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Dielectric Properties of Interacting Ion-Impurity Systems in KC1*
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The theory of the dielectric properties of assemblies of interacting impurity ions in solids at low tem-
peratures is discussed, with particular reference to KCl:OH, KC1:Li+, and KCl: CN . A quantum-mechani-
cal approach in which the effects of zero-field splitting in the motional spectrum of the ions are included is
maintained throughout. An analytical study of the properties of an especially simple model with features
relevant to the problem of interacting impurity dipoles is presented. The dielectric virial-expansion formal-
ism is introduced, and numerical results for the theoretical second dielectric virial coeScient B(T) for each
of the three species are given. The question of convergence of the virial expansion is considered, and it is
shown that convergence fails for the specific case of KCl:OH at impurity densities so far studied. An
alternative theory for this system is presented which gives numerical predictions in satisfactory agreement
with experiment. The basic notion of this theory is that neighboring impurity ions are locked into coherent
ferroelectric pairs. At suKciently low temperatures, this pairing is partially disrupted by largely antiferro-
electric interactions between distinct pairs.

I. INTRODUCTION

ECENT work on the physical properties of
impurity ions in KC1 and other alkali-halide

species has shown the existence of low-frequency local-
ized modes associated with these impurity species
(CN, OH, Li+).' ' The occurence of low-temperature
features in the heat capacity and dielectric properties of
such "paraelectric" crystals have been explained in first
approximation by regarding the impurities as isolated
from each other and in interaction with the surrounding
lattice ions. ~"The purpose of this paper is to discuss
those features which may arise in the dielectric behavior
of these doped crystals when the electrostatic inter-
actions between impurity ions are considered, that is, in
crystals at not too low impurity concentration. It has
already been noted' that in hydroxide doped KCl, a
rather significant density-dependent low-temperature
anomaly in dielectric behavior occurs, and various
theoretical interpretations have been adduced to ac-
count for this behavior. " "No such striking anomaly
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has yet been noted in other systems studied, but, as we
shall discuss, there is reason to believe that similar
phenomena may be generally observable in a wide class
of such systems at sufFiciently high impurity density,
when impurity interactions are properly taken into
account.

The point of departure for this work is the observation
that the relevant experiments on impurity ion species in
KCI have been carried out at temperatures sufIiciently
low so that the motion of a given ion in its lattice cavity
cannot in general be considered entirely classical. That
is, kT is less than or on the order of some zero-field
splitting parameter A. This splitting parameter is re-
lated to the shift of rotational-librational energy levels
of the impurity ion under the lattice crystalline field and
may be studied either in strong-coupling (pocket state)'
or weak-coupling" limits. For the purposes of the
present study, we shall assume 6 to be known, either
from experiment or calculation. In particular, we shal1
also assume that all nonstatic lattice eBects' can be
taken into account through an appropriate choice of d
and that no further attention need be given them. In
view of the condition 6/kT~1, the systems here con-
sidered do not fulfill the criterion for classical dipole
behavior as set out, e.g., in Van Vleck." Hence they
must be considered from a quantum-mechanical stand-
point, in which the nonzero value of the zero-field
splitting must be rigorously taken into account. Previ-
ous treatments of the interaction problem" "have been
deficient in this respect, and, as we shall show, there is
reason to believe that certain essential physical features
of the problem have been omitted thereby.

'I W. N. Lawless, Phys. Kondensierten Materie 5, 100 (1966).
'4 M. W. Klein, Phys. Rev. 141, 489 (1966).
"W. Zernik, Phys. Rev. 139, A1010 (1965); 158, 562 (1967)."J.H. Van Vleck, The Theory of Electric and Magnetic Sus-

ceptibilities, (Oxford University Press, London, 1932), Chap. VII.
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The necessity of providing a quantum-mechanical
treatment for the problem of interacting impurity ions
at low temperatures requires that the approach be made
in terms of a temperature de-pendent polanzakftoty for a
given ion. This point of view has already been intro-
duced in a previous paper. " It should be understood
that the polarizability here referred to is determined
only by the motional states of the ion in question, and
does not include the relatively very tiny polarizabilities
associated with electronic (and, in the case of CN and
OH, internal vibrational) motions. At high tempera-
tures, for isolated impurity ions, this polarizability
takes the familiar Debye form m'/3kT, "but we shall
here be mainly interested in the region of temperature
in which this limit fails to apply.

In introducing the approach, it is convenient to
present certain very elementary results derivable by
trivial algebraic manipulations for the most simple
possible model case, that of two two-level species in
interaction through the electrostatic dipole-dipole po-
tential. %e believe that this model already discloses
most of the physical features relevant to the more
general cases of physical interest. It is, moreover,
illustrative of certain aspects of the problem of molecu-
lar interactions through induced dipole-induced dipole
forces not, in our experience, always thoroughly under-
stood. Section II is devoted to the exposition of this
model.

The treatment of the general case of interacting im-
purity ions may be formulated from the standpoint of
the dielectric virial expansion" " if the density of
impurity ions is suQiciently low. This method is under-
taken in Secs. III and IV, with a brief survey of the
formalism in Sec. III and a presentation of numerical
calculations of B(T), the second dielectric virial coeffi-
cient, for three species (CN, OH, Li+ in KC1) in
Sec. IV. The question of convergence of the virial
expansion is considered, and, in particular, it appears
that the expansion does not converge for KCI:OH at
the densities so far studied experimentally.

In view of this, we undertake an alternative high-
density approach in Sec. V and present numerical calcu-
lations for the KCl:OH system. In this approach, the
role of nearest-neighbor impurity-ion interactions is
emphasized and a criterion developed for transition of
the system from a high-temperature situation in which
nearest-neighbor impurities form coherent pairs with
weak eGective interaction between pairs to a low-
temperature situation in which longer-range eGects
eliminate coherence within pairs. Numerical calculations
based on this picture lead to results in satisfactory
agreement with experiment.

II. TREATMENT OF A SIMPLE MODEL

Many of the important physical features present in
consideration of the case of interacting impurity ions are
disclosed by examining the properties of a model which
consists of two identical particles interacting through
the Hamiltonian

H=Hoz+Hoo+t Lpz too —3r (pq r)(yo r)g, (1)

where IIO is the isolated particle Hamiltonian and p is
the dipole moment operator, and in which each particle
is restricted to possess just two states, separated by the
zero-Geld splitting energy h. The two states may be
labelled

l 0) and
l 1), so that Ej Eo= 5, an—d the transi-

tion dipole matrix element between these states is

(2)

where we choose the direction of the dipole moment
operator to define the system's z axis. Further, the
isolated particle eigenstates are assumed to have
vanishing diagonal elements of p, so that at tempera-
tures kT«h, the isolated particles are nonpolar and
respond to an applied electric field F in the z direction
through the zero-temperature polarizability no(0),
where, according to standard second-order perturbation
theory, '8

no(0) = 2m'//L. (3)

%e note that the assumption of a two-state pattern
with vanishing diagonal elements of the dipole moment
is not entirely consistent with the picture of the particles
as embedded in three-dimensional space (the excited
state should then be threefold degenerate) but correc-
tions introduced by modifying the model in such a way
as to remove this inconsistency are qualitatively unim-
portant and cumbersome to deal with. Further, the
polarizability of the excited state is, on this model, just—no(0), so that if kT LL, we have in el—ementary
fashion

1—exp( —6/kT) )
1+exp ( 6/k T)J—

At high temperatures, kT&)h, expansion of the expo-
nentials and use of Eq. (3) leads immediately to

no(T) =m'/kT (kT))h),

which is the usual high-temperature Debye form except
for a factor of 3 associated with degeneracy in the
excited states of a true three-dimensional model.

