
PH Y SIC AL RE VI EW VOLUME 178, NUMBER 1 5 FEBRUARY 1969

Analysis of the 2S Ground State of Lithium in Terms of Natural and Best Overlap
(Brueckner) Spin Orbitals with Implications for the Fermi Contact Term*
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Some very accurate wave functions (containing explicitly ri. terms) for the S ground state
of Lithium have been analyzed in terms of natural spin orbitals (NSO) and best overlap or-
bitels (BO). Comparison of BO's determined from a wave function giving 9S.9% of the cor-
relation energy with the spin-polarized Hartree-Fock orbitals (HF), revealed very small dif-
ferences at least for the core orbitals. The difference between BO's and NSO's was signifi-
cant but negligible. The BO's can be transformed unitarily among themselves and such a
transformation was made before the comparison to make the orbitals fit as much as possible.
The calculation of the Fermi contact term in the hyperfine structure of the spectrum has
been discussed and it was found that the small difference between the HF value and the exact
value could be accounted for, to a large extent, by the difference between HF and BO (or NSO).
The pure correlation effects were found to be only about 0.5%. The separated valence orbital
model has been analyzed on the basis of the NSO results and it has been shown that the eigen-
values (except the largest one) are degenerate in pairs for this model and that the correspon-
ding NSO's have the same spatial factor, if orthogonality is assumed between the valence
orbital and the singlet core. It has been shown that this orthogonality constraint has serious
consequences for the Fermi contact term.

I. INTRODUCTION

Natural spin orbitals (NSO), introduced by
Lowdin, ' are the eigenfunctions of an integral op-
erator yy with the kernel

y (1,1')=Xjy(1,2, ... , X)

x)*(1',2, ... , N)d2 ~ dN

high accuracy have been given by one of us. '
These wave functions and those of James and
Coolidge are calculated from a basis of nonorthog-
onal Hylleraas functions

g = C, Q C(i;j,k, f, m, n, a, b, c)

i j 0 l m n -ax, -bx, —cx,
1 2 3 23 3 12

y (1, 1')=&,.~,.x,.(1)x,.*(1'). (2)

The kernel or one-particle density matrix' can
be expanded in terms of its eigenfunctions and

eigenvalue s

x (A,[n (g,)p(f, )n (f,) —P(g, )n (&,)n (&,)

+&.[2 n(&, )n(&, )p(&, ) —n(&, )p(&,)n(&, )

—P(&,)n(&,)n(&, )]] . (3)

In this expansion, we order the terms so that vi
& vj for i &j. The eigenvalues vi are interpreted
as occupation numbers' of the eigenfunctions (NSO)

xi
The antisymmetric wave function g can be ex-

panded in terms of antisymmetrized products of
NSO's. ' This expansion, called the natural ex-
pansion of g is known to give a rapid convergence.
Analysis of wave functions in terms of natural
spin orbitals indicates the relative importance of
various spin orbitals in the description of the
state and provides a method of comparison among
approximate wave functions which is more
thorough than, for example, energy comparison.

In this paper we analyze some wave functions
for the 2$ ground state of atomic lithium, all of
which contain explicitly interelectronic distance
coordinates xij . An accurate wave function of
this kind was first given for Li ('S) by James and
Coolidge' and we examine a wave function which
we have recalculated with the same basis as they
used. Recently a number of wave functions of
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83 is the three-particle antisymmetrizer

8, = 6 'I'[e —(12)—(13)—(23) + (123) + (132)].(4)

A 1 A„and the C's are linear parameters varied
to minimize the energy according to the variation
principle. i, j, k, l, m, n are non-negative
integers; a, b, c are real positive numbers; n
and P are the usual one-electron spin functions.
The wave functions are listed in Tables I-III,
and data for them in Table IV.

The natural spin orbitals and natural P-states
(eigenfunctions to the P-particle reduced density
matrix) are closely connected to the problem of
approximation of a function of a certain number
of variables by functions of a fewer number of
variables. Of special interest is the approxima-
tion by a single Slater determinant of an N-elec-
tron wave function. For two-electron wave func-
tions, the best approximation in the sense of
minimizing the distance in Hilbert space between
the wave function and the Slater determinant is
the determinant of the two NSO's with largest oc-



138 S, LARSSON AND V, H. SMITH, JR.

TABLE I. The James-Coolidge wave function W2

with spin function S~=npn —pnn.

i jklmn

001000
101000
201000
111000
001001
001002
oooooo
100000
OOO100

a

3.0 3.0
3.0 3.0
3.0 3.0
3,0 3.0
3.0 3.0
3.0 3.0
3.0 3.0
3.0 3.0
3.0 3.0

0.65
0.65
0.65
0.65
0.65
0.65
1.5
1.5
0.65

Coefficient x (47t)
3/2

—10.643 710407 9
—1.113528 244 9
-9.200421354 0

2.759 269 138 7
-5.715 625 243 3

0.744 322 515 6

9.414 557 716 8

4.335 242 272 9
-4.315610 1385

cupation numbers. ' For an N-electron system
(K& 2), the best determinant of this kind is no
longer formed from the first N NSO's. ' The cri-
terion of minimum distance between the true
wave function and a determinantal wave function
is equivalent to the criterion of best overlap with
the true wave function. The spin orbitals with
this property are called best overlap orbitals, '
Brueckner orbitals, ' or exact self-consistent

field orbitals. ' A review of the theory of approx-
imation which is relevant in our case is given in
Sec. II.

To simplify the calculation, yg has been ex-
panded in terms of a finite set of one-electron
functions. yq is then represented by an ordinary
matrix which may be diagonalized in the usual
manner to find its eigenvalues and eigenfunctions.
The error made by employing the finite basis set
will be quite small. When comparisons are made
among the various types of spin orbitals (natural,
best overlap, and Hartree-Fock) the same basis
sets are employed. The method of calculation is
further discussed in Sec. III.

