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Temperature Dependence of Raman Linewidth and Shift in n-Quartz*
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The linewidth and frequency of the 128-cm ' and the 466-cm ' optical lattice vibrations in quartz have
been measured between 5 and 300'K by means of high-resolution Raman spectroscopy. The 128-cm '
mode, which is both Raman- and infrared-active, is the lowest-lying optical vibration in quartz and shows
a marked increase in lifetime at low temperatures. Utilizing available phonon dispersion spectra obtained
from neutron scattering, the linewidth and shift are calculated in terms of three-phonon interactions. A
simple model for the cubic anharmonicity, which includes relaxation broadening of the thermal phonons,
is applied satisfactorily to the residual damping at low temperatures. The 228-cm ' LO-TO splitting, which
is extremely small, is not resolved directly, but manifests itself as an observed broadening at
helium temperatures.

1. INTRODUCTION

IGH —RESOLUTION Raman scattering has been
~ - - ~ used to measure the linewidth and frequency of
two optical lattice vibrations in crystalline quartz from
5 to 300'K. The vibrations studied were the infrared-
active, 128-cm ' species-E mode and the infrared-
inactive 466-cm ' species-A j mode. The temperature
variation can be explained in terms of simple anhar-
monic e6ects involving only three-phonon processes.

The 128-cm ' mode is particularly interesting since
it is the lowest-lying optical vibration in quartz. At
very low temperatures its lifetime increases markedly
as it can decay only into a relatively low density of
acoustic phonon states. A model calculation, general-
ized to include the possibility of broadened acoustic
modes, gives a rough numerical estimate of this residual
width. At higher temperatures, scattering of thermal
acoustic and optical phonons dominates the damping
of the 128-cm ' vibration. Assignment of the most
likely channels for decay and scattering of the 128- and
466-cm ' modes is made possible by recent neutron
scattering data of phonon dispersion in quartz.

Of corollary interest is a determination of the polari-
ton properties of the 128-cm ' vibration. Generally, the
degeneracy of the longitudinal and transverse com-
ponents of E-symmetry modes is lifted by the coupling
of the effective charge to the electromagnetic held. The
resultant splitting, if measurable, determines this
coupling and, thereby, the phonon-photon admixture
and the dispersion of the excitation. However, the
128-cm ' mode is only weakly infrared active. The room-
temperature oscillator strength, measured by far
infrared spectroscopy, yields a splitting much smaller
than the natural linewidth. As the temperature is
lowered, it is known qualitatively that the infrared
absorption decreases, but at a slower rate tham the
linewidth. Unfortunately, even at liquid-helium tem-
peratures, the splitting is never fully resolved from the
natural linewidth. An approximate value of the low-
temperature oscillator strength may be obtained,
though, because a broadening of the pure-mode width
is evident when both longitudinal and transverse com-
ponents contribute to the Raman scattering.

Although the Raman and infrared spectra of quartz
have been studied for years, the proper interpretation
of the modes has only recently been established by
Kleinman and Spitzer, ' Elcombe, ' and Scott and Porto. '
The latter paper contains an extensive bibliography of
the previous work. The polariton sects have since been
illuminated by Scott, Cheesman, and Porto. 4 Recently
a controversial feature of the spectrum has been
classi6ed by Scott' as an enhanced second-order scatter-
ing by anharmonically coupled one and two phonon
states. Earlier, Shapiro, O' Shea, and Cuznmins' had
observed that the extra mode was implicated in the
a-P phase transition of quartz and suggested an asym-
metric double-well or twinning model to explain these
observations. The nature of the n Ptran-sition was the
inspiration for several early experiments on the tem-
perature dependence of the Raman shift and linewidth.
Of these, Nedungadi' and Narayanaswamy cataloged
the thermal variations in quartz most completely. The
simple anharmonic properties were in evidence then
but were not analyzed. This present work, may be
regarded as an extension of the Indian work with the
advantages of lasers and higher resolution apparatus,
a theoretical model of anharmonic effects, and lower
temperatures to help sort out these sects. Zubov and
Osipova' achieved the resolution necessary for a
careful study of the 300'K quartz Raman spectrum.
An improvement of two orders of magnitude, required
for the 5'I, 128-cm ' mode, is accomplished here by
low dark-count photoelectric detection of the spectrum
analyzed by a pressure-scanned Fabry-Perot inter-
ferometer. The 466-cm ' mode, on the other hand, is
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always broad enough to be resolved with available
grating spectrometers, but its thermal shift at cryogenic
temperatures is unmeasurably small for the precision
of the grating scanner mechanism. Here, the technique
of stimulated Raman scattering is used to artificially
sharpen and intensify the line for interferogram readout.

