
PHYSICAL REVIEW VOLUME 178, NUMBER 3 1$ FEBRUARY 1969
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The effects of strain on optical critical-point structure in the imaginary part eg of the dielectric function
are considered. The motivation is to study how the syrrlrrletry-breaking effects of strain can be used to
deduce the symmetry location of the critical points ko. This knowledge is valuable for the empirical determi-
nation of pseudopotential parameters. The applications are to the diamond structure, but quite similar
results are to be expected for any cubic material. Effective strain and kinetic energy Hamiltonians are
derived in the effective-mass approximation for F, 6,, L, and Z critical points with and without spin-orbit
splitting. The effects of exciton binding are considered. The low-strain-induced changes of the dielectric
function can be described in terms of three functions of frequency ('N&, %'I, and %'&), which yield symmetry
information for nondegenerate bands. For high strain, the individual critical points in the star of k0 Lapart
from the {ko, —ho) degeneracyj can be resolved, and much more symmetry information is available.
Lifetime broadening limits the amount of information which can be obtained.

I. INTRODUCTIOÃ AND CONCLUSIONS

'HE pseudopotential method' has been quite suc-
cessful in describing the energy band structure of

a large number of solids in terms of a small number of
parameters, typically three in diamond-type struc-
tures. "One of the most widely used methods of deter-
mining these parameters in semiconductors is based on a
critical-point analysis of structure in the fundamental
optical reQectivity. 4

The reQectivity may be processed, using a Kramers-
Kronig transform to yield e&(a&),"the imaginary part
of the dielectric function. It is assumed that e2 may be
described in terms of direct transitions with phonon
interactions giving a lifetime broadening to the pre-
dicted structure. Structure in ~2 results from critical
points ko in the optical energy function, i.e., points
~here &eLE,(k) —E,(k)]=0. E, and E, are the conduc-
tion and valence band energies. The region around these
critical points yields a nonanalytic contribution to ~2

of square-root form which gives rise to characteristic-
structure in ee(co).' This structure may be further en-
hanced by exciton binding eBects in the case of 3EO and
Mq singularities. 4 ~

If the location ko of the critical point is known, the
energy hcvo can be used to infer a pseudopotential
parameter. The major uncertainty in this method is the
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location of the critical point ko. A number of arguments
have been used to locate ko but they have generally
been rather indirect. '

Since the introduction of differential methods by
Seraphin, ' the sensitivity of detection of optical critical
points has been greatly improved. Much work has been
done using the difFerential electroreQectance method. '
DiGerential piezoreQectance has also been studied ex-

tensively. "" It was immediately clear" that the
difFerential methods were not merely advantageous for
their greater sensitivity but, because of the symmetry-
breaking character of the differential perturbations,
they offer the possibility of obtaining information con-
cerning the symmetry properties of critical points which

can be used to determine their location in k space.
The symmetry study of critical points is seriously

complicated by lifetime broadening sects for all but
minimal energy transitions. Because of this fact, a
fairly detailed understanding of line shapes will be neces-

sary to deduce the maximum amount of symmetry in-
formation. We favor the piezoreQectance method since
it is somewhat easier to interpret theoretically than
electroreQectance.

In this paper we concentrate on the piezoreQectance
problem. If we limit ourselves to the linear response
regime, it is easily shown that a cubic system can be
described in terms of three constants %'~, VP3, and %'5
which can be determined by polarized reQectivity
measurements using stresses in the [001j and L111j
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directions. The relations are

[001]Stress

8c2g= (Gl) — (CO) iX.
v3 g6
[111]Stress

(1.2)

(1.3)

These relations will be derived and discussed in more
detail in Sec. III A of this paper. X is the applied uni-

axial stress, and the parallel and perpendicular differen-
tial dielectric constants are defined relative to the stress
direction. With respect to these axes the dielectric
tensor is in diagonal form.

Two types of effects contribute to '@, changes in
optical matrix elements and shifts of energy bands. The
latter effect is expected to dominate the former in the
vicinity of a critical point by a factor (hE)/I' where I' is
a lifetime broadening energy. For a nondegenerate band,
AE is a typical energy gap at ko generally of the order
of 1 or 2 eV or more. For degenerate bands whose de-
generacy is lifted by spin-orbit interaction, ~ is the
spin-orbit energy. For truly degenerate bands, hE may
be as smaH as an exciton binding energy. The linear re-
sponse regime is, of course, limited to strain energy
shifts small compared to either I' or ~.

The energy shift contributions to & are the most
interesting because they contain the most symmetry
information. For nondegenerate critical points in the
[001]direction or I'2 symmetry in the [110]direction,
'%5'"'"=0 for [111]critical points, 'Ka' '"=0; and
for [000]critical points% g~'"=&~~'"=0. A Kramers-
degenerate band is effectively nondegenerate.

For degenerate critical points or for [110] critical
points having F& or I'3 symmetry or for a general critical
point there are no special relations involving the 'VP's to
indicate the symmetry. Actually, in the degenerate case,
8~2 is a nonanalytic function of stress direction which
might serve to characterize the degenerate case.

Another way to characterize the degenerate case or
the [110]case is to look at terms which are higher order
in the strain. If the strain splittings are large enough
compared to the lifetime broadening, the critical points
which were symmetry degenerate in zero strain may be
individually resolved and counted. In the intermediate
case, the lines may not be individually resolved but the
line shape may be altered suKciently so that with a

reasonable theory for the line shape it would be possible
to infer the symmetry character of ko.

In this paper we study the strain splittings of critical
points in the effective mass approximation. W'e phrase
our discussion largely in terms of excitons. If by
"exciton" we mean electron-hole pair with their mutual
Coulomb interaction accounted for, then our discussion
is completely general. It is sometimes convenient to
ignore the Coulomb interactions but this will not be
necessary for the type of symmetry argument we apply.
It will be suQicient to assume that exciton binding
energies are large or small compared to strain splitting
and lifetime broadening energies. If the exciton binding
energy is large compared to lifetime broadening or
strain splitting one expects a set of exciton states which
transform irreducibly under the group of the critical
point ko. We call these states a symmetry multiplet and
we can use group theory to deduce a considerable
amount of information concerning the optical matrix
elements and strain energy shif ts of the multiplet states.
We also derive the changes in the multiplet matrix ele-
ments which are first order in the strain and which result
from strain induced changes in the exciton binding
energy. This part of our analysis, which we call the low
strain limit, treats strain interactions exactly within
the multiplet states and treats strain interactions
between multiplets to first order in the strain. We
assume that the line shape of the unstrained multiplet
states is given by a Lorentzian, hence the differential
line shape would be the derivative of a Lorentzian for
energy-shift effects and Lorentzian for matrix-element
changes.

The case of a nondegenerate critical point is particu-
larly simple. The strain shifts the energy band "as a
whole" so that no change in exciton binding relative to
the band edge occurs and no change in optical matrix
elements results. We ignore wave function admixture
effects from higher bands. In this case the differential
line shape is a simple frequency derivative of the un-
strained line shape. This result is true, of course, re-
gardless of the nature or magnitude of the electron-hole
interaction. It is true for the individual exciton states
and it is equally true for the sum over all exciton states
associated with a given critical point ko. If the individual
exciton states are not resolved, due to lifetime broaden-
ing or because they are in the continuum, then the
"effective line" is the superposition of all the Lorentzian
broadened individual exciton lines. The differential
"line shape" of a nondegenerate critical point is the
energy derivative of the unstrained effective line. "
There will be one such "effective line" for each point in
the star of ko. The vectors ko and —ko are always de-
generate, and other degeneracies may occur for sym-
metric stresses.

In the case of degenerate bands a strain which is
totally symmetric under the group of ko will not split
the degeneracy. The results in this case are the same as
for a nondegenerate band.
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For strains which act to split the degeneracy, if
the strain splitting is large compared to the lifetime
broadening and the exciton-binding energy, we again
arrive at a simple result. The bands are eBectively
"strain decoupled" and the description given above for
the nondegenera. te case applies, except that now we
have a "symmetry multiplet" of bands with a complete
exciton spectrum in each (both discrete and continuous).

The energy shifts of bands can be derived from group
theory. Optical matrix elements depend on both the
periodic part of the Bloch functions and on the exciton
envelope functions. The matrix elements due to the
periodic parts are related for diBerent multiplet
members. In particular, certain polarization directions
give zero response. However, the envelope part of the
exciton wave function depends on the effective mass
parameters so that the over-all matrix element magni-
tudes are not simply related by group theory in the
high strain case. In this respect the symmetry results
are less complete than they are for the low strain limit.

For cases intermediate to the limiting cases described
above the effective mass formalism can, in principle, be
used to derive the line shape function, but in practice
this would be quite dificult and we do not attempt it
here.

The important symmetry locations for critical points
in the diamond structure are the I" and L points and the
6 and Z directions and we treat the symmetry properties
of these points in detail in Sec. III. The A. direction and
the X point are theoretically possible critical point
locations, but for the bands of interest the existence of
energy terms linear in k—kq and k—kx seems to pre-
clude their importance as critical points. Spin-orbit
splitting will, in fact, overcome the k—k~ linear terms,
but unless spin-orbit splitting is very large, the result-
ing critical point would be expected to be weak.

We study all the symmetry types which have allowed
optical matrix elements. We introduce spin-orbit inter-
action into the orbital multiplet and treat the symmetry
properties of the resulting double group. This approach
involves the approximation that only the hole (electron)
spin is coupled to the orbital motion and that the wave
function and energy are independent of the electron
(hole) spin coordinate.

Pollak and Cardona" have independently derived
many of the symmetry results presented here although
their treatment is less general and they do not consider
exciton binding effects.

We have discovered the interesting fact that exciton-
binding effects generally reduce the absolute magnitude
of those deformation potential constants which lead to
splitting of band degeneracies.

Outline of Paper

In Sec. II we develop the general formalism based on
the effective mass approximation. We perform a sym-
"F.H. Pollak and M. Cardona Phys. Rev. 172, 816 (1968).

metry analysis based on the group of ko, the critical
point, following the symmetry notation used by Koster
et c/."Much of our analysis is based on the unitary
Clebsch-Gordan matrices p which give the irreducibly
transforming linear combinations of the outer product
of two irreducibly transforming functions. These p
matrices have been extensively tabulated by Koster
et al."for all point groups. The problem of indices be-
comes rather formidable. We have adopted the conven-
tion of reserving the subscript position for symmetry
information referring to the group of ko, although a few
exceptions to this rule have been allowed.

In Sec. III we apply the general formalism to specific
cases: the I' point, 5 line, L point, and Z line in that
order. The discussion in the succeeding sections be-
comes progressively less detailed to avoid tiresome
repetition. The case of [001],[111],and [110]strains
is treated in most detail.

The principal results of this paper consist of the
energy shifts with strain and the optical matrix element
changes with strain. They are given for the k=0 point
without spin-orbit interaction in Eqs. (3.39) through
(3.45) and (3.49) through (3.52). For the fourfold band
at k=0 (considering spin-orbit splitting) the results
are given in Eqs. (3.77) through (3.80) with (3.83) and
(3.84). For the twofold (Kramers degenerate) band at
k= 0 the results are given in Eqs. (3.94) through (3.96).