In Secs. IV, V, and VI, we present the results
of our calculations. It is evident that the corre-
lation effect that contributes most to energy is
from the core. For all the wave functions ex-
amined, core correlation has been taken into ac-
count. The occupation numbers of the core spin
orbitals will decrease therefore below 1, their
value in the independent particle model. Of more
interest is the polarizing effect of the valence
electron. The wave function of an alkali atom
can be well approximated by the separated va-

TABLE II, The wave functions W1, W3, W4, with a=2.76, b=2.76, c=0.65; and with spin functions
S&= npn —pnn, S2=2nnp —npn —pnn.

ijklmn

001000
101000
111000
201000
001001

001002
000000
000100
002000
010100

001003
001100
003000
101001
301000

001004
221000
111001
101000
201000

000100
010100
001100
101001
301000

Spin
function

Sg

Sg

Sg

Sg

Sg

Sg

S)
S(
Sg

Sg

S(
Sg

Sg

Sg

Sg

S)
S(
Sg

S2

S2

S2

S2

S2

S2

S2

14.543 994 149 9
—4.165412 922 5
-3.282 812 933 4

5.620423 214 9
5.095 292 737 1

—1.027 971 227 6

Coefficients x (47t')

W3

19.020 268 940 8
—7.872 169612 3
-4.197309092 3

7.236 548 9124
6.014 347 888 2

—2.491 848 642 4
—9.569 075 147 4

3.313 694 775 7
—0.931 115368 5

3.552 982 565 5

0.676 158 561 7
—0.775 495 154 8

0.093 281 545 2
—0.549 611415 9
—0.819529 852 6

—0.092 725 813 0
—0.590 020 574 9

1.240 066 456 6

19.016 331 912 0
—7.678 122 742 0
-4.220 996 386 4

7.257 004 795 0
6.009 603 266 1

—2.494 337 068 9
—9.556 748 430 0

3.225 448 096 1
—0.950 048 618 5

3.353 122 272 4

0.676 176 323 2
—0.720 836 970 3

0.090 164 947 3
—0.542 928 688 7
—0.835 448 695 6

—0.092 717 266 5
—0.588 919581 8

1.250 014 760 0
-0.434 196 656 3

0.015 492 264 8

0.151170 974 1
—0.353 822 498 0

0.016 520 368 5
0.028 842 545 9
0.001 243 502 9
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TABLz rrr. The @rave function W5 with a=5=2.76, c=0.65, and vrith spin functions 8~=@Pe-P O'G. ,
82= 2@0.p -@pa. —p0, 0..

ijklmn

001000
101000
101000
111000
201000

201000
001001
001002
000000
000100

001100
001100
003000
101001
101001

3D1000
301000
001004
221000
111001

201001
201001
301001
301001
000200

110100
004000
000001
002001
100000

100000
102000
102000
000101
000101

Spin

function

S(
S(
S2

Sg

Sg

S(
S2

Sg

Sg

82

Sg

S2

8(
Sg

8(

82

Sg

82

Sg

82

Coefficient
x (4g)3~2

18.399076 696 0
—10.990 201 721 9

0.794 530 807 2
—5.715 778 773 5

10.028 857 193 9

-0.786 612 6393
6.166 944 535 0

-4.779701653 6
—8.194349 267 8

2.774 509 982 1

0.665 987 347 1
-1.326 226 1135

3.853 265 8137
0.354 379 863 2

2.606 582 249 2

0.659 600 6514
-0.333 384 677 9

0.105 294 288 0
3.740 262 289 3
0.225 662 178 5

0.004 566 841 8

0.234 346 1174
—0.685 698 632 3-0.194497 298 2

1.998 064 875 4

-8.717712 058 9
-0.076472 268 9

2.745 674 540 5

0.023 438 907 5
—0.919152 501 7

-0.074 864 458 8

0.220 034 065 1
1.174 575 908 7

-0.355 736 980 1
-0.924 533 400 1

0.141720 279 2

0.001 929 704 1
-1.261334 0505-0.145 076 963 9

4.001 783 1916

-0.979872733 9
0.382 893 268 1

-0.199584 475 7
0.771383346 5

-0.038 067 071 5

-0.581325 2957
0.056 786 222 4
0.472 935 788 2

-0.229326 528 4
0.160 970 314 0

~ jklmrg

000300
0012DD

001200
001005
401000

401000
401001
401001
501000
501000

101003
110000
112000
200000
200000

202000
202000
100001
100001
102001

102001
200001
200001
021100
021100

211000
211000
001006
302000
302000

300000
300000
000400
000400
100100

100100
311000
311000
301002
301002

Spin
function

82

Si
S2

Sg

Sg

Sg

Sg

S2

Sg

82

82

Sg

8(
8(
82

8(
Sg

Sg

Sg

Sg

S2

8)
S2

8)
82

Coefficient
x g7t)3~2

-0.002 277 475 4
-0.206459 2564

0.057 621 814 5

0.175 615 317 9
—0.916 838 721 3

—0.058 1DV 620 6
—0.067 592 188 3

0.000 388 306 9
0.141100 103 8

0.010721 5394

1.807 968 432 9
0.022 375 551 2

1.470 564 528 2

-0.031377324 2
—1.676 378 275 6

-0.009338 8507
0.280 985 449 1
0.074 939590 9

—2.860 411424 7
0.996 194 9494

-0.234 365 1373
0.15184V 972 2

0.138 284 729 8

-0.644 949770 9
0.017427 944 3

-0.017303 136 8

. -0.4875844584
0.409385 595 8

-0.058 805 122 0
0.124 294 966 7

-0.005 858 032 5
—0.069 303 1954

0.454 313 1976
0.009 277 1783

—0.000 180 254 0

0.261 131201 8

-0.022 676 V08 1
-0.015 6161193

0.068 269 776 6

-0.012 812 929 2

0.974 231 786 8
—0.658 987 997 0

0.000 076 424 6
—0.001 718 5014
—0.095 088 420 0

-0.085 509 286 6
-0.085 868 098 2

0.012 109573 3
—0.757 605 003 8

0.005 301396 0
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TABLE IV. Properties of the wave functions examined.

Wave function

Number of
terms
-Energy (a.u. )

Error~ % of
correlation energy
Fermi contact
term
Overlap between
HFc and wave
function 0.997 949

9
7.476 098

4.35

2.S12

18
7.477665

0.89

25

7.477 683

0.85

100
7.47S 025

0.10

0.998 098

The corresponding experimental value is -7.478 069 a.u. (see Ref. 45).
Experimental value 2.906 (see Ref. 5).
Orbital basis x~exp(-m), i=0, 1, 2, 3; a=0.65, 2.76.

lence-orbital model, where the core is described
by a two-electron wave function Q(l, 2) and the
valence electron by a spin orbital |p(3)

P is assumed to be antisymmetrized and a spin
singlet, i.e. , Q can be a wave function for the
two-electron ion Ll . In Sec. IV, we study par-
ticularly how the behavior of the occupation num-
bers and the NSO's are related to the orthog-
onality condition between P and y.