In the presence of an electric field F of arbitrary
strength in the z direction, a term pF is added to the
Hamiltonian, and diagonalization of the secular
equation"A. D. Buckingham and J. A. Pople, Trans. Faraday Soc. 51,

1029 (1955).
"A. D. Buckingham, Trans. Faraday Soc. 52, 1035 (1956).
'9 T. L. Hill, J. Chem. Phys. 28, 61 (1958).
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Fro. 1. Schematic dia-
gram of effect of interaction
and applied field on energy
levels of a pair of two-
level particles. Field direc-
tion taken perpendicular
to interparticle vector. Ar-
rows represent ( Ol& ~1l)/
V2, i.e., states in t'. IIe limit of
complete polarization by
either external fields or
interaction.

for an isolated particle leads to the energies

Es(F)= —(xrh'+msFs)"'
= ——',D(1+2m'F'/6'+. ), (7)

E (F)= (-'LP+m F's)" =s'LL(1+-2 Fm's/6 +s. )

The perturbation-theory result, of course, correctly
represents the terms in the expansion on the right in
Eqs. (7), which converges if mF( —,h. If this criterion is
not satisfied, mF) ~tA (strong field case), we have

Ee(F)= —mF(1 +5' /8msF'+ ~ ) (8)

and accordingly for Er(F). In this way we see how for
the elementary model passage from weak to strong
applied fields brings the system from the limit of a
polarizable but nonpolar particle to that represented in
Eq. (8) in which the system is best considered to have a
"permanent" dipole moment m and the zero-Geld
splitting is represented as a perturbation. In the limit of
strong Gelds, the exact eigenstates of the particle are
essentially (~0)& ~1))2 "', each of which now has a
nonvanishing diagonal element of the dipole moment
operator, of magnitude m and of direction parallel or
antiparallel to the Geld. In this representation, the zero-
Geld Hamiltonian Bo has only o6-diagonal elements.
From the general result (7) one finds for the polariz-
ability of the ground and excited states in the presence
of a Geld, using the deGnition

1 8Eg
Q (9)

p ap'
(F) +.ms/(xgs+ msFs)1/2

(10)
rr, (F)= m'/(red'+m'F') ris. —

Thus, as F becomes large, the polarizability of either
ground or excited state tends to zero as m/F. The

—b —E D 0 0
D 6—E 0 0
0 0 —E D
0 0 D —E

(13)

where a=ms(f 3s)/r'. The zero o—f energy is again
chosen so that the energies of the unperturbed isolated
particle states are ~-,'h. In the secular determinant, the
elements in the upper left-hand corner mix the

~
00) and

~
11) states of the two-particle set, and the elements in
Io C. J. F. Bottcher, Theory of Electrics Polerizatke (Elsevier

Publishing Company, Inc., Houston, Texas, iN2), Chap. VL

thermal average response to the Geld is in general given
by the temperature and Geld-dependent polarizability
a(T,F):
n(T F)= Lms/(xths+m'F')'Isj

Xtanh((-'5'+m'F')'is/kT), (11)

where we have used Eqs. (7) and (10). In the limit of
high temperatures, kT»h, mP, we have

(T,F)= ms/k T ms(xr (9+ms—F')/3 (k T)', (12)

which is seen to correctly reproduce the standard
classical result (5). The second term represents a
quantum correction to the classical result" for the re-
sponse of a permanent dipole to a strong field (dielectric
saturation), which has as first correction to the Debye
term in the response function a term proportional to
m4Fs/(k T)'

Turning to the case of two two-level particles in
interaction through the Hamiltonian (1) in the absence
of a Geld, we note that an exact solution for the four
states and four energies of the combined system is easily
obtained. In this case, p r=p,r cos8=p,rs, where
s= cos8 and 8 is the angle between r and the 2 axis. The
secular equation which must be solved is then
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E2=D,
E —(g2+ D2) 1 /2

(14)

If one now expands the equation for Eo, assuming
D&&h,

Eo= 6(1+D—2//2h'+ )
= —6—m'(1 —3s)'/2r'6
= —6—F02�(0)(1—3s)'/8r'. (15)

The correction term to the unperturbed energy on the
right-hand side of Eq. (15) is evidently, apart from the
geometrical factor (1—3s)', just the usual form of
induced dipole, or van der Waals, interaction between
nonpolar particles. "It is seen to be negative, lea.ding to
an attractive interaction, for all values of s/+3. Again,
the perturbation-theory result is identical to that ob-
tained in Eq. (15) by expansion of the exact result. This
expansion will converge if D'(2A' (weak-interaction
limit). For orientation, we note that for the case of two
helium atoms, taking A~i.6X10' cm ' and~2. 4D, the
critical value of r below which the series (15) does not
converge is about 0.5 A. On the other hand, for the case
of two impurity ions, taking 6~i cm ' and m~1 D, the
corresponding value of r is on the order of 20 A, and it
is clear that even for values considerably larger than
this, convergence will be slow. Therefore, although the
application of perturbation theory is clearly appropriate
to the calculation of energies and interaction effects on
joint polarizabilities in the case of interacting neutral
atoms in the gas phase, " it cannot be expected to be
satisfactory in general for the case of interacting im-
purity ions in Kcl, where the mean distance between
impurities is on the order of 20—100 A. In addition, the
limit D') 2h' (strong-interaction limit) may be treated
by perturbation theory, in which d is regarded as the
perturbation, but this limit also is seen not to be
applicable in the case of the impurity-ion systems. It is
appropriate to note certain points concerning the
strong-interaction limit. As D increases, the separation
hj=E&—Eo in the interacting system decreases from b,
to zero as 6'/2D, and the separation 8=En E~ rises—
from zero to a limiting form 2D. This behavior is
sketched qualitatively in Fig. 1, drawn specifically for
the case s= 0. In the strong-interaction limit, the lower
pair of nearly degenerate states may be considered
coherent mixtures of con6gurations in which the indi-
vidual particles have opposed dipole moments in an
essentially classical sense. The upper pair of states

"See, e.g., M. Eyring, J. %alter, and G. Kimball, Quaetgm
Chemistry Uohn VMey & Sons, Inc., Near York, 1944), Chap.
VIII.

the lower right-hand corner mix the ~01) and ~10)
states. The solutions of the secular equation are im-
mediately found to be

(g2+ gjl) I/2

similarly are mixtures of con6gurations in which the
dipole moments are aligned in the same direction, as
shown in the figure. It seems appropriate to call this
limit in which the interaction completely quenches the
zero-field splitting the Ising limit, since here the picture
of classical dipolar particles in interaction, with two
possible orientations of dipole moment for each particle,
becomes applicable. It is important to note that a
similar diagram could be drawn for s= 1, i.e., when r lies
along the z axis. In this case, however, the lower levels
in the Ising limit would correspond to the two dipole
moments being aligned parallel to one another, along
the z axis, with total dipole moment in either the +z or
—z direction, and the upper levels would correspond to
the two possible antiparallel alignments of the dipoles
along the z axis.