For critical points in the 6 direction, the results are
summarized in Tables II, III, and IV; for critical points
in the A. direction, Tables VI, VII, and VIII apply. The
Z direction is given in Table IX. The quantity P,
gives the contribution to the principal axis component x
of the dielectric tensor from the state t, F is defined in
Eq. (2.13).The D's are "band-edge" deformation poten-
tial parameters, while the X)"s are deformation parame-
ters which take into account the change of exciton
binding energy of state t with strain. g~, q3, and qs are
strain components defined in Eqs. (3.10) through
(3.19). The principal axes of the dielectric tensor de-
pend on the stress direction and are defined in Eqs.
(3.1) and (3.2). E is the unstrained exciton binding
energy of state t and &X is the spin-orbit energy. f"
is a matrix element parameter in the unstrained crystal
while f" and f" are matrix-element changes induced by
pa and p & strain components, respectively.

In Sec. IV we compare our notation to that of other
authors in the current literature.

We have not treated effects such as spatial disper-
sion, " electron-hole spin-spin interactions due to ex-
change scattering, "or valley-orbit splitting' due to the
overlap of k-space wave functions associated with dif-

"G.F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz,
Properties of the Thirty-Tao Point Grog ps (MIT Press, Cambridge,
Mass. 1963)."J.J.Hop6eld and D. G. Thomas, Phys. Rev. 132, 563 (1963)."R.S. Knox, Solid State Physics (Academic Press Inc. , New
York (1963)) Supplement 5, p. 45.' W. Kohn Solid State Physics (Academic Press Inc. , New York
(1957), Vol. 5, p. 289.
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ferent points in the star of kp. In special cases, any or all
of these sects may be important. We remark that in the
presence of strong valley-orbit splitting the exciton is
best regarded as belonging to the group of I'(k= (0,0,0)).
Our "low strain" results for F would be applicable to
this case.

II. GENERAL FORMALISM

A. Optical Dielectric Function

We are concerned with the absorptive part zq(co) of
the tensor optical dielectric function z(&o), where

K(Cd) = ey(&0)+Zzm((d) . (2.1)

For a cubic crystal the e tensor is isotropic and may be
replaced by a scalar. Under the action of strain the cubic
symmetry is destroyed and the tensor character of e
becomes important. If we assume that the strain de-
pendence of a is an analytic function, we can write the
linear strain dependence in the form

be2...(~)= II'u(~) e-+ ~u'~)(e, u+ e-),
(2.2)

g&, ,„(u)=W44(~)e,„.
These relations have the same form as the relations
connecting the strain tensor e and the stress tensor g
where W is the analog of the compliance tensor s (W
and s are actually fourth rank tensors but the ab-
breviated notation is standard). In Sec. III A we will

discuss the form that Eq. (2.2) assumes when e and e2

are written in symmetry adapted notation.
We wish to obtain more information about e2 than is

available from Eq. (2.2). One approach would be to
continue the expansion of a~ to quadratic and higher
terms in the strain. This has been suggested by Gerhardt
in a private communication and it may be a useful pro-
cedure in some cases. Our approach in this paper is to
look into the microscopic theory of the dielectric func-
tion and to study the strain dependence of optical
energies and matrix elements in the eBective mass ap-
proximation. In simple cases we can obtain the func-
tional form of the co dependence as well as stress de-
pendences in the range where a power series expansion
for e2 would not converge, namely, when energy shifts
due to stress are greater than the lifetime broadening
energy. We also study degenerate bands where the stress
dependence of em is nonanalytic. We 6nd, however, that
(2.2) is still correct for stresses in the L001], L111],and
[110]directions.

We will treat only direct transitions and ignore the
small k vector of the light. We also ignore phonon inter-
actions except insofar as they can be treated pheno-
menologically as a lifetime broadening process.

The dielectric tensor can be written'

4n-'e'

XQ'I p. l0)&(h' —&'—~), (2.3)

8'=E (k) —E (k) (2 5)

where rI, r2 are the coordinates of the electron and hole
in energy bands ej and e2, respectively. We take the
usual "one-electron" view so the hole wave function is
the adjoint of the corresponding one-electron wave
function.

e2 is then the energy density of the pair states (the
optical density of states or "joint" density of states)
weighted by the matrix elements of p. The optical den-
sity of states has analytic singularities (of square-root
type) at the critical points ka for which

V~l E„,(k) —E,(k)]g,=0, (2.6)

A(u, =E.,(k0) —E„,(k0) . (2.7)

These points provide the structure in ~2 and in the re-
Qectivity and we wish to focus our attention on these
regions.

In the vicinity of a critical point, the optical energy
h'(k) can be written

(2.8)

where the R; are reciprocal "reduced" masses. The
critical point is said to be of type Mq(k= 0, 1, 2, 3) when
k of the masses R; are negative. ' The minimum A~p is, of
course, always of type Mp. The saddle point types M&
and M2 have often been cited as giving rise to important
reQectivity structure. ' It appears that M & and M2 singu-
larities may occur close to each other in energy ("back
to back" so to speak) and thus give rise to peaks in em.

M'e singularities are probably unimportant.
Due to crystal symmetry, all points in the "star"

of kp are critical points. In the absence of phonon
broadening and Coulomb eEects the nonanalytic charac-
ter of e2(&oe) guarantees that the interesting structure in
e& can be "localized" in k space in the vicinity of the
points ka. Weak Coulomb effects (without lifetime
broadening) blur this simple picture somewhat by
forming linear combinations of pair states k in the
vicinity of kp. If Amp is the minimum direct transition

where p~ is the lth component of the momentum opera-
tor and

l 0) refers to the ground state of the crystal at
absolute zero with energy h, assumed to be totally
symmetric under the crystal symmetry group. lf')
refers to a complete set of excited states labelled by the
index t, having energy 8'. Because of time reversal, ~2

is always a symmetric tensor, ~2, ~
= e2, & in the absence

of external magnetic 6elds. (We do not treat the effect
of magnetic 6elds. )

The excited states P consist of an electron and hole of
total momentum zero (ignoring the wave vector of the
light). When Coulomb interactions between the electron
and hole can be ignored, f' can be written as a product
of Bloch functions

P'=V ''e' "' "u (kr&)N„'(kryo) (2.4)
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energy, Coulomb eRects produce stable bound states
which have well defined symmetry under the group of
kp. Hence, even in this case much precise symmetry in-
formation is available.

If Scop is not an absolute minimum, but kp is of type
Mp, one expects that weak Coulomb eRects will produce
metastable "bound" states which are not perfectly
sharp but have some lifetime for decay into pair states
of equal energy at a point k distant from the local
minimum kp.

Phillips4' suggested that even M& critical points may
have metastable "saddle-point excitons" associated
with them if the positive reciprocal masses RI, R2 are
much greater than the negative mass

~
R3~ . This type of

metastability is that of a particle perched on top of
a rather Rat A, and Duke and Segall" have objected to
the use of the word metastable in such a context. How-
ever, Velicky and Sak' and the present author have
demonstrated that Coulomb eRects do lead to additional
structure in this case although it is not that of a Lorentz-
ian broadened 8 function.

In the presence of strong Coulomb elfects (still with-
out phonon elfects), the metastable excitons will be
more seriously broadened. The minimum Mp will still
have sharp excitons but they may not be described as
being associated with individual values of kp. The situa-
tion is analogous to the case of valley-orbit splitting due
to central cell effects in impurity states. " The true
states are linear combinations of all states in the star of
kp and the relevant symmetry group is the group of
k=0 rather than kp. Valley-orbit eRects should be
weaker for excitons than for impurities because the
hole is more spread out than the central cell potential of
an impurity. We will henceforth ignore valley-orbit
eRects and use the group of kp.

When phonon broadening is considered the informa-
tion content of e~ is further degraded. I.et AI'/2 be the
imaginary part of the self-energy where I' is the recipro-
cal lifetime due to phonon scattering. Then in the ab-
sence of Coulomb eRects the analytic singularity at heap

is pushed off the real axis by an amount iAI'/2 so that
(Ace —Acro)'"—+ Re(A&a A&so+i—AI'/2)'" If Al'/2 is large,
the structure may no longer be regarded as corning from
the immediate vicinity of the point kp. If several critical
points with inequivalent kp are separated by an energy

AI'/2 the information in e2 is badly degraded. This
is probably the case for the main transition at 4 eV
in covalent crystals (sometimes called an X transition).
In silicon this is known to arise from a number of near
degenerate critical points. '"

When Coulomb and lifetime eRects are considered,
the bound state delta functions become Lorentzians of
the form

(2.9)

Equation (2.9) applies to the case when Mo is an ab-
solute minimum so that the exciton states are perfectly
sharp in the absence of phonon broadening. Otherwise
the phonon broadening is additional to the meta-
stability broadening previously discussed. Of course, if
the material is "direct" the phonon broadening of the
lowest Mo exciton (which is then the bandgap) must
vanish at T=O'K. (We ignore recombination broaden-
ing which is very small. )

Phillips" has emphasized that the metastability
broadening due to Coulomb interactions of an Mp
singularity which is not the lowest Mp may show inter-
ference eRects with the continuum resulting in a line
shape which is not Lorentzian. Phonon scattering, on
the other hand, is incoherent and hence gives a more
nearly Lorentzian broadening.

In the present work we will ignore many of the above
complications and assume that it is useful to study the
strain dependence of the wave function P' and energy
8' of an isolated state

~
t) or a group of symmetry related

states which are degenerate in energy. We will calculate
the wave function and energy of these states to terms
linear in the strain. On this basis we will obtain syrn-
metry relations between the energy shifts and matrix
elements of states which are related by symmetry in the
unstrained crystal. The usefulness of this procedure de-
pends on the existence of an exciton binding energy
which is at least comparable to lifetime broadening
eRects so that a measurable fraction of the dielectric
function can be ascribed to a single group of symmetry
related states. Some of the results we derive will be
valid independent of the strength of exciton binding.
For example, strains which do not split the band de-
generacies cause all states associated with a given criti-
cal point ko to shift together (although other critical
points in the star of ko may shift differently). This result
is independent of the degree of exciton binding. For
strain-splitting energies large compared to exci ton
binding energies, the formerly degenerate bands are
effectively "decoupled" and again the states associated
with a given band shift by the same amount indepen-
dent of exciton binding eRects. However, in the high-
strain or "decoupled" band limit, we have no symmetry
relations between the matrix elements in different
bands with or without exciton eRects. This is because
the matrix element in either case depends upon a suit-
ably averaged eRective mass which will not be the same
for the split bands. Zero values of certain matrix ele-
rnents may be predicted on the basis of symmetry in
this case, however.

