attempts to diag-
onalize the quadratic form (1.18a). In order to ac-
complish this diagonalization, the quadratic form has
to be expressed either through Bose or Fermi operators.
This can be achieved, of course, simply by substituting
Bose operators ®,, for quasi-Pauli operators ®,,. Such
an approach is called the approximate second quantiza-
tion method. Obviously, the substitution ®@,,=®,,
introduces a certain error, because the commutation
relations for ®,, and ®,, are not identical. This error,
however, is small insofar as we consider only states for
which (J,;)~0 (u0). It can be easily seen from the
relation (1.16a) that in that case the substitution
®,,=®,, is justifiable. The same condition (f,,)=0,
u#0 which gives us right to make the substitution
®,o=®,, requires, on the other hand, the rejection of
terms 3C2 and 3C3 in the Hamiltonian (1.18) so that the
approximate second quantization method can be con-
sistently applied only for the description of the system
of noninteracting quasiparticles. For the description of
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harmonic effects), it is necessary to find an exact transi-
tion from the operators ®,, to Bose or Fermi operators,
ie., if we express ®,, as functions of Bose or Fermi
operators, then these functions must satisfy all the
commutation relations (1.16a-1.16e). The next section
is devoted to the solution of this problem.

We shall end this section with the explanation of the
origin of the term “quasi-Pauli operators,” used here.

Assuming that, besides the ground state, only one
excited state (say uo) of the crystal molecules is effective
(two-level scheme), one gets for the corresponding
operators ®,o, the following commutation relations:

[®uog1,®uops’ 1= (1—2® 05, ®pu0g1) 8510, (1.20a)
I:(Pnoanyuoaz] = [(Puﬁaxt;(p»oazf] =0, (1.20b)
@ gy’ =Puop”=0. (1.20¢)

The operators which satisfy these commutation relations
are called Pauli operators. In view of the fact that the
commutation relations (1.20a-1.20c) are a special case
of more general commutation relations (1.16a-1.16¢),
we have found it convenient to use term “quasi-Pauli
operators” for the operators satisfying (1.20a-1.20c).
Let us note that for the Pauli operators there exist the
exact Bose® and Fermi representations.!®

2. BOSE AND FERMI REPRESENTATIONS
OF QUASI-PAULI OPERATORS

The states of the physical system with the Hamil-
tonian (1.18) are described by vectors from &. For
practical reasons, however, it is more convenient to
work with the whole space ®=F BN, generated by the
operators @,,'. In that case it is necessary to exclude
the contribution of states from 91, which are considered
as nonphysical. In order to accomplish this, instead of
working with the Hamiltonian 3C; in the space §, we
shall work with the Hamiltonian

For=G30:G (2.1)

in the whole space ®=JF @, where G is the projector
on the &, i.e.,, G=1in § and G=0 in 9. The Hamil-
tonian 3C; has the form

Leracting r For=Fr+Js+30s, (2.2)
the quasiparticle interaction effects (nonlinear or an- where:
5'{31= Z 501(#10)'?010);!101*(?#10{?01'*" Z, [Taun(ﬂlo;0ﬂ2)?01@mmf'?a1'?02@11202'?0:"“%Tmaz(ﬂlﬂz;00)
o141 g102p142
x‘?mo)mﬂxf'?ul‘?as@nznt?az+%Tawz(OO; l‘1F2)‘?01(Pn101’901‘?020}#202’?02], (2-23)
5&2:% Z' [T aw:(l-‘lﬂz; ﬂﬂo)‘?al@manf@mn‘?a1‘902@1‘20;’?0:‘*‘ T aw:(l‘lﬂ2§ 0#3)‘?010)1&mxtﬂx‘?n:@#zaz*@uaa{?n
0192814203
+ans(l-‘10; l‘ﬂ‘a)'?ﬂxo)#laxf(Pm1‘?01’?0:0)#303?“'*‘ Taw:(Ol‘la#wa)'?m@uzax'?n’?ae@nwzm)uaaz’?m], (2‘2b)
Fs=3 2’ T gr0a(maus; l‘U‘4)’?al@uxaxf@nwx'?ox‘?nz@maaf@ma{?a: ’ (2.2¢)
010201426344