Section V contains a numerical comparison
among the first-three NSO's, the best overlap
orbitals and the Hartree- Pock orbitals. The re-
lationship between the latter and the fix st-three
NSG's may be discussed" ~" on the basis of a
theorem" which says that they are the same after
a unitary transformation to the second order in a
perturbation expansion. " This is true only for
the spin-polarized Hartree-Fock orbitals (HF)
for which the two core spin orbitals have different
spatial functions. " The Brueckner orbitals play
an important role in many-particle theories of
atomic and molecular systems. They are usually
assumed to be very similar to the Hartree-Pock
orbitals. '4

In Sec. VI, we discuss the calculation of the
Fermi contact term f, which is responsible for
the hyperfine structure of atomic S states. "~"

3
f= 4n Q 5(r.)o

2 IE»
(8)

If the wave function describing. the state is ap-

where 5 is the three-dimensional Dirac delta
function and age the usual Pauli spin operator with
the properties

«(~ ) =~(& ) ~ e(c ) =- p(~ )8» 2 2 8» 2 2
2 2.

proximated by a Slater determinant of spin or-
bitals, det(ylsn, mls ~p, q&2sn) the Fermi contact
term f is

(8)

The energy of the Slater determinant can be
minimized by solving the Hartree-Pock equations
with or without the restriction Qgg = Qgg . In the
fi1'st. Case (1'est1'1c'ted Hal't1'ee- Fock, RHF) we find
an f value only 70%%uo of the experimental value. "
The contribution from the core orbitals q y0. and

@Isp cancel. In the second case the exchange
term between the two e orbitals has been taken
into account. We then have different equations
for the spatial parts of the core orbitals, and a
splitting or polarization of the core. The con-
tribution to f from the valence orbital p2so.
changes only slightly from RHF, but we get an
additional contribution from the core, so that f
now is 97% of the experimental value. We speak
in this case of spin-polarized or exchange-
polar ized Hartree- Pock. "

Due to this splitting the determinantal wave
function is not a pure '8 state as is the true wave
function. Various aspects of this problem have
been discussed extensively in the literature. The
validity of the exchange polarized Hartree-Pock
method has been questioned. Of interest to us
has been a paper by Berggren and Wood" who cal-
culated f for a number of the wave functions of
James and Coolidge. They found 98.8% of the
exact value of f for a wave function which was
incorrectly said to have a symmetric core. It
will be evident from the analysis in Sec. IV that
this wave function is not restricted in any sense
with respect to symmetry of the core and thus
should give good values. Our analysis in Sec. VI
will also shorn that contributions to the Permi
contact term from pure correlation effects are
small.
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II. THEORY

We are interested in the approximation of an N-particle wave function tl' by a unction p which a
written in terms of functions ( of a, fewer number of Particles.

M
y(1, 2, ... , N)= Z .&I.( I)&2,.( 2)"' & .(

2=1

The N-particle coordinate space has been partitioned into subsets of &1,q2, ~ ~ Ql particles (Zli =

ith the coordinates sl . . .sl respectively. p is a subset of the Hilbert space usually c&led the
G ifold G l. The case pcG, N is thus the familiar approximation in the form of a Hartree
product of one-particle functions (spin orbitals), i. e. ,

y(1, 2, ... , N)=$ (1)$ (2) '' $ (N).

To choose the best approximating function, we shall minimize

where x is a real variable. The problem has been considered by Schmidt, ' Golomb, 0 and others. " We
consider the case PcG,1. The minimum error 5 is obtained when the functions $ are solutions of the
integral equation system

f g(1, 2, . .. , N)]I (sl) ~ ~ ~ $.
1

(s. I)&. 1
(s. 1)

~ ~ ~

1 j —1 j —1 j+1 j+I

xg (s )ds ''' ds. ds. . ds = c$ (s), j=l 2, ..., 1;j —1 j+1 (12)

for the largest c for which such solutions exist. For the case l = 2 we have the linear homogeneous equa-
tion system"

g(s„s,)g, (s,)ds, =c&,(s,), f t}(s„s,)&, (s, )ds, =cg,(s,).

By eliminating (, we obtain

fP(s„s,)P (s„s,)(,(s,)ds,ds, =c'$,(s,). (14)

Thus $, is an eigenfunction of the p particle reduced density matrix"

I' (s„s,) = p fg(s„s,)P (s„s,)ds, .(p)

In the same way, $, is an eigenfunction of the (N-P)-particle reduced density matrix I'(N P). In both
cases the eigenvalue is

c P
=c N P

Thus to obtain the minimum error (11), we only need to solve the linear eigenvalue problem (14). In
general (l & 2) Eq. (11) has, however, to be solved by an iteration method with starting functions suffi-
ciently close to the solutions. "

For a system of fermions, g is antisymmetric and we wish the approximation (9) to consist of anti-
symmetrized products. We consider the case gcGP'. Equation (11) can be written

~' = IIIII'+ ll @II'(x —(41&)/II 0 ll')' —O' I g)'/ll 411'. (16)

We can choose x independently of P so that the second term vanishes. The minimum error is thus
obtained when (P[P)'/[[P~~' is a maximum. The spin orbitals g in the Hartree product which gives the best
overlap with P are thus the solutions of (12). Since P is antisymmetric it follows easily from (12) that the
spin orbitals $ are orthogonal.

We now antisymmetrize Q with the antisymmetrizer

~N=(N}) Z~( 1) I, -
where P is a permutation with parity p of the N particles. @N satisfies
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@
2

( ))I/2~ (~))&/2@
N

Instead of (11)we want to minimize the error

&'= III-~+~&II'= II4(l'+ iiaN&ll'(~- (0 i a~4)/ll@N@ll')' —(O'I eN4)'/ll e~@ll'.

We choose x so that the second term is zero. The spin orbitals in the Slater determinant can be trans-
formed linearly among themselves without changing the value of the third term and we can then assume
that the spin orbitals are orthogonal. From (1S) it follows for antisymmetric t/i that

(Pl@„Q)=~~i(4 i@); ll~„All'=Ilpil'. (2o)

. '= IIIII'- && (4i &/»'/Ilail'.

The Illlllillllllll 61'1'ol ls thus obtRlIled fol' the sRI116 Q Rs before, 1.e. , the N spill 01'bl'tRls iIl tile 81Rtel'
determinant which gives best overlap with g are solutions of (12).'4 They are determined up to a unitary
transformation among themselves„

We now assume that P, the Hartree product P and the Slater determinant PO=-8~$ are all normalized
to unity. Then the minimum error when we approximate g by the Hartree product @ is from EII. (16)

~ . '=I-(4iA)'.
min

If instead we approximate g with the Slater determinant $0 we obtain from EII. (21)

~ . '=I-(yiy)'M = I (yiyg-',

(22)

(23)

which is a considerable improvement.
The best overlap determinant has the useful property when used in an expansion of the wave function g

in Skater determinants that determinants which are singly substituted with respect to it are not pres-
ent. '~'~" To see this we add orthogonal spin orbitals ps, pf„... to the beat overlap set QI, $2,
and substitute q's in p, for $'s. The singly substituted determinants are then orthogonal to p, so that the
expansion coefficient c; for such a determinant is zero. Using EII. (12)

c. = fk(1, 2, ",&)(I (I) "5 I(i-.I)q (i)$. I (i+I) ~ ~

(24)

This necessary condition for the best overlap orbitals is sometimes called the Brueckner condition'
and the determinant p, the Brueckner determinant. Notice that this determinant is not always uniIIue,
i. e. , there may be more than one determinant whose orbitals satisfy (12). The condition is not sufficient
for we may construct a wave function containing a determinant with orbitals satisfying {24)but not (12) for
the largest possible c. If certain conditions are satisfied the Brueckner determinant or, in case of de-
generacy, the set of Brueckner determinants is uniquely determined. " The exact self-consistent-field
orbitals of Lowdin' satisfy (24) and these additional conditions and are thus best overlap orbitals. In our
case the best overlay determinant is uniquely determined. In the following we will use interchangeably
the terms best overlay, Brueckner, and exact self-consistent-field orbitals. They are as was pointed out
before determined only uy to a unitary transformation among themselves.