To be more explicit, we assume we have a set of states
described by the labels

"C.B. Duke and B. Segall, Phys. Rev. Letters 17, 19 (1966)."E. 0. Kane, Phys. Rev. 146, 558 (1966}. "J.C. Phillips, Phys. Rev. Letters 12, 447 (1964}.
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The states are associated with a given critical point kp
and have symmetry type jo, under the group of kp where

j denotes the irreducible representation and o. denotes
a partner function of the representation. For zero
strain, 8,' will be independent of the partner index n
and also of which critical point we choose in the star of
kp. t is a repetition index of the representation ja. For
practical purposes, t will generally refer to the exciton
ground state which is much stronger in binding energy
and optical matrix element than any excited state
(binding energy goes like n ' and optical matrix ele-
ment squared goes like n ' where n is the principle
quantum number). We will frequently wish to indicate
whether or not a result depends on t so we will retain
the superscript explicitly.

Using Eqs. (2.3) and (2.9) we write c2', the contribu-
tion of the states of (2.10) to the dielectric function, in
the form

4x'e'
&2«'(~),

= p ~i' (ko)
3m 'o)'V, &o

XL(g ' (ko) —$0—Ace), (2.12)

(2.13)

Be~' e(t'~D)t)f" e(t~D(t) dL
+

e~' (h' —8")F' L dhco
(2.14)

f" is analogous to F' but involves excited states f'.
(t'~D~ t) represents the matrix element of the strain
operator which mixes the wave functions of states t and
t'. e represents the strain. Assuming f' F'. (f~D~t)

(t
~
D~ t), we see that the optical matrix element varia-

tion is proportional to (h' —8') ' while the energy shift
term is proportional to (Al') '. Thus for sufficientl
small lifetime broadening, the energy-shift terms are
always dominant. This conclusion is valid if the line-

~0In studying optical reQection at normal incidence for weak
perturbations on a cubic system, we need only consider the change
in the diagonal component of the dielectric tensor in the direction
of the polarization vector of the incident light. This is because the
reflected power is proportional to

~
E0+BE~' where Eo is the un-

perturbed reRected electric field vector and BE is the perturbed
field. The term BE BE is negligible compared to Eo BE and E0 is
the same direction as the incident field.

L is the Lorentzian function de6ned in Eq. (2.9). The
dielectric constant is written in diagonal form e~, ~~,

2p In
the case of L001], L111], and L110] strains which we
discuss in detail, the principal axes are always parallel
and perpendicular to the strain. P&' will always be
summed over all n, ko for which 8,' (ko) is the same.
We will calculate F and h to terms linear in the strain.
We will thus be able to calculate the diGerential re-
sponse of e2 to strain coming from both matrix element
variation and energy shifts.

If we suppress as many indices as possible 8e&', the
variation with strain of e2', may be written

shape function L is a Lorentzian or if it is assumed to
be of square root form. The energy denominator 8'—8'
may vary over a wide range. For a nondegenerate band
the only wave function admixture results from higher
bands at kp which may typically be separated in energy
by 1 or 2 eV or more from the band of interest. Ke
neglect these terms in our detailed calculations in the
spirit of the "eGective mass approximation" but they
do actually make a finite contribution to the linear
strain eGect on e2. For bands whose degeneracy is lifted
by spin-orbit interaction, h' —8' will be of the order of
the spin-orbit splitting. We treat the symmetry proper-
ties of these terms in detail in Sec. III. For truly degen-
erate bands, 8'—h' will be of the order of the exciton
binding energy. The optical matrix element variations
will clearly be of greatest importance in the case of
degenerate bands for strains which act to split the de-
generacy. If the lifetime broadening is of the order of
the exciton binding, or greater than the exciton bind-
ing, (8'—h') AF and both types of terms are com-
parable. The line shape contributions from energy-
shift eGects and optical matrix element changes will
certainly be diGerent but probably not qualitatively
diGerent. There are sum rules eGectively guaranteeing
conservation of e~,

" so that if the matrix element in-
creases at one frequency it must decrease at a nearby
frequency. Hence both terms will tend to have a
"derivative" shape consisting of positive and negative
peaks.

The importance of strain induced optical matrix ele-
ment changes have also been emphasized by Gerhardt"
and by Pollak and Cardona. "

B. Pair Wave Functions

We construct the electron-hole pair wave function
out of one-electron-band functions using a Luttinger-
Kohn basis" about the point kp. That is, we use as a
basis the complete set of functions e'~'N„(ko, r). Since all
points in the star of kp are equivalent we implicitly
assume that the region of k about kp which we will need
to consider does not overlap an adjacent equivalent
region. There will inevitably be some overlap which
leads to what has been called valley-orbit splitting in
the theory of impurity wave functions. "If the overlap
is strong the kp basis is unsuitable and one should use
a basis with kp= 0. The appropriate syxrunetry group is
then that of F.

Of course, in a sense, the symmetry group of I' is
appropriate in any case. One can always form combina-
tions of states belonging to diGerent but equivalent kp
which transform irreducibly under I'. However, for weak
valley-orbit eGects, there will be several diGerent repre-
sentations of I' which are nearly degenerate with each

"See for example, Eq. (10) in H. R. Philipp and H. Ehrenreich,
Phys. Rev. 129, 1550 (1963).

'~ U. Gerhardt, Phys. Rev. Letters 15, 401 (1965).'3 J. M. Luttinger and W. Kohn, Phys. Rev. 9?, 869 (1955).
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other. In this case it is simpler to study the group of ko
first and take account of the equivalent ko at the end of
the calculation.

The pair state consists of an electron and hole which
we describe by a two-particle wave function

Xu.,(r))u., (rp) . (2.15)

The coordinate rp refers to the hole, hence the $ (ad-
joint) on its wave function. The "envelope" function
(p(r~ —rp) is constructed out of k vectors over a single
Brillouin zone.

where e~ is the strain tensor. Because the strain has
infinite wavelength it commutes with the envelope
wave function, y, but operates on the pair bands

u„,e„, . This operator can also be expressed in terms of
matrix operators. In fact, because e and pp' are both
symmetric second rank tensors, the structure of H,&,

and HKE is formally identical.
We also wish to discuss the optical matrix element of

the momentum operator between the ground state
~ 0)

and the exciton state )Pt(r(, rp). Following Elliott, " this
can be written

+t(r rp) = bt(k)ei(k )to) (—rt—rp)dk

BZ

(2.16)

dr
X u.,t(r)p;u„,(r)—. (2.22)

cell T

Iro= BEE+&c+~0,
As)p—=E„,(kp) —E„,(kp),

(2.17)

(2.18)

e2
Bc=—

60 t'y —t'2

+KE=p«p+mG!m/2=— TltttG(ts ~

(2.19)

(2.20)

Aaoo is the band energy at the critical point, ko, Hc is
the mutual Coulomb interaction of electron and hole.
e& is the zero-frequency, zero-wave-number dielectric
constant. A more sophisticated treatment of the dielec-
tric function may be desirable in some cases but we will

not treat these complications. We also assume that Hc
is a diagonal operator in band indices, which again is
only approximately true. We have neglected the ex-
change contribution to IIc which leads to a correlation
between the electron and hole spins. "The kinetic en-

ergy operator HK)p is quadratic in pp, a crystal momen-
tum operator which acts only on p, and an effective-
mass tensor G~ which is also implicitly an operator on
band indices. These operators can be expressed in terms
of matrices whose dimension is equal to the number of
degenerate bands. The matrices must transform under
the group of kp in the same way that p«p, /2=Tt-
transforms.

The strain Hamiltonian can be written

The superscript t indexes a complete set of p's subject
to Eq. (2.16). (r is a function of r)—rp because we are
considering "direct" transitions and ignoring the small
wave vector of the light. Hence our exciton has zero
total crystal momentum.

We will work within the effective mass approxima-
tion as developed for degenerate bands by Luttinger
and Kohn. "The effective Hamiltonian for the envelope
function p in the absence of strain is given by

The integral is over the unit cell of volume v-. V is the
crystal volume, (()(0) is the envelope function evaluated
at the origin, r~—r2=0.

C. S~~etry Properties

Group of kp

We wish to use the symmetry properties of the group
of kp to characterize the exciton wave function and to
parameterize the effective-interaction Hamiltonian.

We assume we are interested in a set of band states

.(r(). u;,(', ,(rp) for the electron and hole which have
been selected to give irreducible representations j&, j2
of the group of ko. The symbols n&, n2 label the partner
functions of the irreducible representations j&, j2.

Throughout this paper we use jn in the subscript
position to indicate symmetry transformation properties
under the group of ko. It is sometimes convenient to use

jn as a label without implying symmetry properties. In
this case we promote it to superscript position. We try
as much as possible to reserve the subscript position for
symmetry information pertaining to the group of ko.
We use Roster et al. 's" notation for the representations
of the point groups.

(a) Irreducible pair bands, We wish to form linear
combinations of pair bands which will themselves trans-
form irreducibly under ko. This is analogous to the cou-

pling of products of angular momentum functions with
Clebsch-Gordan coeKcients to give total angular mo-
mentum states. We can write

+t'a(rltrp) = P 'rjtat(jpap); jauj, tat(rl)
a1,ag

Xu, p
pt(rp)et)to (rt rp) (2.2-3)

We will call the U s pair bands. The indices (jp(pp) have
been starred to indicate that the matrix transforming

e;, ,~ is the complex conjugate of the matrix transform-
ing I;, , p is a unitary matrix. The analogous matrix

&.p.=E etJp(, (2.21) "R. J. Elliott, ~Phys. Rev. 108, 1384 (1957).
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without the * has been tabulated by Koster et ul."
for all point groups. Their results are immediately ap-
plicable for real basis functions, of course.

In Sec. II C 1(g) we discuss how one can make use of
Kramers time-reversal operator to adapt the Koster
tables to the complex case as well.

(b) Effective strain Humiltoniats. The strain operator
of Eq. (2.21) may also be written in an irreducibly
transforming manner:

(2.24)

s is a repetition index which is needed for some poin.
groups. The transformation between e; ' and e~ wilt

be explicitly given in the detailed applications in Seel
III. Since e&„ is real, the * in Eq. (2.24) only affects the
transformation coefhcients. Most single-group repre-
sentations are real so the * is usually not needed. Equa-
tion (2.24) looks unsymmetrical, but the ~ could equally
well have been chosen to operate on h; ' instead of
e; '. Equations (2.21) or (2.24) can be looked on as a
generalized scalar product of the quantities e and h.
A unitary transformation on h must be accompanied by
the conjugate transformation on e to maintain the
scalar product invariant.

In studying the symmetry conditions imposed on the
matrix elements between band states U of the operator
h, ,' in Eq. (2.24) we write the following linear com-
binations, using the unitary Clebsch-Gordan matrix y
as in Eq. (2.23):

7(iiat), jsai; (j'a') "(f7itat
~
hia

~ +jial)
ag, ag

=D,b,y8 Qn (2.25).
The gn is introduced for convenience. n is the dimen-
sion of j.

By explicit construction, the left-hand side of (2.25)
transforms like (j'a') if h, , is not transformed. If h;, is
transformed as well, the requirement b,,'5 ~ is necessary
and suflicient for the left-hand side of Eq. (2.25) to be
invariant under symmetry transformations of the group
of ko. Our approach is very similar to that of Pikus. "
Our results for the F point are analogous to those of
Luttinger" as generalized to the case of the strain opera-
tor by Kleiner and Roth. '~ We feel that Luttinger's ap-
proach was unsatisfactory in not emphasizing the
fundamental role played by the representations gen-
erated by U;,*XV;,.