9 V. M. Agranovi¢ and . ToSié

B.S i¢, Zh. Eksperim. i Teor. Fiz. 53, 149 (1967) [English transl.: Soviet Phys.—
10 B, S, Tosié and R. B. Zakula, Phys. Status Solidi 27, 623 (1968)’. (1967) LEngi oviet Phys—JETP 26, 104 (1968)].
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and ! Let us further introduce the operator functions
w-1 W P, P, and L,,:
Yo= H H (I—Znalu’a)- (2-2d) wo R
el it PIW:(I_ 2 Zyg)Yug"?Byg, (2.7)
w#E0,u
All the physical results which one can obtain working -
with the Hamiltonian (2.2a-2.2c) in the space ® are Bt=(— X 2y Bwfffwl,z’ (2.8)
identical to the results which gives the Hamiltonian W20,
(1.18) restricted to the space &. ”
Lun= (1— 2 Zn’a)Zuo; (2.9)
w0, u
A. Bose Representation of Quasi-Pauli where
Operators R w (—2)°
. Y= 2 By 1By (2.10)
Let us introduce Bose operators B,,' and B,, which p=0 (14p)!

satisfy the well-known Bose commutation relations:

I:Buwansz] = 091020125

[Buvauzaz] = [:Buunt:Buzuf] =0, (2.3)
where the eigenvalues NV, of the operator V,; = B, B,
take values 0, 1, 2---, etc. In the Hilbert space @,
which is spanned by eigenstates of the operators Vg,
we define the operator function Z,, in the following way:

A

© (—2)
Be BuanTBuapH'

=0 (140)!

(24)

The operator Z,, is diagonal in the representation of the
occupation number N,, and has eigenvalues O for all
states with even number of bosons and eigenvalues 1
for all states with odd number of bosons.®

From the Hilbert space ® we shall single out a sub-
space ®; in which the following condition is satisfied:

w
> Zuy=0or 1.

w=1

(2.5)

The complementary part of the space ® we shall
denote with the symbol ®; (B=®:D ®s.).
Let us now introduce the projector on the space ®i:

-1

A W W A
H0=H H (I_Zuazn’a)-

p=1 p'=p+1

(2.6)

It can easily be seen from the properties of the operator
Z,, that the condition fI,2=11, is satisfied and that 1I,
has eigenvalues 1 in ®; and 0 in ®,.

11 Strictly speaking, in Eq. (2.2a-2.2c) one should put the projec-

w-1
torsyy/= II II (1—90uu,). However, it can easily be seen
#=0 p'=ptl

that the following is true in ®:
?v,@mﬂ?a, = ')A/od)w'?a; '?FI(PFOT‘?II' = '90(})“?'90
'90@“0'?1'?00)“'0’?17 = 'YAUO)MTG)#'V'?W

and

We shall first show that in ®, the following is true:

w
Zua=PuaTPuo=(1— 2 Zu'a)Z:m=Zua- (2.11)

w08

Indeed, for all states in ®;, for which Z,,=0 the
operator L,, has also eigenvalues L,,=0, while for all
states in ®; for which Z,,=1, the operator

W A
(1— Z Zu'a)

w0, u

also has eigenvalues 1, and thus, for these states L,,=1.
Hence the operators L,, and Z,, are equal in ®,, since
they have the same eigenstates and the same eigenvalues.

We shall now establish the commutation relations for
the operators P,, in the space ®;. Let us first show that
the following is valid:

P#IGIP#2ﬂ1=P#101TPM201T=0' (2-12)

Since

w
P#lﬂl‘p“ﬂll: (1— Z ZM'U!)Y#1011/2B#101

K70, 41

w
X(l— Z Z#’ax)YnzaxllzBuzﬂ (2-123-)

w70, u

it can easily be seen that the operator (2.12a) applied on
the states for which N ,,,, is even (i.e., for which Z,,,=0)
is equal to zero, because after the action of the operator
B, the operator V,,,,!/? acts on the state with an odd
number of bosons of the type usg and thus gives zero.!?
If Ny, is odd (ie., Z,y5,=1) then N,,,, must be even
(in ®1) and the action of the operator ¥,,,,!/? on such
states gives zero because the operator ¥,,,,1/% is zero
on the states with an odd number of bosons. With the
same kind of reasoning one can easily show that the
operators (2.12a) give zero for the states for which
Ny, and Ny, are even. With this the proof that
Puig1Puyg=0 is completed for all the states from ®,.