It is possible to write out general expressions for the
polarizability of the interacting two-level systems as a
function of field and temperature. The solution of the
secular equation for the case when a 6eld of arbitrary
strength is present unfortunately leads to a quartic
equation of general form. The display of the solutions of
this equation is cumbersome and unenlightening, and
we shall omit it. The general aspect of the behavior of
the levels in the presence of an external 6eld along the z
axis is indicated in Fig. 1 for the case s=0. Here, the
effect of the field and of the interaction run opposite to
one another, because the field tends to enhance parallel
alignment of the dipoles while the effect of the inter-
action is to enhance antiparallel alignxnent. One should
not, however, push this classical language too hard; for
purposes of calculation it is preferable to actually write
out the states obtained by exact solution of the secular
equation and examine the appropriate dipole moment
matrix elements. Not shown in Fig. 1 is the behavior of
the interacting system in the presence of a Geld when
s= 1, i.e., when r is parallel to the z axis and to the 6eld.
In this case, the tendency of the particles to form parallel
dipoles along the z axis in the presence of a field is
reinforced by the interaction effect, so that the 6eld
strengthens the coherence in effective alignment of the
matrix elements of dipole moment. Put another way, if
s= 1, in the intermediate or strong-interaction case, one
finds two closely spaced levels at the bottom of the
manifold of four levels, corresponding to a coherent
mixture of up and down dipole con6gurations. Because
of the close spacing of these levels, the lowest of them
has an extremely high polarizability and a greatly
enhanced response to an applied electric Geld along the
z axis.

The best manner in which to display the quantitative
behavior of a set of two interacting two-level particles is
by the plotting of exactly determined temperature-
dependent polarizabilities. We have carried out the
determination of such polarizabilities for low applied
Geld, using the obvious extension of Eq. (4) and the
energies and wave functions obtained by the solution of
Eq. (13).The computation was carried out by computer,
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particle polarizabilities, " as seen in the case of the
special model in Sec. II. For the simple case of an ideal
nonpolar gas, we have the Clausius-Mossotti formula

ct off
ot(0 K)

O. l

4m.

Pcxo )
6+2 3

where e is the dielectric constant, p is the particle
density, and o.o is the isolated atom polarizability. More
generally, if the specimen of interest is placed in an
electric Geld F and exhibits a total moment M(F), the
Clausius-Mossotti function is given by

e—1 4x p BM

e+2 3 X~ BF p=o

O.OI

By appropriate manipulation of the thermodynamic
average involved in the evaluation of M, one Gnds

6+2 3 BF gv

O.OOI —-
Ol

kT

FIG. 2. Reduced effective single-par ticle polarizability for a
pair of interacting two-level particles for selected values of the
interaction parameter D.

where p~ is the component in the Geld direction of the
dipole moment induced in a single member of the as-
sembly by the combination of external Geld F and
particle interactions. If one now seeks a systematic
expansion of the Clausius-Mossotti function in terms of
density,

and the numerical values of the reduced effective single
particle polarizability e «(T)/np(0) are presented as a
function of the reduced temperature kT/6 in Fig. 2.
Here n,«(T) is half the total polarizability in the Geld

direction (s direction) of the set of two two-level par-
ticles. The value of a.«(T) depends on the magnitude
and sign of D as shown; for clarity we present results for
only certain D values. Positive values of D correspond to
orientations in which the interparticle vector r is nearly
perpendicular to the applied field, with resultant near
compensation of field and interaction effects and conse-
quently a very small value of n,«(T) Negative v.alues
of D correspond to orientations in which r is nearly
parallel to the applied Geld, so that Geld and interaction.
effects reinforce producing an enhancement of the re-
sponse to the field and a large n,«(T). At very high
temperatures, when k T»h, D, e,«(T) assumes the usual
p'/k T form displayed in Eq. (5).

III. DIELECTRIC VIRIAL FORMALISM

The use of a virial expansion for the calculation of the
dielectric properties of dilute nonpolar gases is famil-
iar."—' The same technique is applicable with little
change to the case of a dilute assemblage of lattice im-

purities, if appropriate care is taken with distance and
angle weighting factors. The basic notion is that the
polarizability of a pair of interacting particles is, in
general, different from the sum of the independent

8= lim—

4~ ~g3= lim — —ao(T)&"' 3p BF
(20)

We now introduce the distribution function pg2 (r) which
gives the probability, given that a particle is present at
the origin, that a second particle is present at position r.
In the general case, we should have to include in g2(r)
also a dependence on relative angular orientation of the
interacting particles. However, for spherical particles
or, as in the present application, for particles subject to
a local environment of cubic syD1metry with the same
sense of axes maintained throughout the medium, this
inclusion is unnecessary. Hence we arrive at the result

4m8=—
3

d &t &u(r, T)—ao(T) jgg(r), (21)

~ It should be pointed out that in this derivation we have
suppressed certain terms which are only nonvanishing for inter-
acting unlike particles; see Ref. 18.

=p(A+Bp+ ),
~+2

we Gnd that & =3~ao(T), where now we explicitly in-
clude the possible dependence of no on temperature,
and
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with the evident identification

& &(r +~
))~O!y2=

BIi 2 BI'
(22)

where p is the density of the interacting particles, ~ is the
dielectric constant associated with them, and ~, is the
experimentally determined total dielectric constant. In
the case of interest here, we note that the dielectric
constant of alkali-halide lattices is not strongly de-

pendent upon applied field and should hence not be
much inQuenced by the presence of impurities. Equation
(23) is the fundamental relation for comparison with

experiment in the virial-expansion approach.

IV. SECOND DIELECTRIC VIRIAL COEFFICIENT
FOR IMPURITY IONS

It is appropriate to sulrunarize the present picture of
the nature and splitting of the lowest manifold of
motional states of impurity ions in alkali halides before
undertaking the application of the formalism of Sec. III
to the dielectric effects associated with them. It is
believed that these impurities (Li+, OH, CN ) are
substitutional in the lattice and hence, in KC1 and other
alkali-halide crystals, are subject to a crystalline field of
octahedral synunetry. Those motions of the OH and
CN ions which correspond to gas phase rotational
modes are strongly aGected by this field, and in par-
ticular a lowest manifold of states is developed which

may be regarded as derived from rotational states.
Alternatively, they may be regarded as derived from
localized pocket states split by tunnelling. In any case,
symmetry requirements fix the degeneracies of the
lowest manifold and determine the number of inde-
pendent energy separations which may be present
within it. In the case of Li+ in KCl, it is believed that the
impurity ion is subject to a crystalline field with oG-
center minima in the cavity, and hence also develops a
lowest manifold (of eight states) which may be regarded
as associated with an orbiting motion of the ion around
the periphery of the cavity. "The KC1:Li system may

~3 This picture seems to fail for Li+ in KBr, according to recent
experimental measurements; see J. P. Harrison, P. P. Peressini,
and R. 0. Pohl, Phys. Rev. 171, 1037 (j.968).

The formula (21) above for B differs from that in Ref. 18
by omission of a factor E, , since we choose to work
throughout in terms of number density rather than mole

density.
If the interacting particles are irrunersed in a medium

which is sufFiciently decoupled from them to be de-

scribed in terms of its electric properties in terms only
of a lattice dielectric constant el„we have for the
Clausius-Mossotti expression for the combined system

e~—1 61,—1 6—1 fr, —1
+ = +p(~+Bp+ ), (23)

e,+2 hz+2 &+2 hz+2

then be treated from the same standpoint as the others
for our purposes. There is good evidence in each of the
three cases considered here that no higher manifold
excited motional states lie within energies on the order
of 106 of the lowest manifold, where 6 represents the
average splitting within the lowest manifold. Hence it is
a good approximation, for kT(106, to regard the
lowest manifold states as an independent system, and
this approximation characterizes all interpretations
of experimental thermodynamic data at very low
temperatures.