Equation (2.25) may be considered to be the defini-
tion of the quantity D; which is a deformation potential
constant connecting the pair bands U;, and U;,. We
will generally be interested in the case where j& and j2

~~ 6. E. Pikus, Zh. Eksperim. i Teor. Fiz. 41, 1258 (1961)
I English transl. :Soviet Phys. —JETP 14, 898 (1962)j.

'6 J.M. Luttinger, Phys. Rev. 102, 1030 (1956)."%.H. Kleiner and L. M. Roth, Phys. Rev. I etters 2, 334
(1959).

refer to the same band. Using the unitary character of

y, Eq. (2.25) is easily inverted

(Uiing shia~ +jgag) ('r(j~agi ~,igag;(ja)*) DiVN

Vii~i, (is~a)';i ~DW ri (2.26)

Hirp= P (T; ') f, R,'. (2.28)

The quantities R,' which are the analogs of the D,' are
reciprocal effective mass parameters. The forrnal iden-

tity of Eqs. (2.27) and (2.28) stems from the fact that
e and T are both symmetric second-rank tensors.

The pair band deformation parmeters D,' and recipro-
cal mass parameters R,' of Eqs. (2.27) and (2.28) can be
related to the corresponding one electron parameters
through the use of Eq. (2.23), using the fact that the
strain and kinetic energy operators are given by the
difference of two one-electron operators 8(ri) —8(r2).
The minus sign refers to the hole operator. To give a
simple example, assume the conduction band transforms
like the identity. We then have

R,'= rg'bg; —r,',
D,'=d '8 —d' (2.29)

where the d's are the single-band analogs of the pair-
band D's. Similar relations may be written for less
trivial cases, but there will be different numerical
coefBcients.

With the strain and kinetic energy operators of Eqs.
(2.27) and (2.28) and the Coulomb operator of Eq.
(2.19) we are, in principal, equipped to calculate the
exciton spectrum in the effective mass approximation.
(The Coulomb operator should be multiplied by the
identity matrix. ) Calculations of this sort, involving
nonspherical kinetic energy operators, have usually
been performed by variational methods"" although

"See, for example, U. Fano and G. Racah, Irreducible Tensorial
Sets (Academic Press Inc. , Nevr York, 1959), p. 76.

~' D. Schechter, J. Phys. Chem. Solids 23, 237 (1962).

n is the dimension of j. For real representations, the
conjugations on p are superfluous. For the complex case
we can simplify the conjugations somewhat using time-

reversal symmetry as discussed in Sec. II C 1(g).
LSee Eq. (2.51).j Equation (2.26) is the point group
analog of the Wigner-Eckart" theorem for the rotation
group. Equation (2.26) may also be regarded as defining

h as an operator on band indices. In this usage we will

use the abbreviation y, . Equation (2.24) can then be
written

Hatr= P (eja ) vjaDj
e, j,a (2.27)

I - I

$1&1[ gaia [ $2+2) V IYilal, (32aai;ia s

where n is the dimension of the representation j. An

entirely analogous expression may be written for the
kinetic energy operator
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more exact methods have been used. ' We will not
attempt such calculations here.

(c) Optical matrix elements We wish to compute the
matrix elements of the electron-photon interaction en-

ergy A p where A is the vector potential and y is the
momentum operator. We write the optical interaction
in irreducible form

e
Ay=

mph,

QA, *p, . (2.30)

We want the matrix elements of this operator between
the ground state l0) and the excited state f, ' which

may be written

(olp, . lp, ')=ap", B,j.b.. (2.31)

According to Eq. (2.22), (Pjj can be written in the form

(P'= ag'pg'(0)P, Q V, (2.32)

(2.33)

"K.S. Mendelson and H. M. James, J. Phys. Chem. Solids 25,
729 (~964).

a~' is a normalization constant so that y~' is orthonor-
mal. Since Eq. (2.22) involves p(0), only the identity
symmetry p& contributes. Equations (2.31) and (2.32)
are only valid for low strain where f, ' is the same as in
the unstrained crystal. Equation (2.33) remains true for
high strain and will be useful in showing that certain
optical-matrix elements are zero. (We ignore the strain
admixture of other band multiplets U;, into U,).

We now turn to the problem of the strain dependence
of exciton energies and wave functions. The results are
very simple in the case where no band splitting of the
Uj multiplet occurs and will be described first. %'hen
band splitting occurs, the results are more complex but
have simple limiting cases in the high and low strain
limits.

(d) Xo bund splitting. The strain symmetries e&'

which are totally symmetric under the group of kp will
not give rise to band splitting. In other words, f ~ in
Eq. (2.27) is always the identity matrix. Strains of this
type will not change the exciton wave function or the
exciton binding energy relative to the band edge
(electron-hole continuum). The exciton spectrum then
shifts "as a whole" with an energy shift given by eg Dy'.
There are no optical matrix element changes (ignoring
admixture of bands outside the U, multiplet) so that
Bes/Be&' is proportional to an energy deriva. tive of the
unstrained e&, Be,/B(taco). Hydrostatic stress always has
this effect, of course. In the hydrostatic case, all mem-
bers of the star of kp respond in the same manner. Less
symmetric strains may have components e~' which are
totally symmetric under the group of a given kp but do
not have the same value for all members of the star of
kp. Nondegenerate bands only couple to strains of sym-
metry e&' so that the above simple description always

applies to the nondegenerate case. Bands which have

only the Kramers degeneracy also behave in this way.

(e) Low strain By. low strain we mean that strain

splittings are small compared to the exciton binding

energy. In this case we consider the exciton wave func-

tion tP, in the zero strain limit. We study the strain

splitting of the partner functions 0. in the degenerate
multiplet j. t' is a repetition index but the ground state
will usually be of most interest. If we ignore the matrix
elements of the strain operator connecting one multiplet
with another we can use the identical symmetry argu-

ments as before to write an effective strain Hamiltonian
for the multiplet t. Equation (2.27) becomes

&.t.= 2 (e,-')'~ j»"
e, j,a

(2.34)

We have introduced the normalization constants a so
that the envelope functions y can be taken to be
orthonormal.

(&pja l
pj'a' ) Bjj'baa' ~

Normalization of f and U then requires

(2.36)

Z lo'I'=I (2.37)

The values of a and the functional form of &p, apart
from what is determined by symmetry, must be found

by solution of the effective mass equation, using Eq.
(2.28). With the use of Eqs. (2.35) and (2.37) the con-
stants»" in Eq. (2.34) may be related to the corre-
sponding constants D,' in Eq. (2.27). We will not at-
tempt this in the general case, but will provide a number
of examples in the specific cases which we treat in Sec.
III.

Equation (2.34) is sufficient to calculate the energy
dependence of the states |p, ' to first order in the strain.
We also wish to write f; ' to first order in the strain for
the purpose of computing optical matrix elements to
that order. The results could be written in terms of per-
turbation theory, but the details may be bypassed
with the use of symmetry. We can write

vaja

+ P Vjlag, jla2;jaej\agVjma2 ~ (2.38)
gi, ax,S
ja,a2

The form of Eq. (2.38) is obtained by recognizing that
must transform like ja if both e and P are trans-

formed. If e.. . is considered fixed, then f, ' and P"

The only diGerence is that we have diferent deforma-
tion potential constants S and yj is an operator on the

Pj ' subspace rather than on the pair bands, U. We
may use the Clebsch-Gordan matrix p to write the total
exciton wave function f; ' in terms of envelope func-

tions q and pair band functions U.

ifja P +jg Q Yjiagjaas;j ,&pjalal Ungag ~ ( 3 )
aI, a2
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transform diRerently, which we indicate by use of the

superscript position.
(f) High strain I.n the limit of strain splittings large

compared to exciton-binding energies, the appropriate
procedure is first to diagonalize the strain Hamiltonian
of Eq. (2.27). Let us assume that Ujs represent the
bands which diagonalize (2.27). The elements of the
kinetic energy operator, Eq. (2.28), which couple Ujs
and U;p may be ignored in the high-strain limit and we

can say that the bands have been "strain decoupled. "
The exciton-binding energies in the decoupled bands
will depend on an appropriately averaged eRective mass
which will in general be a function of the index P. The
wave function may be written

(2.39)

where, by definition, f does not contain the envelope

symmetry pj and hence does not contribute to the
optical matrix element. The analogs of Eqs. (2.31) and
(2.32) are

(2.40)

(2.41)

Equation (2.33) for I', still holds. The only difference

from the low-strain case is that y~ and 5' now depend on
the partner index P. The occurrence of the Bjj.b sfac-.
tors, which strongly aRect the polarization properties,
are a consequence of the V;p term and are unaltered by
the strain. The exciton states in a given band will all

shift together with the same deformation potential con-
stant which is given by the appropriate combination of
D's rather than the X)'s of the low-strain case. In this
sense, the high-strain results are simpler. The strain
decoupling has reduced the problem to the case of inde-
pendent nondegenerate bands, V;p. The wave function
or optical matrix-element changes will depend inversely
on strain and will vanish in the infinite strain limit as-

suming one can still ignore admixing of other multiplets,
V,~. The high-strain limit will be harder to reach for the
wave function than for the energy, since wave functions
are always more sensitive than energies. We illustrate
the general remarks of this section in more detail in
Sec. IIIA 1(b).

(g) Time reversal and phase relations. The symmetry
implied by time reversal can be studied with the use of
Kramers operator, E."which may be defined by

E=—Cia-y, (2.42)

where C is complex conjugation and k„reverses the
spin direction in the usual representation associated
with the Pauli matrices. For special points like 1', I,
and L where kp and —kp are equivalent, the operator
E may be used directly to deduce symmetry relations.
For any point kp in the diamond lattice we may intro-
duce the operator X defined by

(2.43)

where (v~ J) is inversion followed by a translation of
~= (a/4, a/4, a/4). X leaves ko invariant, commutes
with the Hamiltonian, and possesses the property

X'= X'= (—1)", (2.44)

where n is the number of electrons in the state on which
X operates. When e is odd, X cannot be diagonalized,
since X|P=X|P implies XQ= ~X

~
Q= fw—hich is a con-

tradiction. Then ' and Xf are independent states called
Kramers doublets and energy bands in the diamond
lattice are doubly degenerate throughout the zone, a
well-known result.

The discussion that follows uses the operator X.
However, we will actually use X whenever kp and —kp
are equivalent, i.e., for j'. and L, in order to minimize
conQict with Koster's conventions.

As discussed in Sec. II C 1(b), in order to find the
symmetry relations between matrix elements of the
form (Uj. .~h, ~

U;, ,) we need to know the unitary
Clebsch-Gordan matrix (yU, »~,j, , U ~i)*. (See Eq.
2.26) Koster et al."have tabulated the y matrices with-
out the complex conjugations. We can use these tables
by noting that if the multiplet f, transforms by the
matrix D j(6t) where (R is a group element, then
Xfj transforms by the matrix (D .j(61))*.This result
follows from the fact that X and 8, commute, modulo
a Bravais lattice translation. "The lattice translation is
irrelevant because, in Eq. (2.15), the nonperiodic part
of the pair wave function involves rj.—r~ which is in-
variant under translations. "

We can then use Koster's tables to reduce the outer
products |pj. .*Xfj, , if we know the relations between
Xlp and lp.