12 The operators 4,12 have eigenvalues O for the states with an
odd number of bosons and eigenvalues (14N,,)~!/2 for the states
with an even number of bosons (for details see Ref. 9).
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Let us now prove the second part of the assertion (2.12),
ie.,

w
P“lUITP “201'*: (1_ Z Zﬂ'ﬂl)Bﬂlﬂl*YFlﬂlllz

0,41

W Py
X(l— Z Zu’al)BuzmTYuzﬂl/z=0- (2-12b)

w'#0,u2

Let us first consider the states for which all N,,, are
even. After the action of all operators standing in
Eq. (2.12b) on the right-hand side of the operator

w
1- Z Zu’rn

#'#p1,0

a state is obtained for which all Z,,, are equal to zero
except Z,,, and Z,,,,, which are equal to unity (i.e.,
Ny, and N, both are odd). For such a state the
operator

w
1- Z Zu’an

' #p1,0

gives zero. If we now consider a state for which N,,,
(u5%u1, p2) is odd [all other N, (u'5%u) must be even],
then the operator

w
1— Z ZF'GI

w0, pu2

gives zero for such a state, because the application of
the operator B,,,!Y,.,,!/? does not change the value
of the number N,,,. If N,,, is odd (and all others are
even) then (2.12b) is satisfied as a result of the action
of the operator ¥,,,,'/2. Finally, if N,,,, is odd (and all
the others are even), we conclude that the operator
BuyorViusoit’? does not change the number N,,,, and
therefore

W A
1—- Z Zn’ax
70, u2

gives zero for such states. With this we have completed
the proof of the relation (2.12b).

On the basis of the above proof and the fact that the
Bose operators when related to different g commute, it
follows trivially that

[Puxolpnaz]=[anﬂt,Pu:azT]:O' (2.13)
Let us now prove that in &,
Pu1axpnzﬂ11=0, mFEpus. (2.149)
From Egs. (2.7) and (2.8) follows:
W -~
P#lﬂlpﬁﬂﬂl't: 1- > Zu’m) Yii01"*Busoy
w70, u1
W A A
X(I— Z Z,.:“)B““fy,,,“”?. (2-143)

w70, pu2
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For the states for which N,,,, is odd the relation (2.14)
is fulfilled due to presence of the operator ¥,,,'/2. For
the states for which N, is odd, the relation (2.14) is
fulfilled because B,y ¥ys0,”? does not change the
value of the number NV,,,, and the operator

w
1- Z Zu’a:

w'0,p2

gives zero when applied on such states. For the states
for which one of the numbers N,/,, (u'5%u1us) is odd we
obtain zero because of the action of the operator

w
1- Z Z#’m

B0, u3

and the fact that the operator B,,,' ¥, % does not
change the value of the number N,,, (u'5%u:) and
finally, if all V,,, are even, then after the application of
all the operators which in Eq. (2.14a) are standing on
right-hand side of ¥,;,!/%, this latter acts on the state
with odd N,,,, and thus gives zero.

Let us now consider the commutator:

K= [anupuzn:]- (2'15)

If g17gs, then K=0 because Bose operators with
different indices commute. If g1=g,, and u15%us, then
from Eq. (2.14) follows:

K=—P,, 1P, (2.15a)

Hence, it remains to consider the case when gi=g; and
p1=ps. For this case we shall show that

w
[pmanpmmf]= 1- Z Pu'anfpu’m_PmaxTPuwx (2-15b)

=1
which reduces to

w
P#wxplmuf= 1— Z Pu’altpu'm-

pi=1

(2.15¢)

Taking into accounts Eqs. (2.7), (2.8), and (2.11), the
relation (2.15c) can be written in the form

w
(1_ Z Zﬂ’m)(l +Nuwl) 1714101

B'70, u1

w
=1—=3 Zys. (2.15d)
=1

From Egs. (2.4) and (2.10) it can easily be seen that

Buuu* puwauw::Znu (2~ 16)
from which it follows that
BFIDIBI‘IVI? ?“lalBI‘lngl-‘lalt = BFIDIZ“IUXBPlﬂlf M (2' 17)

Taking into account the spectrum of the operator Z,,,,
one can conclude that in ®&,

Zulanu101f= Bﬂlﬂlf(l—zﬂlﬂl) . (2-18)
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By combining Egs. (2.17) and (2.18), we obtain

(1+Nu101) ?ﬂlﬂl= 1—254101‘ (2-19)
From Eq. (2.19) and the fact that in &,
2“1012M201=2#19165‘1“2 (2.20)

we finally conclude that the left-hand side of the ex-
pression (2.15d) is identically equal to its right-hand
side. All the derived properties of the commutator K
can be written concisely in the following form:

Kz[-pumnpuwzf]
W Y
=60102[5uw2(1‘ Z Zum)_PuzalTinx:]- (2-21)

p=1
On the basis of Egs. (1.16a-1.16e), (2.21), (2.13),
(2.12), (2.14), and (2.11) we can establish the following
correspondence between the operators ®,, from &, and
the operators P, from ®;:

(PM“_)P; ®u’ = Pt Zua_’Lua=Zua- (2.22)
This correspondence shall be called the Bose representa-
tion of quasi-Pauli operators.

Let us now define the operator:

Hi=H\+H,+H;, (2.23)
where

Hyi=3,(® — P), (2.23a)

112=3(32((P——>P) , (223]3)

II3=3C3(@——)P). (223C)

The notation 3¢(® — P) means that we get the opera-
tors H when we substitute for the operators ®,, the
operators P,, in the corresponding 3 from Egs.
(1.18a-1.18c¢).

Since the operators P, in ®; have the same commuta-
tion relations as the operators ®,, in &1, the Hamiltonian
H; in ®, is the Bose equivalent of the Hamiltonian 3¢y
in §. For practical reasons, however, it is more con-
venient to work with the whole space 8= ®;®®.. In
order to exclude in that case the contribution of states
from ®., which are considered to be nonphysical, and
which correspond to nonphysical states from ®, we
shall, instead of working with Hy in ®;, work in the
whole space ® with the Hamiltonian:

HI=Hl+H2+H3, (224)

where
H=0,@—-P5—10), (2.24a)
H,=3,@—Ps— 1), (2.24b)
Hy=33(0— P4 — 1). (2.24¢)

The notation (2.24a-2.24c) used here has the same
meaning as in formulas (2.23a-2.23c).
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On the basis of the results obtained, one can say
that B,,, B,,', and H; are the Bose equivalent of
the system of quasi-Paulions with the Hamiltonian
(1.18a-1.18c). It is obvious that the correspondence be-
tween spaces ¥; and ®, is not isomorphic. In view of this,
the mentioned equivalencey has a limited meaning, i.e.,
it can be said with certainty that it is valid only with
respect to the statistical mean values of the physical
characteristics of the system. As for other characteristics
of the system (the dispersion law, for example), the
question remains open whether the real excitations in
the crystal are bosons or quasi-Paulions. The dilemma
exists, of course, only in the case of high excited states
of the system, because for low excited states (small
concentrations of elementary excitations) the difference
between quasi-Paulions and bosons is negligibly small
(see the Introduction and Sec. 1).

If the Hamiltonian (2.24) is expanded into a power
series in terms of Bose operators (the details of the ex-
pansion of the function Y,,!'/? into the power series
are given in Ref. 9) we obtain:

Bi=I O+ @4 hyem (2.25)
Hy=hy®+ hy® o pp@r2m (2.26)
j2 Ay RONE NONIRPUNT NI NE (2.27)

where the index m denotes the order, in Bose operators,
of a given term. For example, /¥ contains only the
products of four Bose operators.

The Hamiltonian %,® is identical with the Hamil-
tonian of the approximate second quantization method
of Bogolyubov et al. (see Refs. 1, 2, and 3). The re-
maining terms in Eq. (2.25) are called the kinematic
interaction because their appearance is the exclusive
consequence of the specific commutation relations for
the quasi-Pauli operators. The Hamiltonians #:‘® and
hs® represent the dynamic interaction of elementary
excitations and the remaining terms in Eqgs. (2.26) and
(2.27) shall be called the Hamiltonian of dynamico-
kinematic interaction. The appearance of the Hamil-
tonians of the kinematic and the dynamico-kinematic
interactions is characteristic for the Bose representation
of quasi-Pauli operators. It is important to note that
the effect of projector is felt only in the terms of the
sixth and higher order in Bose operators. Hence, if we
limit ourselves to work with an accuracy up tothe
terms of fourth order we then can leave out the pro-
jector in Eq. (2.24).1

B. Fermi Representation of Quasi-Pauli
Operators

Let us introduce pairs of Fermi operators F,, and
fug which commute with each other and let us form out