For two particles the best overlay orbitals are obviously also natural spin orbitals and solutions to
EII. (14). They are in general not the same as the first N natural spin orbitals' although they can be very
similar.

For three particles, the best approximation PcG, is the product of the first natural spin orbital and the
first natural spin geminal (eigenfunction of I""'). The natural spin geminals (NSG) and the NSO's have
for %=3 the same eigenvalues. The occuyation numbers given in Table V are thus occuyation numbers
both for NSO's and for NSG's.

III. METHOD OF CALCULATION

Since g is an eigenfunction of L with eigenvalue zero and of I,z and Sz, the natural spin orbitals are or
can be chosen to be of the form"

y. (&, e, P, g)=R (r)YI (e, P. ) )
i II(C)
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TABLE V. Occupation numbers multiplied by 2E+ l.

Orbital

sOQ

slQ
slP
plQ
pip

s2Q

s2P
dlQ
dlP
p2Q

p2p
s3Q
s3P
flQ
f lP

d2Q

d2P

p3Q

p3p
s4Q

s4p
P4Q

p4p
d3Q

d3P

1.000 000
0.996 789
0,996789
0.001739
0.001739

0.001 312
0.001 312
0.000 095
0.000 095
0.000 025

0,000 025

0.000 012
0.000 012
0.000 008
0.000 008

0.000 006
0.000 006
0.000 001
0.000 001
0.000 001

0.000 001
e e e

2.999976

0.999744
0.996 827
0.996 791
0.001 791
0.001 789

0.001288
0.001 286
0.000 061
0.000 061
0.000 226

0.000031
0.000 012
0,000 012
0.000 006
0.000 006

0.000 005
0.000 004
0.000 027
0.000 003
0.000 001

0.000 001
0.000 002

0.000 001
~ ~ ~

0.000 001
0.000 001

2.999 986

0.999515
0.996 664
0.996 507
0.001 819
0.001 861

0.001325
0.001317
0.000 099
0.000 100
0.000 402

0.000 131
0.000 030
0.000 032
0.000 010
0.000 011

0.000 010
0.000 009
0.000 089
0.000 011
0.000 003

0.000 002
0.000 008
0.000 001
0.000 003
0.000 001

0.000 001
0.000 001
0.000 002
0.000 001

0.999504
0.996 679
0.996 479
0.001 816
0.001871

0.001 327
0.001 319
0.000 100
0.000 100
0.000408

0.000 143
0.000 031
0.000 033
0.000 011
0,000 011

0.000 010
0.000 009
0.000 081
0.000 012
0.000 003

0,000002
0.000 008
0.000 001
0.000 003
0.000 001

0.000 001
0.000 001
0.000 002
0.000 001

where the Ffm& are the usual spherical harmonics. The eigenvalue problem for y~ is block diagonal with
one n and one P block. These are further divided into blocks characterized by the value of /, and each /

block into (2l +1) mf-blocks. Within each block we determine the radial function Ri(r) by expansion in a
finite set of basis functions

(26)

This basis set is the same for all blocks with the same / value. The cj are determined from the matrix
eigenvalue problem

(y- vh)c=0,

y. .= Jr e F (e, q ) ' y(1, 2)r e Ff (e, cp ) (~ )
dld2,o, (r,) 'q j 2 ) ~(C,)

ij 1 lm 1' 1 P 0, ' 2
V.+ V.

&.. = jrl '
expI-(a +~ )rl]rl dr . . .

U 1 j 1 1

(27)

(28)

The eigenvalues and eigenvectors of the matrix y obtained from (27) will tend to the true eigenvalues and
eigenvectors of y(1, 1') when we extend the basis towards completeness. The eigenvalues v in (27) will
always be lower bounds to the true eigenvalues. " The calculation of the matrix elements is described in
an Appendix. The eigenvalue problem (27) was solved in double precision by well-known methods. " The
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basis in (26) was for s, p, and d orbitals of the dimension M = 8 and for f orbitals of the dimension M= 6.
The exponents were the same as in the wave function from which y was constructed, thus 0.65 and 3.0 for
the James and Coolidge wave function and 0.65 and 2.76 for the others. The radial part of the NSO's be-
have like xE for small r. Since the basis set used for 8 orbitals is not complete we cannot reproduce ex-
actly the x~ behavior with this basis set. We therefore used the powers z~, x~+ j, t'i+2, x~+3. For com-
parison we used for the James and Coolidge wave function the g basis set also for /'& 0. This basis set is
better in the sense that it gives eigenvalues that are closer to the exact ones. The sum of the eigenvalues
is here 2.999986 compared to 3.0 for the sum of the exact eigenvalues.

IV. BEHAVIOR OF OCCUPATION NUMBERS AND NSO'S

FOR DIFFERENT MODEL WAVE FUNCTIONS

The calculated occupation numbers are given in
Table V and some of the NSO's for the wave func-
tion W4 are given in Table VI and plotted in Figs.
1 and 2.

A model function of this kind has a density ma-
trix with one eigenvalue equal to one and the cor-
responding eigenfunction y(r3)n(k, }. The other
eigenvalues are degenerate in pairs. The ISO's
corresponding to one pair can be chosen as eigen-
functions to 8&. Their radial parts are the same
if Q and p are orthogonal, i.e. ,

A. Separated Valence-Orbital Model

8'1 can be written in the form

fy(r„r, )q(r, )dv, =O.

To prove the above we write (29) as

y= 12 '"a,[g(1,2)h{3)],

(so)

q= rt, (y(r„r,)[n(C, )p(i;, )

-I3(&,) (&,)]I(,) (t,)) . (29)

Thus it corresponds to a model with an electron
moving independently in a valence orbital outside
a core. Such a model can be expected to be a
good description of an alkali atom. This has been
verified by some calculations. "~" Our wave
function 8'1 is of this kind but it has only a very
simple description of the valence spin orbital,
namely a single Slater-type 2s orbital. We ex-
pect that a better outer orbital as well as a better
core would yield an improved energy. The core
spatial function can be symmetrized in r, and r, .
This is no restriction since its antisymmetric
part will vanish when the antisymmetrizer is ap-
plied.

—Jg(3, 2)h*(3)ds h(1)

=g(1, 2)- d{1)h(2)+d(2)h(1),

where d(1) = fg(1, 3)h +(3)ds.