We will limit our discussion to the two cases we will
need in the detailed examples, namely, for an even num-
ber of electrons, the case where we may take

Xgj,=fj~; n even (2.45)

and for an odd number of electrons where we may take»

(2.46)

Here a basis has been chosen such that n takes half in
tegral values from —g to g. See Koster et al. '3 for a more
general discussion.

The defining relation for Koster's y matrices is

@ja 2 Yj zaz i seL jag'j&a|Pj gal ~

~1 +9
(2.47)

If the 4, correspond to n even and Eq. (2.45) apphes
the y matrices must be real and all complex conjuga
tion relations can be ignored. (It is sometimes con
venient to use complex representations even when

"M. Lax, Group Theory Notes (to be published).
"Even for a one-electron state the lattice translation is ir-

relevant if one notes that KP; Xfp ~ is invariant under lattice
translations when f; and fp ~ have the same k vector.
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(2.45) can be satisfied but we will not discuss this non-

essential complication. )
In case (2.46) applies, we may substitute Eq. (2.46)

for A„, in (2.47) and obtain the relation

Cja g ( 1) Yji(—ai), jiai; jaxfjiai)Ijiai ~ (2 4g)
aI, eg

double group states where the spin of the nondegenerate
partic1e is ignored. The ignored spin states must 6nally
be summed over at the end of the calculation when we
compute optical-matrix elements.

(t)) Spin orbi-t interaction T. he spin-orbit interaction
may be written in the form

Since XA;, transforms according to the conjugate of
the transformation of A, „we have the relation

j(ji i)' jiai:ja ( ) Yji(—ai).jiai; ja ~ ( ~ )

8 =S) og—Sg og,

S,= LvV;Xp;],
4m'c'

(2.57)

We wish to determine the phase of the matrix ele-

ments, D, , in (2.51) and in the analogous expression for
the even electron case. These phases are essential when
two matrix elements are to be added. Taking an arbi-
trary Hermitian operator 8, we use X to obtain

&A,"16.IA*..&=«A*.*I6-xIW .,), (252)

8, =—X8;~X (2.53)

The self-adjoint character of 8x has been used. For 8
equal the unperturbed Hamiltonian or the strain
Hamiltonian 8, x=8; . For 8 equal the spatial part
of the spin-orbit Hamiltonian VVXp, 8; 3'= —8, .
For our purposes we will then assume 83'= ~8.

Using Hermiticity and Eq. (2.52) together with
(2.45) we obtain

&Ai-ilej-'IAi-i&=&Ai-ilaj-IA)-i)*; n even (254)

Using (2.26), we have

D =~a*' 8X=&8 (2.55)

For the case of n odd, the relation analogous to (2.54) is

&A'i( ai) I ~ja —
I A'i( ai))—

= (—1)" "+' *&A.-*I 6)j-IA -,&' (2 56)

Using (2.26), (2.49), and (2.51) in (2.56) we can then
show that Eq. (2.55) also holds for n odd. Hence the
"reduced" matrix elements D; as defined in Eq. (2.51)
are real for operators 8x=8 and pure imaginary for
operators 8X= —8.

It may seem irrelevant to discuss the odd electron
case since we are concerned with electron-hole pairs.
However, if the electron is nondegenerate and the hole
is degenerate (or vice-versa) only one spin will be
coupled to the orbit since we ignore spin-spin interac-
tions. The dyn~m~cal problem can be solved using

We may further operate with X on both sides of Eq.
(2.47) and use (2.46) to obtain the relation

(yj...,j. .;j.)*=(—1)"+' " "Yj,(- ), ,(- ); (25o)

We have assumed that A;, and f;„,both satisfy Eq.
(2.46) and that C, satisfies Eq. (2.45).

Equations (2.49) and (2.50 may be used to write
(2.26) in the simpler form

where 1 and 2 refer to the electron and hole as usual.
S; operates on the orbital wave function and transforms
like an axial vector. It has the time-reversal character
8x= —8 as discussed in the preceding section. o; refers
to the Pauli spin matrices. Since the main contribution
to S, comes from the atomic core where VV; and p; are
large it is a good approximation to ignore the depend-
ence of S; on the envelope function (t) and treat S; as an
operator which acts on the pair baads U and commutes
with the envelope function q just as in the case of the
strain operator. The time-reversal property 83'= —8
makes the spin-orbit interaction between the pair bands
quite diBerent from the strain and kinetic energy opera-
tors which are even under time reversal. We proceed to
write an effective Hamiltonian for B in the usual
manner. Write (2.57) in irreducibly transforming
manner

& =E (oi.j )*Si,i —Z (oi,j.)'Si,j.. (2.58)
j,a j,a

Writing the f; matrices for V*XU as in (2.27) and
(2.51), we have

Z rja(ii). j(rl.ja lie,j(ri,ja ) i
ja

(2.59)

where the X; are spin-orbit constants analogous to the
D, in (2.51) though coupling to different j because of
the diBerent time-reversal character.

When both electron and hole bands are degenerate we
must consider both terms in Eq. (2.59). The relevant
group is the single group since the wave function con-
tains an even number of electrons. Because of the spin
degrees of freedom the number of bands U'; dosely
spaced in energy will be quite large. Usually more than
one value of j will be represented so that our present
approximation of considering only a single j would be
inadequate. If one of the bands is nondegenerate, how-
ever, it has no diagonal spin-orbit coupling. The spin
degree of freedom then does not enter into the Hamil-
tonian. For the solution of the dynamical problem the
spin degree of freedom of the nondegenerate particle can
be suppressed and the eBective wave function belongs
to the double group. The neglected spin degree of free-
dom must be summed over at the end of the calcula-
tion when optical matrix elements are computed.



17S STRAIN EFFECTS ON OPTICAL CRITICAL —POI NT STRUCTURE 1379

(i) Soncnbic rotations and the Wigner Ec-hart theorera.

The tables of Roster ef, ul, "for the unitary matrices p;
are given in terms of a specific representation. It is fre-
quently convenient to transform to an alternate repre-
sentation appropriate to the symmetry of the problem.
In this connection it is useful to consider "pseudorota-
tions" which are more general than the true rotations
compatible with cubic symmetry. Our approach is a
generalization of the method of Luttinger who expressed
the y; matrices in terms of angular momentum opera-
tors."Luttinger's method was Grst applied to the strain
perturbation problem by Kleiner and Roth."

Consider Eq. (2.26) which we write more compactly

&j~a~lhi Ij~m)=(12lvlja»t. (26o)

We assume j& and j& are irreducible under both the
cubic group and the full rotation group. The method of
"pseudorotations" applies only to this case. On the
other hand

l j&a&)X l j2a2) may contain representations
which are irreducible under the rotation group but are
cubically reducible.

We apply the unitary transformation

provided we use a basis for the rotation group which is
irreducible under the cubic group. This follows because
any transformation property which holds for the cubic
group must also hold for the rotation group.

If the full rotation group applies, Eq. (2.60) is called
the Wigner-Eckart theorem" and 6,=33. when j and
j' are united by noncubic rotations. The "pseudorota-
tion" method does not assume 6,=6;, of course.

In applying the "pseudorotation" method it is con-
venient to use the tabulated values of Clebsch-Gordan
coefficients. These refer to an angular momentum basis
where raising and lowering operators have positive
signs. This does not agree with Koster's choice of basis
for the single group. In Condon and Shortley's nota-
tion" the y's would be written

Vj,j;j (j1j2rnlrn2 l jijm jrn) (2.6&)

Luttinger's use of angular momentum matrices is re-
stricted to the case j&= j2 which is less general than the
Wigner-Eckart theorem.

(Z) Star of ko

lji«)=Z r~ ~lj~a~)
ex' I (2.61)

Let g' be a minimal set of symmetry operators of the
crystal point group which generate the star of ko.

l j2a2)=Z r2 el j~2 ). g'ko= ko'. (2.66)

The r's correspond to an arbitrary pure rotation if
l j&a&), l jma&) are angular momentum eigenstates but
correspond to "pseudorotations" of the cubic harmonics.
A true noncubic rotation would, of course, take a cubic
harmonic out of its degenerate subspace.

Substituting (2.61) in (2.60) gives

&1,2l Zl 1',2')=r„.r„,*.
We may also write (2.62) in the form

(j,a, lh;. l j~,)=(1,2[~6t[ ja)~, ,

6t=~-'R- y,
(2.63)

(v)s =Z v~'"@~' .~'
3I~l

(2.64)

Note that while y is transformed, h is not. The y's are
the same for the rotation group as for the cubic group

where 8 transforms the
l ja). When

l j&a&), l j2a2) «e
double group representations, |R belongs to the single
group and hence is more convenient to work with than
E.

l jiai) X l j2as) may contain states l ja) and
l
j'u')

which are separately irreducible under the cubic group
but which are "united" by a noncubic operation. Then
R will couple j and j'.

We may think of y as an operator p; coupling the
states l j&a&), l jsa2). Then 6t effects a transformation

All crystal properties are independent of whether we
consider ko or ko'. However, the eGect of the external
forces of stress and vector potential are not independent
of this choice. In fact, the e6ect of the vector potential
A on the critical point ko is equivalent to the e8ect of
the vector potential A' on the critical point ko where

A'= (g')-'A (2.61)

III. APPLICATION OF GENERAL FORMALISM
TO SPECIFIC CASES

In this section we propose to investigate the sym-
metry properties of strain eBects for critical points in
the symmetry locations 1', 6, L, and Z for the diamond
structure. Our most detailed discussion will treat the
etfects of uniaxial stress in the L001j, l 111j,and l 1101

"E.U. Condon and G. H. Shortley, The Theory of Atomk
Spectre (Cambridge University Press, Cambridge, England, j.959),
p. 76.

with a similar relation for e' in terms of e.
The simplest way to sum over the star of ko is to keep

ko 6xed and sum over a complete set of A' and e'.
(Whether we think of stress or strain is immaterial since
the tensor connecting them is invariant under the point
group). The complete set of operators (g') ' is identical
with the set g' to within an operation of the group of ko
which makes no difference. Since e is invariant under
inversion and since the dielectric constant is bilinear in
A, kf) and —ko are equivalent. This reduces the number
of sets A' which we have to sum over.
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(3.12)

(3.U)

(3.14)ev.= (v'a)(»1 —»1)&—= nv,
.

e = evv =e„=($11+2$11)Z/3, (3.15)

(3.16)

(3.17)

e*v e** ev* $442/6= vlv,[111]Stress

x'= (x—y)/VZ,
y'= (x+y—2z)/+6,
z'= (x+y+s)/K3;

8y= gyj

(3 1) [110]Stress

e =e»= ($11+$11)Z/2; e„=$11+,
egg s«+/4 )

(3.18)[110]Stress

x"= (x-y)/V2,
y"= (x+y)/v2,

(3.19)

(3.20)

(3.21)

(3 2)
ev. ———1t,/2,z"=z.