B B. S. Tosi¢, Fiz. Tverd. Tela 9, 1713 (1967) [English transl.:
Soviet Phys.—Solid State 9, 1346 (1967)].
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of them the following operators:

w
Quo= (fuv+fm:7)(1“ Z Fu’afFu’a)Fua )

(2.28)
wEp
w
Qua#= (fua"‘fuof)punT(I“ é Fu’nTFu'n) ) (2.29)
u'*p
. w
DuaanaTQua""’ (1‘ Z Fu’aTFu’a)FuoTFuo- (2-30)

g

These operators are defined in the Hilbert space ¢
which is the direct product of the Hilbert spaces
generated by the operators F,,' and f,,!. From the
space ¢ we shall single out a subspace ¢, by the condition

> FutFu=0 or 1. (2.31)
m

By the similar reasoning, as in the case of Bose repre-
sentation, it can be shown that in ¢, operators Q,, and
Q. satisfy the following commutation relations:

w
[Qmananaat] = 6mazl:5uwz(1 - Zl Dnm)
o

—Qu202"Quren], (2.32)

[Qu101,Qua02]= [Qur0r"sQuaos' 1=0, (2.33)
Qu101Quz02= Q101" Quaa’ =0, (2.34)
Qu10:Quz0s =0. (2.35)

In addition, the following is valid in ¢;:
D“V=QM0TQ#U=F#01FMU' (2.36)
Let us also introduce the projector on the subspace ¢1

w-1 W
ann H (I—Dnnbu'a)

pe=1 p/e=pt1

(2.37)

and the operator H which is obtained from Eq. (2.2)
by the substitution:

Cuo— oy Cu’ = Q' and 4,— f‘a-

The operator H in the space ¢ is the Fermi equivalent
of the Hamiltonian (2.2) in the space ®. As in the case
of the Bose representation, one can say that the opera-
tors Fog, Fyot, fues fuo', and H are the Fermi equivalent

of the system of quasi-Paulions with the Hamiltonian
(1.18).

CONCLUSION

The Bose and Fermi representations of quasi-Pauli
operators which are developed in Sec. 2 make it possible
to study the nonlinear effect with the desired accuracy.
In this way, the basic difficulties preventing further
progress in application of the second quantization
method in studies of solid state phenomena are solved.
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These difficulties, as we mentioned in the Introduction,
are, first, noninvariance of the quasi-Pauli commuta-
tion relations with respect to the transformation which
performs the transition from the lattice space to the
reciprocal lattice space, necessary for the diagonaliza-
tion of the quadratic part of the Hamiltonian, and,
secondly, nonexistence of statistical formulas for
quasi-Paulions.

The Bose representation of quasi-Pauli operators
represents, in fact, a generalization of Bogolyubov’s
method of approximate second quantization [17, [3].
This generalization enables us to study the effects of
interactions of elementary excitations in crystals. At
the present time these effects are becoming more and
more one of the central subjects of investigation in
solid state physics. The Bose representation of quasi-
Pauli operators is especially suitable for the descrip-
tion of the nonlinear effects in those cases in which the
concentration of elementary excitations is sufficiently
high (of the order of 10%-10~¢) that the nonlinear
effects cannot be neglected but is still sufficiently low
that the physical situation can be adequately described
by using first few terms of the Hamiltonian (2.24), ex-
panded into the power series in terms of Bose operators.
We have such a situation, e.g., in nonlinear optics where
the laser beams can produce concentrations of excitons
of the order of 10~ In nonlinear optics the Bose repre-
sentation of quasi-Pauli operators is also convenient for
another reason. The proper description of nonlinear
optical effects requires the examination of the whole
system consisting of the crystal, the field of transverse
photons, and their interaction. Since photons are
bosons, this interaction can be most conveniently
taken into account if exciton operators are expressed
in terms of Bose operators (for details see Ref. 2).

The method developed here can obviously be applied,
in a straightforward manner, in the quantum theory of
magnetism and also in studies of ferroelectric phe-
nomena in crystals. What concerns the first application,
the method presented here represents a generalization
of the method developed in Ref. 14. This will be dis-
cussed in more detail in forthcoming papers.

The Fermi representation of quasi-Pauli operators is
suitable for the description of critical phenomena in
magnetic and ferroelectric materials, because the con-
centration of elementary excitations in the vicinity of
the transition temperature is close to unity, and in the
Fermi representation the highest-order terms of the
Hamiltonian of the system (taken with the accuracy to
two-particle interactions) are of the fourth order in

Fermi operators.
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