Since g is antisymmetric

(32)

(33)

fd{1)h*{1)dl= fg(1, 2)h~(1)h*(2)dld2 = O. (34)

It follows that

Jg'(1, 2)h*(1)d1 = 0.

where h and P are normalized to one. g is an
antisymmetric singlet wave function, so that g is
of type (29). g' is the part of g which is orthog-
onal to h

g'(1, 2) =g(1, 2) - fg(1, 3)h (S)dS h{2)

TABLE VI. Eigenvectors from W4 given in the basis uf«(&) = (4&) x exp(-«x), (coefficients truncated to six significant figures).1 i+1

0

«= 0,65 a= 2.76

sGQ

slQ
slP
plQ
pip

s2Q

s2P
dlQ
d lP
p2Q

p2p
s3Q

s3P

f lQ

flp

—0.221 668
—0.096 115

0.083 565
0.049 373
0.048 013

2.080 837
1.852 332

—0.204 258 8

-0.203 584 2

711549

-0 531052
—3.341 896

2.137 931
G.f)30 449 76
0.030 261 54

0.581420 6

0.093 421
—0,036 879
—0.020 703 1
—0.020 832 7

—1,076 161
—0,828 751

0,067 631 50
0,067 347 03

—0.1712110

0.203 468 4

1,639 654
—0.852 738
—0.006 602 942
—0.006 552 73

—0.039 547 9
—0.008 403 5

0.005 214 5

0.002 738 39
0.002 738 35

0.140 901 2

0.118168 r

—0.007 127 182
—0.007 093 056

0.013 941 67

—0.024 430 30
—0.212 297 0

0.107 790 2

, 0.000336 1844
0.000 333 661 0

0.002 135 68
0.000 408 93

—0.000 233 40
—0.000 111926
—0.000 111527

—0.006 488 83
—0.005 337 02

0.000 238 217 3
0.000 236 983 9

—0.000 410 829

0,000 925 366
0.009 566 43

—0.004 381 96

—0.258 32
—9.251 95

9.120 54
—29.462 13
—28.741 25

—18.731 19
—18.444 04

-85.913 75
—85.259 48
—19.488 64

—57.847 34
—26.11835

25.992 21
-71.178 53
—70.884 98

0.160 29
2.038 18

—2.013 08
25 77710
24.55131

24.725 71
24.657 55

128.486 59
127.280 07
27.094 07

124.413 74
135.323 04

—124.779 91
69.024 148
68.638 08

—0.340 61
—2.900 73

2.900 59
—9.684 36
—9.291 33

6.044 54
5.015 52

-66.758 60
—66.145 03
—11.505 32

—67.301 60
—126.978 46

114.299 80
—16.513 81
—16.421 69

0,066 11
0,706 98

—0,699 44
1.095 55
1.054 47

—7.85002
—7.248 59
12.419446
12.299 392
3.103 28

14.885 31
32.910 13

—27,452 70

d2Q

d2P

p3Q

p3p

-0.736 857 0 0,247 597 09
—0.910353 0 0.304 307 34

1.729403 —0.555 453 4
5,171043 —1.945 553 3

—0.026 404 914
—0.032333 636

0.061 010 16
0,234 545 09

0.000 891 071 3
0.001 088 400 7

—0.002 214 901
—0.008 974 204

—123.266 81
—139.218 58

67.883 98
93.442 88

272.493 76
313.446 18

—170.698 80
-331.923 98

—170.251 86
—198.961 56

103.634 70
285.819 24

36.595 989
42,783 053

—23.930 24
-84.804 92
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is also an eigenfunction to y&~ with the same
eigenvalue A.:

fy, (1, I' )f (I')dl'

0.5-

= fg'(I, 3)g'"(1', 3)g'(1', 2)a*(2)d2dSd1 '

= fg'(1, 3)y,*(3,2)a*(2)d2dS

= x fg'(1, sf+(3)ds =xf (I), (s9)

y (1, 1')=3fq(1, 2, 3)y+(I', 2, 3)d2dS

= 2 fg'(1, 2)g'*(I ', 2)d2+ I (1)I *(I')

=y, (1, 1')+y (1, 1').
g h

(37)

It follows that It is an NSO of y~ with the eigen-
value one.

To show the degeneracy of the eigenvalues of

y&~ we use a theorem by Coleman. ' Suppose g is
an eigenfunction to y&~ with the eigenvalue A. , then
the function 5, defined by

b(1)= fg'(I, 2)a+(2)d2, (ss)

FIG. 1. Radial density distribution 47tx y (x) for the

first ISO's of s type. The curve for slP and s2P are
similar to slo! and s2e, respectively, but the latter
orbitals have one more node and are nonzero
(sin curve = 0.002, s20. curve = 0.02) in the valence

region.

We note that g'is antisymmetric but not a spin
singlet. If we substitute the expression (32) for
g in (31), we obtain

y(1, 2, S)=12-'I'a, [g'(I, 2)I (3)], (36)

and y,=y = fy(F, r )y+(F „r )dv

x [~(~,)~(~, ,).P(~, )P(~, ,)]. (40)

Then both a and b have the spatial function u(F),
which is an eigenfunction to y~

fP(rl, F2)(t (r „F2)dv2u(F, )dv,

=w(F ).

The theorem is illustr 3ted by the results in
Table IV. p and Pare nonorthogonal for WI.
The eigenvalues are degenerate in pairs but the
NSO's corresponding to a degenerate eigenvalue
have nonidentical spatial parts, which will be evi-
dent when we discuss the Fermi contact term in
Sec. VI.

We want to examine in greater detail the im-
portance of the overlap between the core function
and the valence orbital. The function d defined by
(33) can be written

where we have used the antisymmetry of g'. Since
y & and y~ are both block diagonal with one n and
one P block, we can choose a as an n spinfunction.
It follows from (38) that b has P spin. Then a and
5 are two orthogonal eigenvectors for the degen-
erate eigenvalue X.

If Pand p are orthogonal as defined in (30) we
have

1.0-

0.5"

FIG. 2. Radial density distribution 47t'dr 4 ) for
the first NSO's of p type. The curve for pip is simi-
lar to pl@, p3a is similar to p2p but has one more
node.

d(1)= fg'(1, 2)a+(2)d2

= —fP (F„r,)y*(F,)dv, p(g, )

= —&(F,)P(g, ) .
The core function can be made orthogonal to the
valence orbital p

y'(F„F2)= (t&(F„F,) —7(F,)p(F, )

—p(, ) (,)+&/ ~ )q(, )p(, ) (43)

P and P' are symmetric in r, and r, The sep-.
arated valence orbital wave function can now be
written

0=~.[%(F„F2)(oP Po') p(F, )o (&—,)]
= &.[4 '(r„r.)(o P P~) y(r. )~(—&,)]
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—2&t, [«&(r, )o.(t', )y(r, )P(t;)) (r, )o'(0,)]. (44)

The first term is a separated valence-orbital
wave function with the orthogonality constraint
and the second term is a correction term con-
sisting of a single determinant which can be writ-
ten approximately as"

&t3(&o~q P~~) =&t3(9 ~ «P&&„~)(X„~9», (46)

where &&1
is the natural orbital of P with highest

occupation number.
This determinant will contribute very little to

the energy. " It contains, however, an unpaired
spin orbital with large amplitude at the origin and
will therefore be of importance for the Fermi
contact term. The orthogonality constraint can
therefore be expected to be serious for the hyper-
fine structure but not for the energy.