The lowest manifold motional states of the impurity
ions then must be eigenfunctions of a Hamiltonian of
symmetry Oi, (in the absence of applied strains or
electric 6elds) and must correspond to representations
of this group. No such state can have a nonvanishing
diagonal matrix element of dipole moment, by sym-
metry, and hence at temperatures low compared with
6/k the impurity ions must be regarded as polarizable,
but nonpolar, species with a temperature-dependent
polarizability n(T) Clearly. , at high temperatures a(T)
passes to the classical value m'/3kT. (If T is great
enough to make the motions of the ions become classical,
it is also high enough for the classical free rotor result to
be applicable. ) Note that this point of view differs in no
way from that applicable to, say, the properties of a
dipolar gas at low enough temperature for quantization
of molecular rotation to be important. If one were to
study the dielectric properties of HCl in the vapor at
O.i'K, the species would have to be regarded as
polarizable but nonpolar. Similarly, if one could study
the dielectric properties of H atoms at temperatures
suKciently great so that kT were comparable to or
greater than the (1s)-(2p) splitting of electronic energy
levels, which is in this case the zero-field splitting, the H
atoms would have to be considered a polar species.
(Obviously under these conditions dissociation would
occur, so that the experiment is not feasible. )

The most eKcient way of handling the problem of
interactions within the impurity system in the quantum
limit, then, appears to be to take over the formalism
already sketched in Sec. III for the dielectric properties
of polarizable, but nonpolar, gases in interaction. One
fundamental di6erence which enters and which should
be noted is that the polarizability of most nonpolar gas
species is entirely temperature-independent in the range
of T of experimental interest, so that the temperature
dependence of the second dielectric virial coefficient
arises only from the temperature dependence of the pair
distribution function g2(r, T), whereas in the impurity-
ion case, g2(r) is temperature-independent at the tem-
peratures of interest, and the entire T dependence of
B(T) comes from the T dependence of polarizability. It
would be interesting to envisage a system in which both
0, and g2 need to be considered T-dependent, but we are
unaware of any physical examples of this. It is clear that
the calculation of B(T) in the impurity-ion case, then,
must be undertaken numerically, if recourse is not to be
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had to perturbation theory or some other approximate
method in the construction of the joint two-particle
polarizability n»(T). As was shown in Sec. II, the
introduction of the thermal weighting factors for states
of different energy produced unwieldy analytical forms
even in the most simple model, and this feature becomes
even more severe for the realistic case of impurity ions.
For these cases, the total number of states available to
an interacting pair is 36 or 64, depending upon whether
the lowest manifold of an isolated impurity comprises
six or eight states, and the number of distinct eigen-

energies becomes correspondingly large. The two central
questions from a computational standpoint, then, are
the choice of a form for g(r), and, concomitant with it,
of a procedure for surruning over lattice sites; and the
method for computing n»(T) and ao(T) exactly. We
now discuss these two points in sequence.

The integral deaning 8 in Eq. (21) should, rigorously,
be replaced by a lattice sum in the present problem. The
computational problem involved in doing lattice sum-

mations here would be intractable. Furthermore, we

anticipate that the major contribution to the integral in

Eq. (13) will be from interaction distances large com-

pared with the lattice spacing, so that we may treat r as
a continuous variable. It is only for distances between
impurity ions on the order of a few lattice spacings that
this approximation will be signi6cantly in error. It
should also be noted that work on related classical
problems" indicates that no very great error from the
use of this approximation arises in cases where it might
be expected to be even more serious.

In accordance with the assumption of a random
distribution of impurities, it is consistent to choose for
gs(r) a step function, with

g2 (r) =0 (r(r~ in)

g, (r) =1 (r&r;.).
Here r; is taken to be the minimum distance between
the impurity species in the lattice, i.e., the distance be-
tween nearest-neighbor sites of the same charge.

Turning to the calculation of the two-particle polar-
izability a»(r, T) and the isolated particle polarizability
ao(T), we note that the calculation of the latter has
already been illustrated. "In general,

impurity Hamiltonian

ff12 +01+H02+ (ELK )
&&I:si s~—3r '(s~ r)(t&'r)1 (25)

identical with H in Eq. (1) except for the inclusion of the
dielectric constant of the medium intervening between
the two particles, in the present case that of the alkali-
halide lattice ~1„.The isolated particle Hamiltonians Bp~
and Bp~ are characterized only through the zero-Geld

splitting parameters 6, assumed known. The computa-
tion of a»(r, T) then proceeds as follows: We calculate
the exact eigenstates of the Hamiltonian B» within the
basis set of 36 or 64 states contained within the direct
product of the isolated impurity basis states to obtain
exact energies E;(12) and eigenfunctions

I j(12,r)). The
dielectric properties of OH- in KC1 have been measured
with the direction of electric 6eld along the L100] axis,
so we have restricted our further calculation of inter-
acting impurity polarizability to the component
n...q2(r, T). Because of the high symmetry of the octa-
hedral sites in which the impurities reside, there should
not be a great dependence of observed dielectric proper-
ties upon Geld direction, and we believe that this
calculation is accordingly suKciently general. We shall
in what follows suppress the indices on a»(r, T) since
only the zz component is treated. In performing the
diagonalization of B», it is convenient to work entirely
in a matrix formalism in which the operators p are
written as 6&(6 or SX8 matrices, with elements nz, the
transition dipole matrix elements between states of the
isolated impurity manifold. Similarly, Bp~ and Bp2 are
treated as matrices of like dimension, diagonal within
the isolated impurity basis. The matrices p have, of
course, zero diagonal elements with this choice of basis.

With the exact states for the interacting two-particle
system in hand, the joint two-particle polarizability as
a function of T is computed according to

+12(r T) Q &»j(r) exp g exp, (26)
kT . IT

where j runs over the 36 (or 64) states of the pair, and
E, and n&ag(r) are the energy and polarizability of state
j.Explicitly

ap(T) =g ao(e) expI I P exp I, (24)
'0 ( uT i - eT i'

I &j(r) I»*+».I ~(r)& I'
QJ2j r 2

%Aj E—E. (27)

where the index e denotes the eigenstates of the isolated
impurity, E is their energies, and ao(n) is the polar-
izability of each state, calculated by second-order per-
turbation theory. It follows from the use of a Gnite
manifold of states that some of these individual state
polarizabilities are negative. In the calculation of
n» (r,T) the fundamental quantum-mechanical problem
which must be solved is the diagonalization of the two-

~ R. Rosenberg and M. Lax, J. Chem. Phys. 21, 424 (1953).

where p,, is the z component of the dipole moment
operator. In carrying out these ca1culations, the origin
of coordinates is taken at the cavity center of one of the
impurities and a vector r is drawn to the cavity center
of the other impurity. The presence of the crystal
lattice and the Gxed orientations of the impurity eigen-
states with respect to the lattice directions dictates our
choice of coordinate system. If we were treating the
interactions of two molecules in free space, we would be
free to choose the z axis along r, which would con-
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siderably simplify angle averages. The simplicity in the
free-molecule case is due to the fact that the wave
functions for a free molecule form the bases of irreducible
representations for the full rotation group, whereas our
impurity wave functions form bases for irreducible
representations only of 0&. In the present impurity case,
w'e choose a right-hand Cartesian system with axes
along the crystalline [100]directions. The question of
performing angle averages over r with this choice of
coordinates must then be examined. Consider a second
impurity ion to be placed somewhere on the surface of a
sphere of radius r surrounding the first impurity ion. By
symmetry, the angle average of the two-particle polar-
izability over one octant is equivalent to an average
over the entire sphere, so that we may restrict our
choices of angle to those within one octant. In principle,
it is necessary to diagonalize B» for all angles in this
octant, since the interaction between two impurity ions
will depend upon the angle between r and the lattice
[100] axis. For example, two impurities on the same
[100]axis will have a different polarizability than two
impurities on the same [111]axis. As an alternative to
this impossibly cumbersome procedure, we have selected
a set of representative orientation directions such that
any terms whose angular dependence would cause them
to average to zero with a full spherical averaging will in
fact vanish, thus eliminating spurious r dependences.
The [100],[110],and [111]axes provide such a set of
orientation directions. Taking full advantage of the
synDnetry of the problem, it is possible to cover all 26
possible directions with diagonalizations along only
these three principal axes.