The temperature dependence of Raman linewidths has
been measured in other crystals using laser spectros-
copy. Park" has examined calcite, and Ralston,
Keating, and Chang" have studied silicon and gallium
arsenide. As for the case of the 466-cm ' mode in quartz,
the resolution of a grating spectrometer was sufhcient
at all temperatures for these solids.

2. THEORETICAL DISCUSSION

A. A~&armonic EfFects

The Raman spectrum of light scattered from an
anharmonic crystal depends on the Fourier transform
of the space-time phonon amplitude correlation func-
tion. This correlation function is subject to the dynamics
of the anharmonic interaction which imparts a complex
energy shift to the lattice vibration. If q and j are the
wave vector and branch of the phonon observed, then
the normalized spectral distribution is (1'qi/qr)/
[(qq, —cor&coqi&Aqi)q+I'q, q7. Here, a&r and qq, are the
incident and scattered light frequencies, and ~„- is
the frequency of the phonon mode in a perfectly har-
monic lattice. The anharmonicity causes a shift 6„.
in the peak of the line and a finite width F„correspond-
ing to the damping of the vibration. Both quantities
are temperature-dependent through the thermal
population factors of the interacting phonons.

General expressions for the shift and damping have
been derived by several authors using the thermal
Green's-function techniques of many-body theory. ~ '4

Previous derivations, using first-order perturbation
theory for I' and second order for 6, gave similar
results, '~" but the boson factors were treated arti-
ficially and no consideration was given to the relaxation
broadening or "dressing" of the thermal phonons.

The results of the Green's-function theory for the
shift and damping are

I
c'i~ ~ (qeqq) I'

p dqqg Q
16qn ~qi (2qr) i»'q qqq», coqqiq

X&(q+a+qq) (—(n,+nq+1)/(~„+~„„+~„;,)
+ (n1+nq+ 1)/(~qi ~q»1 ~qqiq)

(n& )/n(~qi~qmis+~qqiq)

+ (n& nq)/(coq, —+~q,q, ~.q, ,)), (1)
"K.Park, Phys, Letters 25A, 490 (1967)."J.M. Ralston, D. E. Keating, and R. K. Chang, in Light

Scattering in Sohds, edited by G. B.Wright (to be published)."A. A. Maradudin and A. E. Fein, Phys. Rev. 128, 2589
(1962).

~' R. A. Cowley, Phonons in Perfect Lattices and in Lattices with

I c'ii» (qq&qq) I

d'Vi E
16qn coqi (2%') iliq coq»gqqqqiq

X&(q+qi+ q2) ( (nl+n 2+1)h(~qi+~q»»1+qqqqiq)

+ (n1+nq+ 1)b(~qi ~q»a &qqiq)

(n& nq)b(+qi ~miz+~qqiq)

+ (nl nq)b(qqqi++q»g ~qqiq)) ' (2)

I' represents the principal part; h(q+qi+qq) states
that wave vector must be conserved up to a reciprocal
lattice vector; nz and 0 are the mass and volume of the
crystal; n, = [exp(hcoq, .;,./kT) —17-' is the thermal
population factor. The frequencies of the purely har-
monic lattice are not actually observable once the
interaction is present. If the shifts are much less than
the harmonic frequencies, then it is a good approxi-
mation to replace cv„, . with co;, the low-temperature
frequencies, where unnecessary indices have been
suppressed.

4 is the Fourier transform of the cubic coefficient in
the expansion of the lattice potential energy. With
slight change of notation, C is defined by Kwok, '4 and
Born and Huang. ' We have dropped quartic and
higher terms and consider only three phonon processes.
We take for our model

where c is a typical acoustic velocity, A is an anisotropy
factor depending only on the direction of the wave
vectors, and y is a dimensionless constant measuring
the anharmonicity. This expression, though introduced
as an ansatz, leads to the standard definition for y as
the Gruneisen constant in the acoustic continuum limit.