We may apply the variation principle to find a
good wave function of type (29) without orthog-
onality constraints. For a limited basis set, as
that for W1, we will get a core function which
approximates the "exact" P best in the core re-
gion and a valence orbital which approximates the
exact y for this model in the valence region. The
function v' will be well determined only after many
terms have been introduced, which are localized
both in the core and valence region. It is prob-
ably good to include a Hartree-Fock type wave
function in the basis.

B. Correlation Between Core and Valence Orbital

When correlation between the core and the va-
lence electron is taken into account in the wave
function, the occupation number of the valence
orbital is depressed below one. The square root
of this number is equal to the best overlap be-
tween g and a function of type (29), as shown in
Sec. II. We also find a splitting of the core eigen-
values, from 0.36 x10 ' for W2 to 1.57 for W3 and
2.0 x10-4 for W4 for the largest s eigenvalues.
For W4 all terms with the spin function 2&2c&P
—npo. —Po&o. contribute to this splitting. The sin
and s20. orbitals for W4 are localized partly in the
valence region. This holds true also for the cor-
responding orbitals from W1, 8'2, and W3. The
Hartree-Fock 1sn orbital is, however, localized
only in the core region.

The splitting of the next-two largest p orbitals
is still larger 1.95x10-4 for W2, 2.71x10 4 for
W3, and 2.65 x10-4 for W4. The terms in the
wave functions contributing to this angular corre-
lation can only be those with x" factors between
core and valence orbital, thus number 9 for W2,
8, 10, and 12 for W3, 8, 10, 12, 21-24 for W4.
We also see from Fig. 2 that the P2n orbital is
localized around 2 a. u. from the nucleus in the
neighborhood of the valence orbital which has its
maximum probability density at about 3 a. u. An
orbital of this kind is thus very important for the

The best overlap orbitals were calculated by the
iteration procedure described in Sec. II. We
used the same basis set to expand the orbitals as
for the NSO's of s type.

WS J'&I&(1, 2, 3)«&i &'&(1)«& &'&(2)dld2

We multiply by u (3), integrate over 3 and get the
linear equation system

b(" =X(') 4 c(

~ ..= (u. lu. ),ij i j'
f& =&&6 /gp &"p "&u.dld2d3,j 1 2 j

from which we obtain

y{1)c(l, ) g - ly (0)

(4V)

(46)

X "& is determined when we require

to be normalized. In the same way p, "& and p, "'
are calculated. These new orbitals are then the
input in the next iteration step. NSO orbitals

description of the correlation between the shells.
For the rest of the p orbitals there seems to be a
pairing p2P =P3c&, P3P =p4o. , etc. The occupation
numbers of these pairs also tend to be similar.

The term "symmetric core" should according
to the discussion above, be reserved for functions
of type (29) with (strong) orthogonality between the
core function &f& and the valence orbital y. To this
group belong the restricted Hartree-Pock wave
function" and the wave function of Ahlrichs. "
This group has been examined in some detail by
Ohrn and McWeeny. " We may expect a good
energy but a bad Fermi contact term for these
models. The contributions from the core cancels,
and the contribution from the valence orbital will
probably be not very different from Hartree-Fock.

We may relax the orthogonality restriction or
the restriction to a core singlet as in (36) but still
keep the valence orbital as in (31). This group
is represented by the spin polarized Hartree-Pock
model, "%'1, the wave functions by Ohrn and
Nordling, "Arai and Onishi, "and wave functions
given by Ritter, Pauncz, and Appel, '8 I unell, '
Goddard III, 4' the "closed- shell" wave functions
of Burke and Mulligan" and the "open-shell"
wave functions of Hurst, Gray, Brigman, and
Matsen. 4'

V. COMPARISON BETWEEN DIFFERENT INDEPENDENT-
PARTICLE MODELS
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were used as starting orbitals and the procedure
converged rapidly. Since g is an eigenfunction of

Sz, it follows from (46) that the iteration proce-
dure will lead to orbitals which are spin eigen-
functions if the starting orbitals are spin eigen-
funetions. The pure s character of the ox'bitals
is obviously also "self-consistent. "

The difference between the NSO's and the best
overlap orbitals was negligible. The overlap
with the original wave function (W4) was
0.998 164 368 for the NSG determinant and
0.998164372 for best overlap determinant. Since
we have calculated all integrals with 10 signifi-
cant figures and solved the eigenvalue problem
for the NSO in double precision, this difference
signifies that they are different. In Table VIII we
see that the differences for energy and orbital
overlaps are indeed very small.

Notice that for 8'1 the NSO's are best overlap
orbitals. This follows from (36). The NSO's of
g' are best overlap orbitals for g'(1, 2) since g'
is a two electron function.

The spin-polaxized Hartree-Pock orbitals were
calculated with the same basis as the NSO's and
the best overlap orbitals. The energy —7.432 722
a.u. and the Fermi contact term 2.826 were ob-
tained in comparison to the exact HF values
—7.432 751 and 2.823,"respectively.

The relationship between HP orbitals and NSO's
is that they are the same after a unitary trans-
formation up to second order in a perturbation
expansion, where HF is the zero-order solution. "
The unitary transformation is in our case a two
dimensional rotation of the bvo e orbitals and no
change of the P orbital. The overlap between the
HF and NSO P orbital was 0.999998. The overlap
between the corresponding 0. orbitals was max-
imized for the rotation angle 6,20' and was then
0.999998 for the core n orbital and 0.999 973 for
the valence orbital, The amplitude of the valence
orbital at the origin was considerably lax'ger for
HP than for the corresponding NSO, and the first
orbital was thex efore more deloealized. On the
other hand the lsn and lsP HF orbitals are node-
less, whereas the NSG 81m ha, s a node at about
0.6 a.u. and is nonzero in the valence region.