=38~y= g'g5.

directions. Kith this limitation on the stress direction also list the components of e for a uniaxial stress of
more symmetry restrictions prevail and the results are magnitude t in the [001],[111],and [110]directions:
simpler. We study all symmetry types for which optical
transitions are allowed for the cases of large and small
spin-orbit splitting. We follow the notation of Koster
et al."as much as possible.

For the case of [001], [111],or [110] stress, the e1——(s11+2$11)Z/v3 —=g1,

principal axes of the dielectric-function tensor are
oriented parallel and perpendicular to the stress. We
introduce the following definitions of coordinates which [111]Stress

will be useful in these three cases. x, y, z always refer to
the cubic axes:

A. I' Point; kp= (0,0,0)

At the I" point, k0=0, the symmetry group is 0& in
the diamond structure. All quantities have a unique
parity, &, under inversion-translation (r

~

J).The strain
tensor has positive parity and the vector potential has
negative parity. Since the crystal ground state has sym-
metry I'&+, all allowed transitions lead to excitons of
negative parity. To simplify the notation we will sup-
press the parity designation as much as possible.

Following the procedure described in Sec. II C1, we
decompose the strain tensor into its irreducible represen-
tations under 0~ according to the following definitions:

All components not listed are zero.
Since the momentum operator transforms like I'4,

only excitons derived from pair bands U4 will have
nonzero optical matrix elements. Similarly for double
group bands, only I'4 XI"6+=I'6 +I'8 will have non-
zero optical matrix elements. (F~ is the representation
of spin -', .) Hence we will treat only these cases.

Equations (3.3) to (3.8) serve to define irreducibly
transforming components under Op, for any symmetric
second rank tensor. If we use these definitions for a~ as
well as e, the linear dielectric response in Eq. (2.2) may
be written

eva: (2e..—e —evv)/v'6

eve= (e**—evv)/V2'

(3.4)

(3.5)

e1—= (e„+e„„+e„)/v3, (3.3) hev, 1(ce)= W1((d)e1,

bev, v. (1e)= Wv(10)ev. , o =n, p,
bev, v (a&)= Wv(cv)ev„' s xy, xs, yz,

(3.22)

e5yz —~yz q

es„=—e „
(3 6)

(3.7)

Wl(1v) W11(1e)+2W12(M)

Wv(cv) = W11(10)—W11(ce),

Ws(~) =W«(~) .
(3.23)

e5,„=—e,„. (3.8)

Similarly, the vector potential yields the representa-
tion

A4 —=A; m=x, y, z. (3.9)

The strain tensor e,„ is related to the stress tensor g,v

by the complicance constants sj.~, s~2, s44 in a cubic
crystal. The relations are

e„=$11+..+$11(gvv+g..), (3.10)

We regard t'V~, S'3, and 8'~ as the fundamental response
functions which describe the response of the cubic
medium to strains of symmetry e&, e3, and e5. The Ws
can be determined from the polarization dependence of
the dielectric function according to

[001]Stress

91 293
bev(Gl) =—W1(c,e)+ Wv(ce); parallel,

v3
evv= $4+vv/2. (3.11) (3.24)

The other relations follow by cyclic permutation of
x, y, z, For convenience and for the sake of definition we
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L111)Stress

51
be. ... (&u) =—W1(4o)+23t3W3(a&); parallel,

v3

91
b33;;——33,u u

———W1(co) —1t3W3(44) i
v3

L110) Stress

Ql 1
«3,."."=—W1(~)+ n3W3(~) 3n3W—3(~) .

v3 2+6

91 1
b.„-,-=—W1( )+ ~ W.( )

&3 2+6

(3.25)

r
Q

v3
y4 =—0

v2

0 0'

0 1

.0 —1 0

0 0 —1

0

0.

1 0'0
v3 —1
v2

0 0

0 0 0-

v3
f4„=—0 0

v2 .1 0

(3.30)

+-331t3W3(4d); parallel, (3.26)

Ql n3
b33,„=—W1(44) — W3(44) .

43

0 0 0
v3

y5, =—0 0 1its

.0 1 0-

The three quantities W1, 8'3, and W5 are conveniently
determined from L001) and L111) stresses. The L110)
results may be used as a check. For nondegenerate
bands the energy shift contributions to 8"3 and S'5 are
expected to be zero for critical points in the L111)and
(100) directions respectively. For a nondegenerate
(0,0,0) critical point both W3 and W3 have zero energy-
shift contributions. Kramers degenerate bands are
electively nondegenerate. Equations (3.22) are based
entirely on symmetry considerations and the assump-
tion of a linear relationship between 8&2 and e. Com-
pletely analogous relations can be written involving the
stress rather than the strain, namely,

0 0 1
V3

f5„=—0 0 0
W2

(3.31)

-1 0 Oi

Q 1 0
v3

y5„=—1 0 0
v2

-0 0 0.

b43,1,=&,X,,
In terms of these matrices the eEective strain and

kinetic-energy Hamiltonians of Eqs. (2.27) and (2.28)3.27
may be written

The symmetry character of the 'N's is the same as the
8"s. The %"s were introduced and discussed in the
introduction.

HII43 D1 1 r1+ 3( 3a+3a+ 3e rue)

+D3(e,uyu, u+ e„f3„+eu,yuu, ), (3.32)

y1=I,
0 0

(3.28)

1
0 —1 0

v2
0 0 2.

0 0
(3.29)

v3
y3p

———0 —1 0
v2 .0 0 0.

(1) U4 Bands

According to Koster's tables, " the outer product
U4XU4 generates the representations F1+, I"3+, I'4+,
and F5+. In an x, y, s basis the 3&(3 p operators are
(v=~3m)

JfKE +1T1r1++3(2 3a'qua+ Tutrr 3e)

+ 3(T*u73*u+ 2'**73*+ 2'u*f'3u*) ~ (3 33)

The D's are pair band deformation potential con-
stants and the E's are reciprocal reduced masses. T, is
an envelope kinetic-energy operator whose definition is
identical to that of e, as given in Eqs. (3.3) to (3.8) with
e1 replaced by (p„1p„)/2 where the pu are momentum
operators acting on the envelope function y.

(a) I.ow strain. For zero strain the eigenfunctions of
the kinetic-energy Hamiltonian of (3.33) plus the
Coulomb Hamiltonian of Eq. (2.19) may be written as
1p4, ', 1p4u', 1','. Other symmetries are of no interest to us
since they have vanishing optical-matrix elements. Us-
ing the Clebsch-Gordan matrix y as in (2.35),we may
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write f in the form

V3
A.'= oz'v x'~4.+o~'I kv—a.'~4.+ v

—ip'~4*
~

spection with the results

[001]Stress

2$""'
k4. ', «.'=Deer+ +E',

V2
(3.39)

+«' V—4g'&4. —V4. 'U4,
~ $3'n3

f4 'f4 ' « '= « '= Dalai —+E'; (3.40)

(i i
+s,'~ —q, 'U .+—p,.„'U,„). (3.34)

42

The p's are orthonormal and the a's are real and satisfy

[111]Stress

$4s' = ($4x +$4v +if4s )l~~

2' X)5'gg
«, '=Dgqi+ +E', (3.41)

v2

t labels a complete spectrum of states with symmetry
F4. The functional form of the q's, apart from sym-
metry, must be determined by explicit solution of the
Schrodinger equation.

On the basis of the same symmetry considerations
that led to Eq. (3.32) we may write an effective-strain
Hamiltonian operating on the multiplet i/4' in the form

str +1sir+ +I ( 3a"rae+ I~ss)
+ +& (&~v'r»ii+&~~V»~+eu~'Ynul) ~ (3.36)

The relation between the new deformation potential
constants 5) and the constants D, in (332) may be
calculated using (3.34) to be

V3'X)g'g5

« '= « '=Dyer +E—' (3.42)V

0'4i '—= (0'4 '+0'4i ' 2if'4')IV—6'

[110]Stress

$3'ge
$4.", 84, '=Dyer +E'—,

v2

4""—= (44.'—W4.')/~;

(3.43)

i SI'g3 3 V3$5'q5« -' ——Dying+ — ——— +E', (3.44)
2 42 2 V2

sg~= Di

Qs =DI[(g15)2+ (shiit)2 ~1(o4t)2 ~& («i)2] (3 37)
&s'= Ds[(oi')' —~g(os')' —k(«')'+k(~s')'].

To calculate S~' we also need the expression analogous
to (3.34) for f», '. In deriving (3.37) we have used the
orthonormality of the q

's and the fact that II,&, com-
mutes with p. Note the interesting fact that, due to Eq.
(3.35) we have the inequalities

(3.38)

For the identity representation in any group we always
have S&'=D& since all exciton states shift "rigidly"
with the band. The differences between X),' and D; are
associated with changes in the exciton binding energy
relative to the band edge (electron-hole continuum
threshold) due to a splitting of the degenerate bands.

%e now wish to diagonalize the strain Hamiltonian
of Eq. (3.36) for stresses in the [001],[110],and [111]
directions. Using Eqs. (3.12) through (3.21) and (3.29)
through (3.31), Eq. (3.36) can be diagonalized by in-

[001]Stress

fix —P t
~ P i3

O'"= A. ' n~A. ", —

0"=44*'+2naA*";

(3.46)

[111]Stress

= '!4i —'gs4'4~

4""'=4'4v' —VA'4v "
Pta' f4, t+ 2~ f i5.

(3.47)

1 sl'qi 3 v3sg'gg
@4 =Dxnx+ + -+&'-. (3.45)

2 v2 2 V2

In these formulas E' is the energy of the state for zero
strain.

Using (2.38) and (3.12) through (3.21) we can write
the wave functions to 6rst order in the strain as
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L110] Stress

ns
4"* "=44*''-+M4"" —knd44* ""

2

not be resolved. One can then write a much simpler ex-
pression for ~2 which, of course, contains much less in-

formation than if the lines are resolved. The simple
results are

lie
4"""=(F40-'+M40-"+ 3ndf43-" 3

2

4"*=debt '—n34'4 "
(3.48)

I 001] Stress

2/3
bdd. ..g ———W, '+ W,' (parallel),

v3' +6
(3.53)

We ignore the admixture of wave functions whose

optical matrix elements are zero. The implicit de6ni-
tion of the first-order wave functions )P4,34 and g)b4,

td

agree with Eq. (2.38) except for a constant factor in-

troduced for convenience. The quantities gP4, ", (P4, ",
etc., are related to the quantities )P4 "as indicated by
Eqs. (3.41) through (3.45). 30', z", etc., also define the
principle axes of the dielectric tensor as described in

Eqs. (2.12) and (2.13). Using (3.46) through (3.48) the
quantities Fgt~ in Eq (2.1.3) may be written

L001] Stress

be2 '= A&2 '=—W1'— Wa'
v3 +6

L111]Stress

$1
803...'=—Wt'+ 2n,W6', (parallel),

v3

91
862, s'x' = 862,y'y' W1 $5W5 p

v3

(3.54)

P 33—fg0+ 2n f«

P t3 P gg ft0 n ft3

L111]Stress

P, tt' ft0+2n ft6

F gx' p, ty' ft0 n ftd ~

I 110]Stress

P „gg" f30+ ft3 $n ftd
2

P „ttg" ft0+ fgd+Xn ftd
2

(3.49)

(3.50)

(3.51)

$210] Stress

i g3
|)03,.- "'———Wtt+ — Wd' —sndW ' (parallel),

VS 2 +6
i g3

803„„"g=, Wdt+ — Wd-t+s3ndWdt g

VS 2+6
'g1

A&2, '=—W1'— W3'
v3 Q6

(dL)
W3' V3cf'0Ddl-—

dEt (gtg dt 0~)

(dLI
W =V'60 f-~

I

kdPg)(ggg 34 0 ),

(3.55)

p tt fg0 n ft3 ~

f"—= (oi p. IA '&'

f"=—2(0 I p, I 4'4,")(p„"
I p. I o&,

fgd=—2&ol p. lp„«&&tbd. tdl p. lo&.