The derivation of the shift and linewidth above is
the lowest order approximation in the anharmonicity
since self-energy contributions to the "bare" phonons
at co„.;,. have been neglected. This approximation is
often inadequate, and it becomes necessary to "dress"
these modes with their own collisions by resorting to
higher-order perturbation theory or diagrams. The
result of such a calculation is to endow these phonons
with a finite lifetime or damping. It is shown by Kwok'4
that this circumstance may be treated by simply
substituting, in Eq. (2), the convolved spectral repre-
sentation of the 8 function

b(qqaqq~acoq) —+ [(Fg+1',)/qr7/

[(~~~i~~q)'+ (1'i+1'q)'7, (4)

Point Imperfections, edited by R. W. H. Stevenson (Plenum Press,
Inc. , New York, 1966)."P. C. Kwok, Ph. D. thesis, Harvard University, 1965
(unpublished).
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where F; is the damping rate of mode or;. Such broaden-
ing of the interaction phonons may have interesting
physical consequences, as will be shown in an example.
For quartz, the eGect on the Raman linewidths is
small, but the e6'ect on the acoustic modes is crucial. ""

Interpretation of Eqs. (1) and (2) in terms of three-
phonon interactions is relatively straightforward. The
first term in the curly brackets is a simultaneous absorp-
tion of all three phonons. This cannot conserve energy
and is nowhere near resonance, so the process may be
ignored. The second term is the decay of the observed
phonon into two lower energy phonons and accounts for
the residual shift and width at low temperatures. The
third and fourth terms are equivalent by exchange of the
dummy indices j. ~ 2 and represent a scattering of a
thermal phonon by the observed phonon. In all cases
the emission processes are automatically subtracted
from the absorption processes in the many-body
derivation.

The difhculty in evaluating (1) and (2) for a real
material is that the parameters y, A, and F; are
generally unknown, and even the modes cv; may not be
established throughout the Brillouin zone. Fortunately,
the resonance character of the integrals and/or the
Qatness of the optical phonon bands allow the tem-
perature factors to be removed from the integral.
Comparison with experiment can then be made, and
the remaining unknown integrals adjusted to fit the
data. All that is required for this procedure is a rough
knowledge of the phonon dispersion, which is now avail-
able for quartz.

At very low temperatures all the n; —+ 0, so only the
decay terms contribute to the anharmonicity. The
number of processes for the damping is strictly limited
because of the energy-conservation requirement. On the
other hand, the shift is not so restricted and the problem
becomes diKcult to analyze. In fact, since the zero-
temperature shift, unlike the residual damping, is
unmeasurable, there is little reason for a detailed calcu-
lation. Therefore the model Eq. (3) is best tested on the
damping.

The situation is more complex as the temperature is
raised since more modes, which are candidates for
interaction, become thermally populated. At very high
temperatures all processes go simply as n, ~ hT/hop;,
and there is virtually no hope of unraveling the con-
tributions of the individual channels.

Ke now consider the decay of an optical phonon at
q=0 into two acoustic phonons of equal energy and
opposite wave vector. This example is pertinent to the
low-temperature damping of the 128-cm ' Raman mode
in quartz. To simplify the calculation, elastic isotropy
is assumed. Thus ar; is a function only of the magnitude
of q;; and A is set equal to one. This assumption should
not lead to large errors unless critical points in the

~9 A. S. Pine, in Light Scattering in Solids, edited by G. B.%right
(to be published).

acoustic branches are involved in the decay, and they
are distributed very anisotropically in the real crystal.
With these provisions, we insert (3) and (4) into the
decay term of (2):

Ap' ~o 2
r,=

16p c' (2n.)o
d'q&(oP (2n&+ 1)I'&/((cop 2—co,)'

+ (2r,)'j. (5)

hy' copa (2ng+1)„„,
FQ

16p c, (2or)' p

q dq/L(q qo) +

Here Q is the Brillouin zone edge wave vector. The
remaining integration is an elementary form and the
answer may be expressed conveniently if we define the
following parameters:

ro'=(hy'/64 p)( o/ )qo'

no= (nx), (o, V=&/qo, &=Q/qo ~

(7a)

(&b)

Then (6) becomes

I'p= (2np+1)i'ooF(g, b),
where

1
F(g,b) = (1 6rP+g4) t—an ' +tan '—

+ (-',gho+gb'+3gh rPo)—
(8 1)'+vP-

+ (2g —2') ln (9)
1+vP

Now Fo' would be the residual low-temperature
damping in the absence of the broadening F~. This
factor diverges if the decay occurs at a critical point
where c,=0. In fact, such behavior signals the break-
down of first-order perturbation theory. However,
when F~ is finite a simultaneous divergence of a and g
prevents Fo from blowing up. For this critical point
decay, we then have