A computer program" was written to diagonalize the
Hamiltonian B» within the combined impurity basis
set for the choice of orientations described above and for
not less than eight values of r in the range from r;„to
500 A. For each value of r and orientation, the polar-
izability was computed using Eqs. (27) and (26), and
the result averaged over the sphere for each r to give
nq~(r, T) over the range 0.005—100'K. Graphical inte-

TmLF. I.Zero-Field splitting parameters for impurity ions in KCl.

Ion species

Li+ '

OH

Alp Tle
Tls Tip
Tap-A a~

A Ip T]ss
Tg -Ep

Alp Tits
TI~-~p

Splittings (cm ')

0.8
0.8
0.8
1.4
0.7
0.15 (BS);0.14' (FSS)
0.03 (BS)' 0.07' (FSS)

sl Assistance was obtained from the Health Sciences Computing
Facility, UCLA, sponsored by National Institutes of Health
Grant No. FR-3.

a Reference 5.
b Reference 11.
& G. Feher, L W. Shepherd, and H. B. Shore, Phys. Rev. Letters 16,

500 (1966).

TAaLE II.Magnitude of transition-dipole-moment matrix elements
for impurity ions in KC1.4

Ion species

Li+

OH

A lp" Ties
Tits T2p

Moment (in D)

1.5
1.15 (for symmetry allowed

components)
1~ 15

0.17
0.21
0.12

0.565 (BS); 1.05 (FSS)
0.547 (BS); 1.29 (FSS)
0.89 (BS);0.74 (FSS)

~ We do not here give the detailed breakdown in direction for the matrix
elements. For tabulation of these, see W. R. Salzman, Ph.D. dissertation,
University of California at Los Angeles. 1967 (unpublished).

gration was carried out over r in computing B(T) in
accordance with Eq. (21).

A. Results

We have carried out the calculations described above
for three species now sufficiently well characterized so
that zero-field splitting parameters and transition dipole
matrix elements can be taken with some confidence from
available data: Li+, CN, and OH, all in KC1. Th
lattice dielectric constant eL, for KCl has been taken
throughout as 4.33.The values of the other fundamental
parameters assumed are tabulated in Tables I and II.
The dipole moment matrix elements given in Table II
do not correspond in a simple fashion to the eGective
classical dipole moment of the species which would be
inferred from high-temperature 1/T dependence of the
Clausius-Mossotti function. For reference, we give the
latter values which are consistent with the above matrix
elements: OH, 1.82 D; CN—,0.30 D; Li+, 2.00 D.

The isolated particle polarizabilities no(T) which
follow from these choices of parameter were calculated
by computer and are displayed in Fig. 3. The peak in
na(T) for the OH ion at about 0.1'K using the parame-
ters of Ref. 11 should be noted. The parameters were, of
course, originally chosen in order to introduce a peak at
about this temperature in this species, on the basis of
the observation that extrapolation of the peak tempera-
tures in Ref. 3 to zero density appears to give a finite
value of about 0.1'K which would accordingly have to
be explained as an isolated particle effect.

It was observed in our calculations of -', n1~ that this
quantity is smaller than no for configurations in which
the angle e between r and the s axis approaches $w, and
greater than no if 8 is zero or m. The reason for this is
exactly the same as for the similar behavior shown in
Fig. 2 in the case of the interacting two-level systems,
and qualitatively the behavior indicated there can be
taken as representative for the interacting impurity-ion
case. In the angle average, the contributions of the 8=0
or x configurations dominate for all cases at all tempera-
tures, so that the integrand in Eq. (13) is always posi-
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1O'

OH,

1O3

104—

103

GN,

Io

Frc. 3. Isolated particle polariz-
abilities for KCl."OH, KCl:l.i+, and
KCl:CN as a function of tempera-
ture. Results for both the BS and I'SS
choices of parameter for KCl:OH are
shown.

O.OI O. I

kT (cm')

IO
l

IOO

tive after the angle integration has been performed. This
behavior is shown in Fig. 4, a plot of the computer-
determined values of ( ', n~ mao)r'-el. ' versus (eqr') ' for
the case of interacting OH ions at kT=1.0 cm ',
T=1.4'K.. The actual computer data are indicated by
the points in the plot. Note that if a second-order
perturbation-theory calculation of 2'nI2 had been ade-
quate in this case," the term —,'a» —n& would have ex-
hibited a dependence on r of the form C/r, ' and the plot
in Fig. 4 would have been linear over the whole range up
to the cutoif value of (eqr') '. The deviation from this
behavior is strong, showing that a perturbation calcula-
tion in this case would have been excessively tedious. It
appears that the perturbation series contains positive
terms in r and r—' and a negative term in r ", and
clearly a calculation to at least fourth order would have
been required. Figure 4 also shows that the value of the
integral defining B(T) is reasonably insensitive to the
exact choice of the cutoff distance and is mainly in-

Auenced by interactions at a distance great enough so
that the replacement of a lattice sum by a spherical
average should be an excellent approximation. The
aspect of these plots for the cases of KCl:CN and
KCl:Li+ is similar, although in the latter cases the r '
and r ' terms, which are uniformly positive and nega-
tive, respectively, are smaller relative to the r ' term
than in the case of KC1:OH (more so for KC1:CN—).

From graphical integration of plots like that shown in
Fig. 4, we have determined B(T) for each of the three
systems of interest, and the numerical results are
presented in Fig. 5. B(T) is seen to be everywhere
positive for all species; that is, the effect of pair inter-
actions at this level of treatment is to enhance the
response of the system to an applied electric held in the
(100j direction. The high-temperature limiting be-
havior of B(T) exhibits an interesting variability. As kT
becomes large, B(T) varies as T ' in the case of Li+,
T' "in the case of OH-, and T "in the case of CN—.

a

Typicol Plot for Distance

Integration (OH )

kT= l.O cm-'

Cutoff I
9.52 x 10

FIG. 4. Computer-deter-
mined values of the inte-
grand in the de6nition of
the second dielectric virial
coefficient B(T) as a func-
tion of separation distance
for KCI:OH at 1.4'K.

0
0

~—
I

5

(io-'X-' )r~
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There appears to be no simple qualitative argument
which can be advanced to account for these depend-
ences. In this connection, we note that calculations in
the classical, high-temperature limit for assemblies of
dipoles on lattices" indicate that the leading term in the
deviation from noninteracting dipole behavior there
depends on temperature as 1 '. A particularly im-
portant feature of our results is that the quantitative
behavior of B(T) appears to be sensitive enough to the
numerical values of the isolated particle parameters, so
that refined low-temperature measurements of the
dielectric constant may be an appropriate technique
for deciding among various possible choices of these
parameters.