(3.52)

+fttL(Et P—A(0), (3.56)—

dL
Wdt=C ft0Sdg

(S —& —AC36)

+f"L(F'—8'—A(o)

The functions glg are assumed real, as is permitted by
time reversal. The Ii~' not listed, such as F~' are all
zero.

The listing of the F's in (3.49) through (3.52) together
with the h's in (3.39) through (3.45) constitutes a com-
plete description of the strain eBects on optical proper-
ties in the low-strain regime for U4 bands at the F
point when inserted in the expression (2.12) for the
dielectric constant.

In case the strain splittings are small compared to
the lifetime broade»~g the strain split components will

4n'e2
C—:

3ns02co2 V

L is a Lorentzian function as in Eq. (2.9). Equations
(3.53) through (3.56) represent the changes be&' in the
contribution to the dielectric constant from the degen-
erate multiplet, gag. The principle axes are parallel or
perpendicular to the stress direction.

Equations (3.53) through (3.55) are entirely analo-
gous to Eqs. (3.24) through (3.26). The derivation of
these latter equations was much simpler than the former



i384 EVAN 0.

R3T3 V3R5T,„
HEE=RgTg — —,U4"

V2 v2
(3.57)

R,T3. ERST.„
HEF ——RgTj.— +;U4„"

v2 42
(3.58)

2
HIE= RgTg+ —R3T3~ j U4g

v2
(3.59)

where the definition of U4. .. U4„, U4, parallels that in
Eqs. (3.44) and (3.45).

The wave functions which contain a q i component
are of the form

Ptwa (~ tm+ /m+o tm+ —tm+/t /m+ tm) U (3 60)

where m= x", y"s. There is a spectrum of states |P' for
each band which depend on the band index, m, by
virtue of the kinetic energy operator in Eqs. (3.57) to
(3.59). There are no symmetry relations between the
envelope functions in diEerent bands m. Similarly the
exciton binding t;nergies will be unrelated. The strain

but the assumption of analyticity was not justified in
the case of degenerate bands. Also, the detailed descrip-
tion in (3.56) was not obtainable by the simpler
approach

Equations (3.56) show that for the case of degenerate
bands at F there are no special relations between 5'~,
8'3, and 8'5 so that these quantities cannot serve as a
"signature" of a degenerate F critical point. For more
general directions of stress than we have considered,
the diagonalization of Eq. (3.36) leads to energy shifts
and hence 8"s which are nonanalytic in the stress com-
ponents. The dependence on stress direction would then
be different from the predictions of Eqs. (3.22) which
are analytic. This would be a possible means of dis-
tinguishing the degenerate F point from a less sym-
metric nondegenerate critical point.

Of course, if the energy shifts in Eqs. (3.39) through
(3.45) are resolved they can be used to characterize the
degenerate F point. For instance, the case of a Z critical
point, treated in Sec. III D, shows that the energy shifts
for a L111]stress di6'er from the shifts in the degenerate
F point case. Both cases lead to finite values of 8"~, 5'3,
and 8"5.

(b) High str/tin In the ca. se of high strain we diagonal-
ize H, t,, of Eq. (3.32) and neglect the matrix elements
of HIE, the kinetic energy operator, between strain
split bands. The diagonal kinetic energy operator will
lead to diAerent exciton binding energies for diferent
bands. We will write out explicitly the case of a (110)
stress as an example. The diagonal components of the
kinetic-energy operator HKE in (3.33) are

energy can then be written

$110]Stress

D3g38"=D,g,— +E' '
v2

(3.61)

1 D3g3 3 VM5g5
h' *"=D,g,+— —— +F' *", (3.62)

2 VZ 2 v2

i D3g3 3 V3D5g;
8' ""=Dgr/g+ +——— +E' &" . (3.63)

2 W2 2 v2

Comparison with the low-strain results of (3.43) through
(3.45) shows that the constants S,' have been replaced
by D; while the exciton binding energies E have been
replaced by E' which now depend on the band label
ns. In this limit all exciton states in a given band shift
together so that the sum over f with fixed m may be
regarded as a single line if the individual states t are not
resolved.

The momentum matrix element is

&01 p- 14'")= o~'"~~'"(0)(o
I p- I U4-)b-. ,

(3.64)

Because of the factor aq' yq' (0), the matrix elements
for difI'erent bands are no longer symmetry related. The
quantities (0~ p„~ U4„) are related, of course, being in-
dependent of m. We may write

(3.65)

Equation (3.65) shows that the most striking symmetry
property, that due to 8, remains but the (P4™depend
on m. These properties are generally true of the high
strain limit for all symmetry types. The symmetry of
P's is lost but that of the U's remains because we make
the effective mass approximation. The /P symmetry is
lost for strain splittings of the order of the exciton bind-
ing while the validity of the effective mass approxima-
tion requires the strain splittings to be small compared
to the energy interval to the nearest band U not in the
degenerate multiplet under consideration. We mean, of
course, the "vertical" energy interval at the same value
of kp.

(c) Spin orbit split-ting The spin. -orbit interaction is
given in Eq. (2.57). We consider the case where only one
of the two Bloch bands is degenerate so that we can
ignore the spin coordinate of the nondegenerate particle
in solving the dynamical problem. We take the degen-
erate band to be that of the electron. This means we
must form Us = U4 XF6+. If we considered the hole
we would form Us = U4 X(1'~)* and we would use
(2.46) to obtain the appropriately transforming com-
binations, namely, (f&/~, »2)* P&/2, &/2 and (iP&/2, g/2)*

lP j/g, $/2 The axial vector S transforms like I 4+,
consequently, in an x, y, z basis, the spin-orbit energy
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may be written

zaV2
+so (Y44o4+y42os+j4zos) y

3A
(3.66)

where the y4 operators are defined in Eq. (3.30). The
i is chosen to make 6 real and the numerical factor is
introduced so that 6 will be the energy splitting of the
Us and V6 multiplets which are generated by U4

XF6+. I'6+ is the representation of spin —,
' at 4= 0. The

sign is such that the Ua energy is greater than that of
the V6 multiplet for 3, positive.

The spin-orbit splitting is diagonalized by transform-
ing the bands U4, Xspin to the

~
Jjjjg) representation.

Koster's F8 representation corresponds to J= ~ while
F6 corresponds to J=-', . We take these up separately.

(2) U'2 Bands

Koster's choice of phases is as follows (see Table 83,
p. 92 in Ref. 13):

Us, 2js= (—iU4 +U4y) f/'/2 ~

Us, l/2 ( iU4 +U4s) f/46+2(4's) U.t,
(3.67)

Us. 1js= (2U4.+U4.)1'/v'6+i(V'2) U.j,
Us, —2 j2= (2U44+ U4s) J,/V2 .

&

'rja(/inly j2n2)= ( 1) ~Vjlal, js(—a2); ja &

(3.70)jn= 3n, 3P, 5xy, 5xz, Syz,

'vaja( jlnlj J2n2) ( 1) 27jlal, j2(—a2); ja y

(3.71)
jo.= 1.

We have modihed our usual convention here slightly in
order that Eqs. (3.32) and (3.33) should be valid for
either U4 or U8 bands with the same values of D; and
Rj. This can be verified with the use of Eqs. (3.32) and
(3.67).

It is noteworthy that the second I'5 representation
which Koster calls 224 does not occur in (3.68) and it may
be questioned whether the transition from D to S inter-
action matrices as in (3.32) to (3.36) should include the
extra representation in the U8 case. The answer is
"no" if we want the interaction between fs and itself
but is "yes" if we write a phenomenological interaction
between two different Ps multiplets. This result is a
consequence of time reversal as embodied in (2.55).
Since 8~= 8 for the strain operator, we have that the
I)'s must be real. Calling the (os representation $4. and
adopting (3.70) we have

i 0 0,)
V2 a, 0)

The choice of phases in (3.67) is such that Eq. (2.46)
holds with E substituted for X. We will use E rather
than X for time reversal at I' to agree with Koster
et al."

Using Koster's tables together with Eq. (2.51) it is
easily seen that the e6ective Hamiltonian y matrices are

1 (.o„-VS.,)
Y5'zz

2y24rSo, io„)
'

2 og ZV3os)

2@2 —iVSo„o,)

(3.72)

yg —I, y3 ——

1 0 —o,)
VZ —. 0)

0 1 tj 0 id~

0 o„v2( i jj 0 )—

(3.68)

Evidently the p multiplied by a real X)5 are not Hermi-
tian and hence cannot occur for strain interactions be-
tween states of the same 1) s multiplet.

In diagonalizing the strain Hamiltonians for strains
in the L110j and (111$directions it is helpful to use a
set of basis functions which have been "pseudorotated"
from the cubic axes to the stress axes of Eqs. (3.1) and
(3.2). The "pseudorotation" method was discussed in
Sec.II C 2. In using Clebsch-Gordan coefficients we also
want to represent the appropriate y operators in an
angular momentum basis. It is convenient to use poly-
nomials in x, y, z to indicate transformation properties.
We then have

Oy
(3.69)

0

The y's are 4X4 matrices expressed in terms of Pauli
matrices in the conventional representation.

The precise de6nition of f in terms of Koster's unitary
p s ls

vs, +2=—2(x~iy)'2

f
(2zs —xs—ys)

6|
ys, gs =— (xaiy)',2'

K3
ys, y2—=—z(x&iy)2.