Fo= (hy'/32(hrop) (cop/rz)Qo(2no+1) (10)

and the damping is reduced as a consequence of the
acoustic broadening. Far from the critical point where
c, c, we have g 2I'~/cop((1, and F can be greater
or less than one. For example, if also g((b —1, then to

Here, the density p=m/Q. We expand ~q=-,'(coo)

+(&~~/Bq~)„,~o(q~
—qo), where qp is the wave vector

on the or~ branch corresponding to -,'ohio. The slowly
varying boson factor n& and the damping F& may be
evaluated at ~coo. We define the group velocity
c,= (8&a~/cjqq), ~o and the attenuation a= (r~/c, ),yo.

The angular integrations are trivial in this isotropic
case, and if we ignore the unimportant dispersion in the
numerator (setting s& cq~), then we have
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FIG. 2. 128-cm ' LO Raman line in n-quartz backscattered along
x axis. Fabry-Perot interferometer.

Fzo. 1.300'K Raman vibrations in a-quartz. Grathng spectrometer.
the unit cell volume Qp.

first order in g,

F (g,8)= 1+—[gb'+5'+38

(8/(8 1)—)+4 ln—(b—1)j . (11)

For the decay of the 128-cm ' mode in quartz b 2
or 3, and the damping isincreased as a result of acoustic
broadening. To summarize, the eGect of I'~ is to reduce
the coupling in those channels which exactly conserve
energy, but to make possible communication with new
states which are slightly oG resonance. If there is a
low density of conserving states, then there is usually
an enhancement of the decay process.

Calculation of the decay processes to lower optical
branches, if available, and of the scattering processes
may proceed in the same way. Of course, the handicap
of unknown parameters is usually worse the higher up
in the phonon spectrum one goes. It should be mentioned
that the decay model derived in (8) is the only possible
damping mechanism for simpler crystals such as
diamond or silicon.

B. Polaritons

The polariton problem in quartz has been thoroughly
discussed by Kleinman and Spitzer' and Scott, Chees-
man, and Porto. ' Ke recount some of the formulas here
that will be useful for discussing the 128-cm ' vibration.

Classical dispersion of the mixed infrared and
E-symmetry vibrations can be expressed by a complex
dielectric constant for the ordinary polarization

P(M) = P~+P S~G)P/(id/ GP PP j(d) )

where e„ is the optical dielectric constant and i runs
over the eight species E modes. si is the oscillator
strength of the mode at cubi and can be written in terms
of an effective ionic charge e;*, a reduced mass p;, and

s;= e,*/4m'p;pdPQp. (13)

In the absence of damping, e is real; the transverse
frequencies are given by the poles of e at co&i

——a&i and
the longitudinal components co&; are given by the zeros.
This results in a splitting ori=co~i —co&i which, if it is
small compared to or;, we have

1
Ms—gSsRi

Sg&~

e.+Z
gWi (d&

—GOs~

(14.)

The bracketed denominator is the contribution from
all other modes to the dielectric constant at frequency
co;. For the 128-cm ' mode in quartz this is nearly &p,

the static value.
Like the vibrational frequency and linewidth, the

oscillator strength is also temperature-dependent. This
is another efI'ect of anharmonicity since a pure-mode
wave function can be modi6ed by coupling to pairs of
other modes of more or less efI'ective charge. ~ We note
also that the LO and TO components may differentially
shift according to Eq. (1) since there may be differing
selection rules and diftering energy denominators in
cases where the two modes are highly split. Thus the
splitting, hence the oscillator strength, may vary with
temperature.

+ H. Bilz, in Phonons in Perfect Lattices and in Lattices mth
Point Imperfections, edited by R. %. H. Stevenson (Plenum
Press, Inc. , New York, 1966).

3. EXPERIMENTAL RESULTS
AND ANALYSIS

Three experimental systems were used to obtain the
results reported here. The first was a conventional
Raman spectrometer employing a 20-mW He-Ne laser,
a tandem Spex grating monochromator, and a cooled
EMI 9558B photomultiplier (PM). The discriminated
output of the PM was integrated and displayed on a
strip chart. With 100-p slits, the linewidths of the
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128-cm ' mode above 200'K and the 466-cm ' mode
for a11 temperatures were resolved. Room-temperature
traces are shown in Fig. 1.Linewidths were obtained by
convolving Lorentzian lines with the instrumental
profile and 6tting to the experimentally observed
spectra. The large frequency shifts above liquid-nitrogen
temperature could be measured with this system. How-

ever, absolute frequencies could not be calibrated to
better than ~i cm ' because of nonlinearities and in-

consistencies in the grating drive. For this same reason,
the shifts at low temperatures had to be measured by
interferometry with normalization to the frequencies
at 80'K.