The first NSO determinants of the different
wave functions are compared in Table VII, None

of our wave functions are constructed with the
help of the HF function. It is therefore easy to
understand that the simple wave function 8'1 has
a quite small overlap with HF, and that this over-
lap in general increases the more complicated
the wave function. It is also obvious that the
overlap between the wave function and its first
natural determinant decreases from one its value
for an independent particle model, becoming
smaller as the wave function becomes more de-
tailed. From Tables IV and VII we a.iso see that
the values of the overlap between HF and the
wave function and between the NSO determinant
and the wave function come closer and closer to
each other. It might seem to be an open question
if there really is a difference for the exact wave
function. We therefore needed an NSQ determi-
nant for a, better wave function than 8'4, and also
a better orbital basis. We know that the NSQ's
are very near to the best overlap orbitals, so
near that we can considex the NSO's to be best
overlap orbitals. The number of integrals of
type (28) required to calculate NSO's for the 100
term wave function (W5) with the orbital basis of
dimension 10 is about 30 times as many as for
the 25 term wave function and orbital basis of
dimension 8. We therefore calculated only the
best overlap orbitals according to the iteration
scheme with HF orbitals as starting orbitals.
The integrals required here are fewer and con-
siderably simpler. The iteration process con-

verged rapidly. The ls'J3 orbital will be the same
as when NSG's are used as starting orbitals but
the Q. orbitals come out with the above mentioned
transformation, 6.20'. The results are given
in TaMe VIII. Notice that the augmented orbital
basis gives an HF energy very close to the exact
HF energy. The BO-detex mlnant enex'gy de-
creased much when the orbital basis was im-
proved. It also decreases as expected when the
wave function is improved. However the dif-
ference in overlap with TV5 for HF and BG deter-
minants has increased instead of decx easing and
we therefore think that this difference is signifi-
cant and typical for the state in question. The
difference between the HF and BO-density dis-
tribution is given in Fig. 3. The BO density
comes somewhat closer to the nucleus than the

TABLE VH. Properties of the first natural determinants.

Wave function

-Energy (a.u. }
Fermi contact term Vo

difference from value
from density matrix
Overlap between NSO-

determinant and wave
function

7.432460

0.0

7.432 629
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TABLE VIII. Comparison between different independent particle models.

Deter-
minant

BG
BG
BG
NSG

HF
HF

100 10
10

8

8

10
8
37

Dimen. Dimen.
of wave of
function orbital
basis basis

2.893
2.899
2.901
2.901
2.825
2.826
2.8235

Fermi
contact

-Energy (a.u. } term

7.432 717
7.432 693
7.432 636 7

7.432 636 2

7.432750
7.432 722
7.432 751

0.998 165
0.998 164
0.998 164
0.998 134
0.998 133

0,998101
0.998 098

Overlap with

wave function
8'4 8%

0.998 145 0.9999997
0.9999994
0.999 998 5

0.999998 3
1.0
1.0
1.0

0.9999995
0.999999 1
0.999 998 0
0.999998 0
1.0
1.0
1.0

0.999 956 4
0.999970 9
0.999 972 6

0.999972 8

1.0
1.0
1.0

Overlap with HF orbitals
(from the same orbjta& basisa~ b)

lsQ 1sP 2sQ

a
b

For NSG after a 6.20' rotation of e orbitals.
For BO with HP as starting orbitals in iteration procedure.

HF density. This has been found also for He. '
The overlap between corresponding core orbitals
was surprisingly large, even larger than was ob-
tained for He. " The overlap between the valence
orbitals is considerably lower and decreasing
when the wave function was improved. Notice
also that we have the following checking relation
for the values in Table VIII.

BO BO BO HF HF HF)
Ps A &s &s

BO BO( BO HF)

BO BO HF BO
+ A Ps —Ps Ps

(
BO HF) BO BO)

(
BO HF) (

BO HF)

(
BO HF))

0.003-

0.002-

0.00l-'

-0.001-

-0.002-

%.003-

FIG. 3 Difference in radial density distribution be-
tween corresponding Brueckner and spin-polarized
Hartree-Fock orbit@le 4s's' )(Bo (s') 4&s )(HF (s')-. The
curve for 1sP is very similar to the lsd curve.

where only terms to first order in (yvBO- yvHF)
have been retained. X can be taken to be unity in
the right side.

VI. THE FERMI CONTACT TERM

The Fermi contact term f can be calculated
from the expansion of the one-particle density
matrix in NSO's

f=4 [ll0v)(0 '(0)+vl )(l '(0)+v2 )(2 '(0)

+ ~ vlpXlp (0) v2pX2p (0)'''j ~

We have liow numbered the Q alld p olllltals sep-
arately after magnitude of occupation numbers.
Only the s orbitals contribute to the Fermi contact
term. It can be seen from Table IX that the
series is rapidly converging and the contribution

from all but the three first orbitals s0n, sin,
and slP, is only about 2 parts per thousand of f.

An interesting point is that the main contribu-
tion fox the NSO determinant comes from the
splitting of the core orbitals and less than 10/g

from the valence orbital. This is caused by the
6.2' rotation of the o. orbitals discussed in the
last section. This is most striking for Wl,
where we have no contribution at all from the
valence orbital.

In Sec. Il, it was shown that the best ovexlap
orbitals are the same as Brueckner orbitals and

exact self-consistent-field orbitals. They can be
said to represent the effect of "dynamical corre-
lation" on the HF orbitals and play an important
role in many electron theory. 4' As can be seen
in Tables VII-IX the main part of the remaining
error in the spin-polarized HF method can be
ascribed to this effect.

The error which is then left can be divided up
into effects of core correlation and effects of
correlation between the core and the valence elec-
tron in the following way. We write (50) as
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TABI K IX. Contributions to Fermi contact term obtained from density matrix expansion.

f0+A+ Ba

8
C=4~ p

i=2
v. tX. '(0) -X. (0)]

iQ iG zP

—«X1P'(0)

4~X00, (0)

4~X10. (0)

Fermi contact term of
determinant fo

A=4.(vlG- I) [X1Q2(0) —Xlp2(0)]

&=4~(~pc —1)Xpo. '(0) + (~10.-~1P)X1P'(0)

—84.311

0.000

87.845

3.534

-0.011

3.523

0.001

-85.797

0.001

88.601

2.805

—0.009

0.003

2.799

0.006

-84.581

0.221

87.518

3.158

-0.010

0.013

3.161

0.004

—84.715

0.230

87.386

2.901
—0.009

0.017

2.909

0.004
'I

8
D=4r

i=2
(~. -z . ) X. '(0)

io. ip ip
0.000 0.001 0.002

Total value obtained from density
matrix expansion f0+A+ B+C+D 3.524 2.805 3,166 2.915

2 2
Contributions from strongly occupied orbitals in density matrix expansion, vp&Xp& (0) +v1~X1~ (0) —v1pX1p {0).

(f/4~)- [X0 '(o)+ Xl '(0)- Xl '(0)]

= (vl —1)[xl '(0) - x 1
'(0)]

+ v [y '(0) —y '(0)]

+v3 [X3 '(0)-x3 '(0)]+ "
+ (v - 1)X0 '(o)+ (v, - v, )X, '(o)

+ (v —v )y '(0)

+ (v —v )y '(0)+ ~ ~ . (51)

The last terms are all zero for a, separated
valence orbital model. The first terms are prob-
ably not very much changed when correlations be-
tween the core and the valence electron are taken
into account. The value of the different terms
are listed in Table IX. The first terms in (51)
are denoted by A and C and represent the eff ect
of correlation in the core. In all the wave func-
tions, that we examine, correlation in the core
has been well taken into account. We see that the
effect on f of A+ C is very small between —0.1
and —0.3/p. When correlation between the
valence electron and the core is introduced we
get a positive contribution ranging from + 0.1%
for W2 to 0.7/p for W4. The sum of the correla-
tion contributions is 0.5/p both for W4 and W5.