The only one of the systems considered for which a
systematic study of concentration dependence of di-
electric properties has been carried out is KC1:OH '. It
was originally suggested by the present authors" that
the peak in the dielectric constant observed in this
system might be an essentially single-particle effect,
modulated and shifted by interactions. Insertion of the
isolated single-particle polarizabilityao(T) for KCl:OH,
calculated in accordance with the prescriptions of Ref.
11 and displayed in Fig. 3, in the Clausius-Mossotti
expression ', srpao(T) le-ads to values of e for the system
in excess of those experimentally determined. Hence, on
the picture originally advanced, B(T) for this system
would be expected to be negative. Since classical cal-
culations'4 do in fact show a reduction in e due to
interactions, it was originally thought that the same
effect might manifest itself in the present problem.
Moreover, it appeared that the nonlinear dependence on
concentration of the temperature of maximum e for
KCl:OH—' " indicated a virial-expansion technique as
the logical avenue of approach to the problem. However,
as we have just seen, B(T) for OH is positive at all
temperatures of interest for either the BS or FSS
choices of parameter; inclusion of a second-order term
in impurity density together with the isolated impurity
term in Eq. (23) cannot provide an explanation for the
observed properties of KC1:OH in the concentration
range so far studied experimentally.

The studies which we have carried out do, however,
point to an alternative picture for KCl:OH which is in
reasonable accord with experimental observation and
which differs in significant respects from those previ-
ously presented. ' ' We shall consider this picture in
detail in Sec. V, and complete the present section with
further discussion of the properties of the dielectric
virial expansion. Previous work on the dielectric virial
expansion for nonpolar gases"" for which quantum
effects dominate and the temperature dependence of +~2
is unimportant have shown that B(T) in these cases
should be positive. This is in accord with'available
experimental data" except in the anomalous case of He.
The reason why the effect of induced dipole-induced

~' D. R. Johnston, G. J. Oudemans, and R. H. Cole, J. Chem.
Phys. 33, 1310 (1960).

iol I

OHs lh
ecole

Cf)
O
O
CI

IO'—

IO'—

IO'— —IO

10

—P. I

10e' 10 O. I

kT (cm ')

Fio. 5. Computer-determined values of B(T) as a function of
temperature for KCl:OH, KCl:Li+, and KCl:CN . Results for
both the BS and FSS choices of parameter for KCl:OH are
shown.

dipole interaction is to enhance the response of the
system to an applied electric field in both the gas case
and the impurity-ion case is easily seen. If we consider
first the isolated particle situation and recall that"

(a (s')) (s (1')) (ss) (28)

where V is the volume, F is the field strength, and S is
the entropy, we see that at suKciently low temperatures
(T(6) when the particle is mainly in the ground state,
application of a field cannot significantly lower the
entropy and hence n const independent of T. Thus in
the quantum limit n(T) deviates negatively from the
classical result m'/3k T. However, if the particles are in
interaction, as we have seen in Sec. II, the splitting 6
between the ground state and some at least of the ex-
cited states becomes smaller than for isolated particles,

"H. Frohlich, Theory of Didectrics (Oxford University Press,
London, 1949), Chap. I.
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e—1 her=—mp(T)
6+2 3

(30)

is inadequate. A priori, there are two possibilities; either

~ In the special case of a two-level system, the leading correction
term is O{1/T').

39 R. Srout, Phys. Rev. 115, 824 {1959).

and negative deviation from the 1/T behavior of a sets
in at a lower temperature. Thus the interaction eBect
tends to counter the quantum eBect and make the
eBective single-particle polarizability more nearly equal
to m'/3k T than it would otherwise be. This accounts for
the positive B(T).At very high temperatures when the
classical limit applies, the situation is completely diBer-
ent since the density of states available to a given
particle is no longer critically dependent on interaction
strength. At temperatures T&h, the isolated particle
polarizability for the impurity-ion cases may be shown
to take the form

ap(T) =e '/3kT C/TP+— . , (29)

where m, is the effective classical value of particle dipole
moment and C is a positive constant. "Inclusion of the
two-particle eBect by addition of the second dielectric
virial coefficient adds a term of the form +C'p/T",
where n seems always to be & 2. It appears that for the
cases considered here, the resulting effective»»(T) for the
interacting, nonclassical system is always less than
mP/3kT, so that the net combined effect of quantum
corrections and interaction corrections is to give a
negative deviation from the classical noninteracting
result. It is not clear whether this situation is general or
depends critically on the basis set of levels chosen here.
In the classical limit, the eBective single-particle polar-
izability of the interacting system would be mP/3kT

C"/T', acc—ording to Ref. 24; thus it appears plausible
that the exact quantum result, corrected for interactions,
joins smoothly onto the classical result, corrected for
interactions, at some intermediate temperature. It ap-
pears to us that this point merits further investigation.

The virial formalism used here, although taken over
from applications to dilute gas systems, is in accordance
with the prescriptions given by Brout" for density
corrections to isolated particle behavior in corresponding
magnetic systems. The fact that the impurity ions are
Gxed in random positions in the lattice aBects the nature
of the statistical averaging which must be performed,
but diBerences with the case of a dilute gas only show up
in the third and higher dielectric virial coefBcients. It
seems, therefore, as though the calculation of B(T) as
presented here is sound. The reason why application of
the virial method fails in the case of the KC1:OH
systems studied here is simply seen if one notes that in
the temperature range of interest, the quantity $ pr pap(T)
is in the range 0.72-3.2, that is, not small compared with
unity. Under these conditions, the isolated particle
Clausius-Mossotti result

inclusion of pair interactions via the virial formalism
lowers the effective single-particie value of n(T) suK-
ciently so that the quantity on the right-hand side of
Eq. (30) is less than unity, in which case the virial
formalism is appropriate, or it does not, which means
that the virial expansion in fact diverges. We see that
the latter possibility is the one realized in the KC1:OH
system. It is possible, however, to assert that there is a
range of temperatures and densities in this system for
which convergence of the virial expansion does occur.
Evidently, we must have x»~pnp(T)«1, or, since ap(T)
is on the order of 10~10' A' at low temperatures, we

must have p&10" cm '. The second virial-coefBcient
term will then begin to be of importance when Bp
~'pPaP(T), or when B(T) 2)&10uAP. Reference to
Fig. 5 shows that this occurs at temperatures of about
0.015'K or lower. It would be di6icult to perform
sufEciently accurate experiments on such dilute samples
at these low temperatures, but we note that the condi-
tions are less stringent for the KCl:Li+ and KC1:CN—
systems.

There are three simple dimensionless parameters
which one may construct for the general case of inter-
acting polarizable particles: the reduced temperature
T,=kT//5, where 6 is a representative zero field
splitting, the reduced interaction strength D„=m'p/6»,
where m is a representative dipole moment matrix
element, and the ratio D„/T„=m'p/kT». A picture of
classical orientable dipoles is appropriate in either of the
limits T„»1or D„»1.In the latter case, the interacting
particles are strongly correlated, corresponding to the
Ising limit in Fig. 1. Neither limit applies well to the
impurity species considered here at temperatures on the
order of 1'K and densities so far investigated. For
KCl:OH, T„ranges from 1 to 10 and D„from 0.3 to 1.5,
for example. The ratio D„/T, in essence determines the
convergence of the virial expansion of the Clausius-
Mossotti function. Ef D„/T„«1, convergence may be
expected, but if, as in the case of the KCl:OH systems
D,/T, &1, the virial expansion will not be applicable.
Clearly, the question of the convergence of the virial
expansion is distinct from that of the applicability of a
classical analysis, and convergence or nonconvergence
are both possible in either classical (T,»1 or D„))1)or
quantum (T„D,(1) cases.