To accomplish this measurement, a second experi-
ment was performed utilizing stimulated Raman scat-
tering from quartz powered by a 10-M|A' ruby laser.
This apparatus and properties of the Raman output
have been described elsewhere. ' The 466-cm ' mode
could be stimulated over a temperature range from 5 to
240'K, and the Raman shift could be measured pre-
cisely on a Fabry-Perot interferogram. Stimulation of
the 128-cm ' mode could also be achieved at low
temperatures.

The low-temperature linewidth, shift, and oscillator
strength of the 128-cm ' mode were measured in a third,
high-resolution, apparatus. Here the backscattered
Raman spectrum was analyzed by a pressure-scanned
Fabry-Perot interferometer. The excitation source was
the 20-mW He-Ne laser; isolation of the Raman line of
interest was accomplished by interference filters; and
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FM. 4. Zone-center polariton-dispersion relation for 128-cm '
E mode i'n a-quartz at 5'K with and without damping. In the
presence of damping the full lossless dispersion may be observed
by Raman scattering.

500

the scanned spectrum was detected by a low-noise,
uncooled ITT F%130 photomultiplier with discrim-
inated output. A similar spectrometer was developed

by Clements and StoicheP' to measure narrow Raman
vibrations in liquids. Backscattering was selected over
90' scattering because of greater light collection
eKciency when matched to a Fabry-Perot. Of course,
the extraneous surface scattered laser light was more
severe in this geometry.

Typical traces are shown in Figs. 2 and 3. In Fig. 2
we see the eGect of temperature on the Raman shift
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FIG. 3. 128-cm ' Raman line in o.-quartz backscattered along
three principal axes at 5'K. High-resolution Fabry-Perot
interferometer.

~' P. F,. Tannenwald, J. Appl. Phys. 38 4788 (1967).

Fj:G. 5. Dispersion relations for selected phonons along trigonal
axis in a-quartz. Based on data of Elcombe (Ref. 2).

~ W. R. L. Clements and B. P. StoicheG, Appl. Phys. Letters
I2, 246 (1968).
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FIG. 6. Raman shift of 128-cm ' mode in a.-quartz. The solid curve
is b,»& ——(2N«+'1) 0.42+ (~«—@$98)10.

40

and width. The laser light leakage acts as a marker for
the free spectral range of 2.60 cm '. Only the Stokes
line appears because of the altering and the low
temperature.

Figure 3 displays higher-resolution, helium-tempera-
ture spectra for various crystal phonon propagation
directions. In each case the incident and the scattered
light are polarized in the ordinary ray. Anisotropic and
electrostatic properties of the scattering are illustrated
by these traces. Examination of the Raman tensor and
phonon polarization given by I.oudon~ demonstrates
that the scattered intensity from the longitudinal
branch goes as Iq cos'3f and the transverse branch as
I~sin'3P, where f is measured between the j100]
axis and the phonon wave vector. In general, Ig need
not be equal to I& because of the interference between
the deformation potential and the electro-optic con-

tributions to the scattering. The electro-optic e6ect
depends on the strength of the ionic 6eld which vanishes
for the TO branch for wave vector much greater than
~0'I'coo. Analysis of the data in Fig. 3 yields the following
results for 5 I:
(I~/I, )=0.8&0.3, 8a&swnM=005&0. 01cm ',

~0=0.02&0.01 cm ',
where RopwHM is the full width at half maximum of the
Raman linewidth. The doublet is unresolved, and the
splitting can only be determined by the broadening of
the L110$ spectrum.

From these values and the dielectric constant Eq.
(12), we plot the dispersion relations for the 128-cm '
polariton in Fig. 4. The solid line represents the real
part of e(u&) in the presence of the measured damping.
The dashed curve is the lossless dispersion which pre-
dicts the peak frequency of the Raman line for a given
scattering wave vector transfer IIt.