The difference between the values of the Fermi
contact term from the wave functions given in
Table IV and the values given by the density ma-
trix expansions in Table D' are slightly different.

This depends on the limited basis set that we
have used. The absolute values of the electronic
density at the nucleus are most in error. The
errors will however cancel each other to a large
extent, and the values in Table VIII are reliable
except perhaps for the values of C and D. When
the orbital basis was augmented to 10 terms, the
error was considerably decreased as can be
understood from the tables.

The differences between the HF and the Brueck-
ner orbitals thus accounted for the major part
(2.39/p) of the difference (2.84%) in the Fermi con-
tact term between HF (97.16%) and the exact
value.

By Brueckner orbitals or best overlap orbitals
we have in general meant those for an exact wave
function. We can also define them for a model
wave function like, for example, the separated-
valence-orbital model. Since no sufficiently
accurate wave function of this kind has been pub-
lished in the literature, it is difficult to know how
close these Brueckner orbitals are to the true
ones. If they are assumed to be the same as the
true Brueckner orbitals, we get with the help of
Tables IX and X the Fermi contact term for the
separated-valence-orbital model, 2.893 —0.005
= 2.888. This is under the assumption that the
wave function W5 gives the correct values. The
function for the separated-valence-orbital model
must be obtained from the variation principle and,
as in the Hartree-Foek case, we may get a wave
function which is not of pure 'S symmetry, but
has ~S admixture. It is then not strictly of the
same type as the model discussed in Sec. IV,
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The natural orbital analysis revealed the nature
of correlation and particularly the nature of the
correlation between the valence orbital and the
core. Correlation of this kind is introduced

TABLE X. Orbital contributions to Fermi contact
term from best overlap determinant compared to HF.
Orbital basis x~exp(-m"), ~=0, 1, 2, 3, 4, a=0.65, 2.76.

Wave function

-4~y1P'(0)
4m'F1~2 (0)

4rxl 2(0)

Spin-polarized
W5 Hartree Fock

-85.328 -85.627
2.228 2.153

85.999 86.367

-85.389
2.058

86.154

Total Fermi
contact term
from determinant 2.899 2.823

where 'S symmetry was assumed.
In Sec. IV we found that the function d was of

great importance for the Fermi contact term,
ad d t get god pp to fdwe
must add terms to the basis set which have the
valence part localized also in the core region and
vice versa. This holds true also when we have
left the separated valence-orbital model and in-
troduced valence-core correlation terms. The
James and Coolidge wave function has such terms,
Nos. 7 and 8, whereas they are missing in 8'1
and W3. In W4 they are present, namely those
with the spin function 8, =2o.'nP- nPn —Pnn T.he
James and Coolidge wave functions and wave func-
tions with the spin function 8, give good values of

f, whereas wave functions of the kind Wl and W3

give bad values. However, other effects may
be of importance here.

making a permutation of the coordinates for the
valence electron and a core electron in the spatial
part of the basis function and not change the spin
function 8, = +PE —Po.n. ' lt was found that the
introduction of xgj terms splits the second pair
of p oxbitals very much, or cox'responds to the
introduction of a new p orbital localized in the
region between the core and valence orbital. The
effect of introducing terms with the spin function
8, on the other hand increased the splitting of the
occupation numbers of the strongly occupied core
orbitals.

In the comparison of different independent-
particle models we found that the spin-polarized
Hartree-Fock wave function is very similar to
the Brueckner determinant. The difference is
largest for the valence orbital. All the Brueck-
ner orbitals are more piled up at the nucleus and
therefore the difference is noticeable for the
Fermi contact term. The difference between
NSO's and the corresponding best overlap orbitals
was found to be negligible.

The analysis of the contributions to the Fermi
contact term shows that the already good HF value
is improved when we go over to the best overlap
determinant. The Hartree-Fock result can there-
fore not be considered as fortuitous as has been
done. Among the pure correlation effects the
is —2s correlation is most important, about
+ 0.7%.

The separated valence-orbital model was
studied in some detail. The eigenvalues are
doubly degenerate (at least) for this model, ex-
cepting one eigenvalue which is one. The cor-
responding NSO's can be chosen as spin eigen-
functions. The spatial parts are then the same
only when we have the orthogonality constraint
between the valence orbital and the spin-singlet
core function. The energy will probably be only
slightly improved when the orthogonality con-
straint is x elaxed but the Fermi contact term
will be much improved.
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The integrals required are of the following type

1 2 3 1' 1 2 1 1 2 2 3 3 1' 1'f~ ~2 r3 rl, r
~

r.. e

(Al)
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where pi and qi arq non-negative integers. The volume elements are

dw. = x.' sin3.dx. d3.dp. .
2 Z 2 g Z Z

We expand x"q according to a formula of Sack. 4'
U

(A2)

r.. =Q R (r , r. .)P (cosa. . ),ij A. qX i'j X ij' (A3)

(r. , r.)=[(--,'q) /(-,') jr q(r /r ) P(X--,'q, ——,
' ——,

'
q, X+ ,', r-/r ),~ 7 j«2 2 (A4)

(n), (p), ,E(n P y x)=1+ Q x (n) =1 (n) =o.(n+1) ~ ~ ~ (n+s-1)t (~) st u 0 7

s= 1 s
(A5)

r =min(r. , r.); r =max(r. , r.).i j ) i

The Legendre polynomials P~(cos8fj) are expanded according to the well-knoWn formula

P (cos3..)= Q Y (3., y.)Y (8. , p.).4~
ij 2K+1 Xp, i' i Xp, j' j

Since all our wave functions contain only one rz& at a time we get at most two in the integrals, and
none of them are zi ir. This simplifies the angular integration, which then results in Kronecker deltas
5y ~, 5y y, , 5&,~, 5& &,. Furthermore the total integral is independent of the value of m.

There remains to be done the integration over t'„r„x, and x,r. Since only two interelectronic sep-
aration coordinates are present the most difficult case is a triple integral. Because of (A4) we divide
the region of integration into six parts, each of which is characterized by rf & r & rk, {ijk)'is a permuta-
tion of {123]. The resulting integrals are of the type

z j

W(k, f, m, n, P, y) =

0&g&y&g&00

k —nxf — ym —yex e ye z e dedydx, (AV)

V(k, f, n, p)= f f
0&g&y& ~

k —nx f — yx e ye dydx, (A8)

A(k, n)= J e x dx. (AQ)

The calculation of these integrals is discussed elsewheres and will not be further treated here. We
have made the calculation with 10 significant figures except for the d and f orbitals where a smaller
number was sufficient.
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