V. HIGH-DENSITY CASE

The primary goal of this work is the development of
a systematic virial-expansion treatment of the dielectric
properties of interacting impurity-ion systems including
quantum effects associated with the presence of zero-
Geld splitting. This approach is fundamentally restricted
to low impurity-ion densities, in the sense set forth in the
Sec. IV, and as such does not apply to the KC1:OH
systems so far investigated. It seems appropriate, there-
fore, to point out that this work also indicates a simple
explanation for the main qualitative features observed
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2'„=ajar, „Fcos8= 20..fj,„, os8) (31)

where m„ is the induced dipole moment per particle of
the pair, F is the field strength, and 8 is the angle
between r and the z axis. The total average polarization
of the impurity system along the z direction is then

P& p(m, oc8s),~=—
p—(a.ff«cos'8 F),,~

1= 3~eff, rr~) (32)

to give for the Clausius-Mossotti function for the im-

in the dielectric behavior of KC1:OH, although one
which falls somewhat outside the framework of the
virial expansion.

The basic point of interest here is revealed clearly in
Fig. 2, which applies rigorously to the interacting two-
level particles but in an approximate fashion also to the
interacting impurity-ion cases. Whereas the polar-
izability of interacting particles in a direction perpen-
dicular to the interparticle vector r is reduced relative to
that for the noninteracting case, o.o, the pair polarizability
o.~~,„, along r is very greatly enhanced. Consider a
system of impurity ions fixed at random positions in the
KC1 lattice. Each of the ions will have a well-defined
nearest other impurity ion at a position r relative to it;
the probability that a given ion will have two or more
neighbors at the same distance is negligible. As the
density of impurities increases, the average distance
between nearest-neighbor impurity pairs will diminish
as p 'I'. The orientation of r taken over all impurities &n

the lattice is a random variable, but for any given im-
purity is Gxed. Let us then imagine the impurity system
to consist of more or less well-defined nearest pairs, with
the pair axis r randomly oriented with respect to lattice
axes. This picture is not entirely unambiguous since a
careful specification of what is meant by a nearest pair
should be given; however, for most impurities in the
lattice it has a clear significance. Such a pair may be
characterized by a polarizability ellipsoid, with the long
axis of the ellipsoid along r. Alternatively, in terms of the
effective single-particle polarizability O,,jf go.)Q we can
say that the components of 0.,«define a polarizability
ellipsoid, elongated in the r direction and contracted
perpendicular to r in accordance with the results shown
in Fig. 2. Since the efI'ect of pair interaction on polar-
izability drops oB with distance at least as fast as r 6,

the nearest-neighbor eGect will dominate the eBective
single-particle polarizability at least until the polar-
izability ellipsoids of distinct pairs begin to overlap one
another. In a situation in which the pair effect is domi-
nant but ellipsoids of distinct pairs do not overlap, we
expect that the principal term in the response of the
impurity system to an applied electric Geld in the lattice
z direction is correctly given by the component along the
z axis of the pair dipole moment induced by the field
along the pair axis r. This moment is given by

purity system

6s+ 2
= 4%pa, ff,„/9. (33)

6s+ 2

1
3 ~ (35)

Turning to the specific case of KCl:OH —,we remark that
the behavior of 0.,«,„„ for this system is essentially
identical with that shown for the interacting two-level
systems in Fig. 2, at least for the FSS choice of parame-
ters. The parameter D appearing in Fig. 2 is, for the
two-level particles, just

D= (—2ns'/her) p= np(0'K)—p/er. , (36)

where we have inserted the lattice dielectric constant
CJ replaced r ' by its approximate average value p, and
set s=cos8=1, which is the appropriate choice for the
calculation of n, gg „„.Now ao(0'K) for the FSS choice of
parameters is 8.0X 104 A', the lattice dielectric constant
is known, and the densities of the KCI:OH systems are
available' Hence if we assume that Eq. (36) is appli-
cable to the KC1:OH- system, we can calculate D for
each of the experimental densities studied in Ref. 3. A
given value of D fixes the interparticle distance r, and
from Fig. 2 we can read o6 for any given value of D the
value of the ratio kT/6 for which the condition (34) is
exactly satisfied. The corresponding value of T should,
on this picture, be T . It remains to be decided what
value should be taken for 6 for the OH system. The
only reasonable and consistent choice seems to be to
average the splitting parameters given in Table I for the

We note from Fig. 2 that n, ff,„„increases as T is de-
creased. Hence we expect an increase in the Clausius-
Mossotti function as T decreases until a,ff,„„reaches a
value such that, on the average, the polarizability
ellipsoids of distinct pairs begin to overlap. When this
overlap begins to occur, the strong coherence between
neighbors in a given pair leading to a large value of
A ff, is perturbed and the eft ective single-particle
polarizability diminishes except for the improbable case
that three or more neighboring impurities happen to lie
on a straight line. In order to convert this picture to
numerical calculation, we assume that the magnitude of
Q ff „is the same for all pairs, and may be calculated by
setting r-'=p. The condition that the polarizabBity
ellipsoids begin to overlap is then that a "Clausius-
Mossotti catastrophe" occurs with O,,ff, 01

4
3XPCef f, ) ) = 1 )

(34)
&eff, ) )

4n-p

At a temperature T at which condition (34) is
satisfied, we should expect a maximum in the dielectric
constant. From Eq. (33) we see that at T, on this
model,
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TAsLE III. Determination of T, for KC1:OH .

P
(10» cm ')

6.07
8.17

18.3
28.6

0.11
0.15
0.34
0.53

KHR

0.43
0.58
1.30
2.0

r, ('K)
K BS

0.20 0.29
0.27 0.37
0.60 0.83
0.94 1.32

Expt.

0.32
0.385
0.74
1.2

FSS model for OH, taking account of the relative
degeneracies of T~„and E, states. This leads to an
average effective value 6=0.17 cm ' for KC1:OH .

We have carried out this simple calculation of T,
for KCl:OH —using the above choices of parameter, the
results shown in Fig. 2, and the dielectrically determined
densities reported in Ref. 3. In Table III we give the
density, value of the D parameter, experimental T
from Ref. 3 (KHR), theoretical T from KHR,
theoretical T, from Ref. 15 (K), and theoretical T ~
according to the present work (BS).It can be seen that
the results of the present work are in reasonable agree-
ment with experiment, at least as good as previous
theoretical predictions in spite of the simplifying ap-
proximations introduced. Further, we note from Ref. 3
that the experimental ratio

6,—1 6&—1 1!L—1

6;+2 6 +2 6g+2

for the KCl:OH system, where el. and e, are the pure
lattice dielectric constant and impurity doped lattice
constant, respectively, takes values in the range 0.16-
0.26 at T, in order-of-magnitude agreement with the
prediction of the present work that this quantity should
be 0.33 at T „ in accordance with Kq. (35). Further, it
is clear that the inQuence of more distant impurity
neighbors on a given impurity ion pair, neglected in this
work, vill be sizeable even before the polarizability
ellipsoids begin to overlap, and this eGect will tend to
make (e;—1)(~;+2) smaller than —', at T ~, tending to
bring the theoretical result into better agreement with
experiment. An important feature of the present result
is that T is no longer a linear function of the density,
as predicted in all previous work on the problem. The
curvature in plots of the experimental T ~ versus p is
pronounced, and our result is seen to reproduce this
curvature, if imperfectly. The curvature arises, on our
model, from the fact that in the KCl:OH system we
are in a regime of temperature and density such that

ff exhibits a complicated dependence on T, not
rigorously representable as a classical 1/T eGect. Thus
the curvature is a strictly quantal eGect which no
classical theory would be expected to give. The plot in
Fig. 2 for D= —2 shows this eGect most markedly, but
it is general for all plots.