The room-temperature oscillator strength as measured
by Russell and Be1P4 using far-infrared spectroscopy
yields a splitting eu0=0. 1 cm '. Plendl et al."show that
this strength decreases on lowering the temperature.

Before plotting the temperature dependence of the
shifts and linewidths, it is useful to have a picture of
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FrG. 7. Raman linewidth of 128-cm ' mode in a-quartz. The
solid curve A is I"]32—(2e«+1)0.048. The solid curve 8 is
1182——(2n«+1)0.048F(q,b). The solid curve C is I'132 ——(2e«+1)-
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~ R. Loudon, Advan. Phys. 13, 423 (1964).

(b)

FIG. 8. L(a) Raman shift of 466-cm ' mode in e-quartz. The
solid curve is 6468 ——(2egpv+1)1. 72. (b) Raman linewidth of 466-
cm ' mode in o.-quartz. The solid curve is F46S= (2n&34+1)2.0+
(@gov —+6va) 4 4.

~ E. E. Russell and E. E. Bell, J. Opt. Soc. Am. 57, 341 (1967)."J.N. Plendl, L. C. Mansur, A. Hadni, F. Brehat, P. Henry,
G. Morlot, F. Noudin, and P. Strimer, J. Phys. Chem. Solids
28, 1589 (1967).



1430 A. S. P I NE AN D P. E. TANNENN'ALD

the phonon dispersion in order to establish possible
damping routes. We present in Fig. 5 a schematic
diagram of selected phonon branches in quartz; it is
a composite of the neutron-scattering data and model
calculations of Elcombe' and other Raman and infrared
data. Representative decay channels and scattering
processes are indicated. Other routes are available but
they are either redundant (such as decay of the 128-cm '
mode to other acoustic branches) or unimportant for
the temperature range of this experiment. Anisotropy
and anharmonic selection rules are not considered
although there is an apparent tendency for modes of
like symmetry to interact most strongly. The sym-
metry imposed on the wave vectors of the interacting
phonons by the q= 0 observed phonon relegates possible
Umklapp processes to only those routes involving
zone-edge phonons. For such rare processes there is a
simple twofold degeneracy as a reQection of one zone-
edge phonon about q=0 results in an allowed normal
process.

The shifts and linewidths for the 128-cm ' and
466-cm—' modes are shown in Figs. 6, 7, and 8. The
temperature dependences are fit to the factors noted in
the captions in units of cm ' making use of the theory
of Sec. 2 A. Generally it should be noted. that more
terms are required to fit the lineshape data than the
shifts. This reQects the lack of freedom in choosing the
residual low-temperature width since it is directly
measurable. The unobservable residual shift, however,
may be treated as an adjustable parameter. Also, the
energy conservation restriction limits the inhuence of
any particular damping channel, whereas the shift may
be dominated by a few modes near resonance.

From the data on the 128-cm-' linewidth we may
test our model Eq. (8). If we assume that the decay
proceeds only to the longitudinal acoustic branch,
then the measured residual width is given by I'0,
where y 20 for the quartz lattice constant cp 5 A.

This is a reasonable value for the Gruneisen constant
considering that its magnitude is shared by the decay
channels to the other acoustic branches.

Curve A of Fig. 7 is the total contribution of the
decay processes to the damping if the acoustic modes
are undamped. However, the high-energy acoustic
phonons are known to have a finite lifetime which may
be estimated from thermal conductivity and ultrasonic
absorption measurements. " Curve B of Fig. 7 results
for the realistic estimate g= 7/20 000. It is seen that
the acoustic broadening has little eGect on the over-all
damping. Finally, curve C takes into account, scattering
processes by thermally excited phonons in addition to
the decay channels, and the dressing of the thermal
phonons has been neglected. As might be expected, these
scattering processes make a crucial contribution to the
linewidth at higher temperatures, and, in fact, the
calculated curve is in fairly good agreement with the
experimental data. Similar fits were obtained for the
466-cm—' vibration as seen in Fig. 8.

The complexity of processes which contribute to the
anharmonic interaction in quartz is thus deciphered
rather satisfactorily. The analysis of the calcite data by
Park" suGered from the lack of phonon-dispersion data
and the neglect of scattering processes. This apparently
forced him to fit the data with a lopsided breakup of
the 1086-cm ' vibration into a 1085-cm ' and a 1-cm-'
mode. Ralston et al."did not attempt to analyze their
data on silicon and gallium arsenide although a rather
specific theory had been proposed by Klemens'~ for
silicon.
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