The generally good agreement with experiment of our
results for KC1:OH lends confidence to the belief that
we have found the essentials of a correct theoretical
treatment of the dielectric properties of this system. A

number of obvious improvements should be carried out,
including calculation of e,ff,„„for more realistic repre-
sentations of the impurity ions than is aGorded by the
two-level particle result, a more correct averaging over r
than is given by the replacement of r ' by p, a rigorous
specification of the way in which ions may be grouped
into coherent nearest pairs, and a treatment of the effect
of more distant pairs on a given pair. In connection
with the last of these points, one evident device which
could be introduced would be an internal or reaction
field acting on a given pair due to the remainder of the
system, in a way somewhat similar to that presented in
Ref. 15.However, in a fixed random system such as the
impurity ions in KCl, it seems likely that it would be
necessary to take into account the highly nonuniform
electrical environment in which any given pair finds
itself, that is, the eGect of the nearest pair to a given
pair. A reaction-field approach, of course, immediately
imposes the approximation of a uniform environment
for each pair. We hope to return to this point in future
work, and will only remark that a virial expansion in
terms of interacting pairs may be indicated.

A comment is in order on the relation between the
method of this section and the straightforward virial
expansion discussed in Secs. III and IV. In that ap-
proach, we calculate the eftective two-particle polar-
izability in the s direction averaged over the orientation
of r. This averaged quantity is much smaller than the
polarizability along r because of the extreme eccentricity
of the two-particle polarizability ellipsoid. This pro-
cedure has meaning, and the virial expansion converges
only if the largest principal axis of the ellipsoid, n» „„,is
much smaller than the cube of the average distance be-
tween particles, i.e., the reciprocal density. This condi-
tion may fail even under conditions such that the
computed B(T) is not very large, and KC1:OH— is
evidently an example of such a situation. It may readily
be checked that this convergence criterion is essentially
equivalent to that given in Sec. IV. When o,»,„„is large
enough so that the polarizability ellipsoids of distinct
pairs overlap, the sects of three and more particle
interactions become inseparably mixed with those of
pair interactions, and a virial approach is unsuitable. A
breakdown in virial expansion generally indicates that
a phase transition occurs. In the present case, one might
say that the transition is between a high-temperature
phase in which particles are locked into coherent pairs,
with weak interaction between the pairs, and a low-
temperature phase in which coherence within pairs is
largely disrupted and replaced by an essentially random
collective structure. A parallel could be drawn with the
hypothetical case of a gas of dimer partides which
condenses at suQiciently low temperature to a liquid in
which the dimers are largely disrupted by intermolecular
forces.

In summary, our picture of the KC1:OH system at
densities so far studied is this: As the temperature is
reduced, pairs of near-neighbor impurity ions become
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increasingly locked into coherent states with a very
large polarizability along the interparticle axis. This has
no very great effect on the response of the whole system
to an applied electric field since the orientations of the
individual pair axes are random with respect to the field,
and the Clausius-Mossotti function for the impurity
system decreases with temperature faster than 1/T
because of quantum effects. It seems appropriate to
refer to the coherent pairs as ferroelectrically locked.
The interacting particle polarizability, and hence the
impurity system dielectric constant, increases with de-

creasing T until a temperature T at which distinct
pairs begin to interact strongly with each other, par-
tially breaking the coherent ferroelectric coupling be-
tween particles within a given pair and reducing the
dielectric constant. The dominant effect in the inter-
action between distinct pairs is primarily antiferroelec-
tric. At sufficiently low temperatures, the impurity-ion
system is essentially in a ground state in which both
ferroelectric and antiferroelectric effects manifest them-
selves, and which would appear to exhibit no very clear
ordering of any sort. Certainly there appears no reason
to expect dramatic manifestations of ordering, i.e., a
persistent internal polarization, in KCl:OH at any T
on this picture, assuming that the system is in equi-
librium. If very long relaxation times occur at sufE-
ciently low temperature, of course, a persistent non-
equilibrium polarized state might be produced by, e.g.,
cooling the KCl:OH system in the presence of a strong
applied Geld, but consideration of this lies outside the
scope of this work.

Ke remark that Figs. 2 and 3 can be used to calculate
T „„for the Li+ and CN'- systems as well. Since this can
inunediately be carried out, we give here no detailed
predictions for these species, but for orientation com-
ment that for both Li+ and CN, no peak in the
dielectric constant would be expected for densities less
than about 2X j.O" cm '.

The discussion above leaves open the question as to
whether the BS or FSS model is best for KCl:OH . In
computing T, we have used only the FSS choice,
because the low-temperature properties of isolated OH—
ions on the BS model are sufficiently complicated for it
to be unclear as to what value should be taken for
no(0'K) in Eq. (36). Nevertheless, further work is re-
quired before a final choice can be made as to which set

of parameters gives the better agreement with available

experiment.

A. Comparison with Other Work

The other treatments of the dielectric properties of
interacting impurity ions in solids extensive enough for
a detailed comparison to be given are those of Klein, '
Lawless, " and Zernik. "Each of these treatments has
been essentially classical, neglecting zero-Geld splitting
effects, and has been restricted to KC1:OH . Klein
makes the serious approximation of truncating the
dipole-dipole interaction term in the Hamiltonian to
include only p& p2/r'. This guarantees that only anti-
ferroelectric coupling can be present and rules out the
ferroelectric coupling between neighboring ions which

appears of critical importance. Lawless has kept the
entire interaction term and has done a rigorous lattice
sum in evaluating the effect of impurity interaction. He
also attempts to take quantum effects into account by
adding a temperature-dependent polarizability to a
classical dipole term for each impurity. This procedure
is dubious, and in any case cannot properly account for
quantum effects in the interaction between impurity
ions except in the limit of weak coupling when second-
order perturbation theory can be used. The special
properties of impurity pairs do not occur in his work,
and his calculated results do not appear to be in good
agreement with experiment. The picture of Zernik is
similar to that adopted in Sec. V here, although arrived
at from a different point of departure. He has empha-
sized the pair problem, treating an interacting pair of
impurities exactly within the classical formulation and
taking the remainder of the system into account by
reaction-Geld methods. Zernik's predicted values for
T are in nearly as good agreement with experiment as
those found here, and his calculated value for (e,—1)/
(e,+2) at T is 0.33, the same value as here. However,
his entirely classical theory cannot reproduce the ex-
perimentally observed nonlinear dependence of T on

p, whereas our quantum result succeeds in accounting in
semiquantitative fashion for it. Further, inclusion of
interactions between distinct pairs will reduce our value
of (c,—1)/(~~+2) below 0.33, whereas all long-range
effects possible in his formulation have already been
included by Zernik. Finally, we note that the use of
reaction-Geld methods in this problem may not be
entirely sound, as pointed out above.