2

(3.73)
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We can relate these operators to the earlier ones by the Gordan coefBcients we can write
equations

[001]Stress

+3a +2,0 y

i
'Y*v . ('Y2.2 72,-2) s

zoic

$
Ve', vV ('Y 82+'Y ,8-2) ~

(3.74)

$3'n3
tt'

8, 8/2 j @8,8/2 D12/I +E

$ 81 /2j hs, l/2 Dlr/l+ +E i

[110]Stress

(3.77)

Equations (3.74) can be taken to determine the scale
factor of the operators defined in Eq. (3.73). Using
(3.73) the transformations to the stress coordinates can
be written

[110]Stress coordinates

+3a P2",0 g

fs.+', &8,+'=D'2/i+E/2+E',

ip
' b '= D12/1 Er)+E—',

$3@3 3
j f5 c05

2@2 2 v2

—(r 2+v 2) 1/2 (3.7s)

i
Yes (rs" 2+ Ys" -2) t

ve ..v= —(vs-, s—vs-.-s) '

[111]Stress coordinates

Psy+P~s+Pyc —P2', 0 p

v3i
8 /r V6+sr ' 6+vs'Y ' 6VI (VS~ .8+'YS',—8) ~

(3.75)

(3.76)

4'8,+ a/I/8, 8/2" +PA, 1/2"—
4'8,— P tt'88/2" , a1PS1/2",—

(En+re)'" (Eo—r,)'"
a= ', P=--

(2En) 1/2 (2E22)»2

[111]Stress

&Se'lte
tt'8, 8/2' j h , 88' /2Dlgl +E

ax)~'gs
A, l/ is@ 182' /Dl'gl+ +E ~

(3.79)

(3.so)

The notation 2', 2" signifies that the axis system is
given by Eqs. (3.1) and (3.2), respectively.

Lme struze. For zero strain the interesting eigen-
functions of the kinetic-energy Hamiltonian plus the
Coulomb Ha~~&tonian may be written in terms of func-
tions lps ', a=), $, —$, —

II with t a repetition index.
Only these representations have allowed optical-matrix
elements because of the 821(0) factor in Eq. (2.32).
Expressions analogous to (3.34) could be written out
using Koster's tables with 1P= 82X U. The expressions
are lengthy and will not be given. As previously dis-
cussed, an effective Hamiltonian operating on the 1P8'

subspace can be written on the basis of symmetry in a
form identical to Eq. (3.32) with y given by (3.68) ex-
except that the D's are replaced by S"s. As always,
Sl'=Dl. Expressions analogous to (3.37) relating the
S"s and D's could be written out but we have not
computed them.

We now wish to diagonalize the strain Hamiltonian
for stresses in the [001], [110],and [111]directions.
Using Eqs. (3.12) through (3.21) and (3.74) through
(3.76) together with Condon and Shortley's Clebsch-

The wave functions for the states which are Kramers
degenerate with the states given above are obtained by
applying Kramers operator, E. Note the nonanalytic
nature of the strain dependence in the [110]case. E'
is the exciton binding energy for zero strain. The nota-
tion 8, ss' and 8, $", etc., means that we use the axis
system oriented along [110]and [111]as in Eqs. (3.1)
and (3.2). Results similar to these were first obtained by
Kleiner and Roth. 2~

We now consider the evaluation of optical-matrix
elements to first order in the strain. We must first in-
clude the spin degree of freedom we have been neglect-
ing. We do this by forming the products lps '(p) v and
fs '(1,')* where t' and $' are spin functions of the spin
degree of freedom of the hole which we have been
neglecting and which is assumed to have no effect on
the dynamics of the exciton wave function. The product
I'8-X(I'~) contains I'6 and Koster's Table 83 can
be used to relate all the optical matrix elements of the
form (O~A P~fs'X(spin)* ) for a given multiplet t

The strain will mix other wave-function symmetries
into the unperturbed symmetry fs' but we are inter-
ested only in admixtures transforming like Fs since all
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other symmetries are optically forbidden because of
the t/21(0) factor.

With the use of perturbation theory we write

Dl, Rl are the same constants as in Eqs. (3.32) and
(3.33) and I is the two-dimensional identity matrix.
The allowed wave functions then have the simple form

a'=a '+2&Ac'Iff:, Ie &e.eV(p E-')

The matrix elements &A/t'IH, t, lA ') can be written
down using symmetry in identical form to (3.36) using

(3.68). The coeflicients should be written 5)/". When
t'Wt the non-Hermitian y6. of (3.72) may also occur.
We can write

(t'
I
fftt I t) = n6."(e,vy6, 0+e„y6 „+ev,y6 „,) (3.82)

with»" real. With the help of (3.76) it is easily
shown that the j.'~. representation does not contribute
to the 6rst-order matrix element for stresses in the L111]
direction. However, it does contribute for stress in the
L110] direction. It is now straightforward to write
down the optical matrix elements to erst order in the
strain

tt't0+1 /2 eel US,yl/2 ~

The optical-matrix elements can be written

(—iA,+A„)
«IA PIA../*l')=-

iA,
(oIA PIA, S/2'I'&=+

v2

iA,
&0IA PIA, 1/2'l*&=

v2

(+iA,+A „)
«IA PIA, -S/2'T'&=

v2

(3.87)

(3.88)

These relations lead to the simple isotropic dielectric
tensor

L001] Stress

3f" 3tt3
P t3/2 P t3l2 jt3 ~ P t3/2 —0V J

4 2

(3.89)Pt Pt Pt ft0

ll3
P tl/2 P tl/2 —1.jt0+ jt3

V 4J J2'
P tl/2 —ft0+2~ ft3

The expressions for the Kramers
(-'„—q) and (-', , —sl) are the same.

L111]Stress

3 to

P t3/2 —P, t3/2 — $ ft6 ~ P, t3/2 0
4 +atr» ' (eSarSa+eStrrStl)

+»"'"(e.vv.v+e-i-+ev. vv ) (3 90)
gQP, tl/2 P, tl/2 —3 /'tOM ft5
2

P tl/2 —ft0+2~ ft6

(3.84)

Equation (3.90) is the analog of (3.32). The matrix
elements of H, t,, are most easily found using Eqs.
(3.74) through (3.76) and Condon and Shortley's
Clebsch-Gordan coeKcients. Treating B,t„by pertur-
bation theory we then have

The
I 110]stress results are complicated and will not

be given.

(3) US 8/333dS

Koster's phases for the Ue representation are L001] Stress

t//0, 1/2+2/St//0, 1/2 3

I 111]Strain

A, l/2'+ 2/6A. 1/2'

L110]Strain

(3.91)1
US 1/2= (( i U,+—Uv—)$ i U, t), —

(3.85)
1

US1/2= f (,—i U —U—v)t'+i—U.l ) . (3.92)

The strain does not change the wave function if we
ignore interaction with the Us bands. This is only valid

(3.83) if the spin-orbit splitting is very large.
For small or intermediate spin-orbit splitting, the

deviations from isotropy will be significant; hence we

enerate airs will calculate these deviations by considering the strain
admixture of wave functions from the Us band. The
outer product Fe *Xj. 8 generates F3+, F4+, F5+. The
corresponding nonsquare operators can be written in
terms of operators which transform like the strain com-
ponents, namely,

These levels are Kramers degenerate, hence the eBective
strain and kinetic-energy Hamiltonians are extremely
simple.

6 I/2"8 '" =A. l/2- —MS,S/2-' —~SA.-S/2-'. (3.93)
2

'
2

&It,,= DzexI,

HKP= ElTgI.
(3 86) The primes and double primes refer to the coordinates

in Eqs. (3.1) and (3.2).
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$001] Strain

P t —P t —ft0 ~ ft3

P t —ft0+2~ ft3 ~

(3.94)

[111]Strain

We may now form the outer product of the above
wave functions with the suppressed spin coordinate
and use Koster's tables (or the Wigner-Eckart theorem)
to calculate the following contributions to the dielectric
tensor:

Ag=—A„
A5 —=A,
Asv=Av

(3.104)

(3.105)

(3.106)

Since we are interested only in excitons which couple
strongly to light, we will only consider pair bands U
with symmetry U& and U5.

(I) UB Bands

The vector potential may also be decomposed into
irreducibly transforming components

P, t —P, t —ft0 tt ft5

P, t —ft0+2~ ft5 ~

[110]Strain

'93P, t —ft0+ ftB 3~ ft5
2

(3.95) This case is very simple. The exciton energy can be
written

lgt —Dtte31+DBBe 3+Et (3.107)

where E' is the exciton binding energy in the absence of
strain as determined from the efI'ective mass Hamil-
tonian with the kinetic-energy operator

HKE=R], Tg +R]. Tg (3.108)

n3
p „t—ft0+ ftB+ 331 ft5

2
(3.96)

P t —ft0 ~ ft3

B. 4 Direction; A0 ——(0,0, i'3)

The group of 6 is C4, .Under this group the irreducible
components of the strain tensor become

eB —= (e +e»+e )/%=crt

eB'—= (2e„—e„—e»)/g6= eB,

eB
—= (e„—e»)/v2= eBe,

(3.97)

(3.98)

(3.99)

The admixture of I'8 wave function has lowered the
symmetry from the simple isotropic result obtaining
when wave function admixture was ignored. In the
limit of unresolved lines, the admixture of I'8 wave func-
tion yields 6nite values for the constants 8"3 and 8'5
in Eqs. (3.22) to (3.26). If the spin-orbit splitting is
large compared to the lifetime broadening energy these
terms should be small compared to IVY.

The "bare" band-edge deformation potentials D&' and
D&3 are not altered by the exciton wave function since
the exciton binding relative to the band edge is un-
affected by the energy shift of the band as a whole. In
this case, ac strain produces a very simple energy deriva-
tive spectrum of the unstrained dielectric function. The
optical matrix element is

(OiA Pig ')=At(P '. (3.109)

The matrix element does depend on the exciton state
through the envelope part of the wave function, e it(0),
but is independent of strain.

(Z) UB Bands

In determining the effective-strain Hamiltonian, we
erst inquire what representations are generated by
U5*XU5. According to Koster et al," they are Fi, I'2,

F3, and j. 4. We have used a polar vector representation
in (3.101), (3.102) where Koster has an axial vector.
Under C4, these transform differently. However, the
tables where F~ appears twice in F;XF;=F|,will still be
the same. We correct a misprint in the table

e4=—e,„,
es,—=e„,
e5v=e v.

(3.100)

(3.101)

(3.102)

The numerical subscript is the representation under
C4, in Koster's notation. For the identity representa-
tion a superscript is needed as a repetition index. We
use the corresponding representation of e in the full
cubic group (05) as a repetition index in this case; e.g.

U3Vsg 8'g„
U3V5„—S'5v,

(3.110)

where means "transforms as."
With the use of Koster's tables the strain and kinetic-

energy Hamiltonians are easily written down as

e3'(C4.)
—= eB (05). (3.103)

II.t,=DB'et'I+DB'et'I+DBeByB+D4e4y4, (3.111)

IIKE= RB'TB'I+RB'TB'I+RBTBf3+RBT4$4, (3.112)

(3.113)
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Although $3 and y4 can be expressed in terms of the
Pauli matrices 0, and 0, they do not transform like an
axial vector. Equation (3.113) refers to the basis set
C'... U5v.

We can use the f matrices to construct irreducibly
transforming exciton wave functions in the absence of
strain, namely,

$53 = a1 v'1 U5x+aR tt'2 U5v

+a3t ttt3t U5 +a4t ttt5t U53, (3.114)

$5tt =al %1 U5tt aR vtR U5r,

—~3 ~3 Usv++4 &4 Us~ ~

couples to the U~ bands. We can then write

Hap= Xa, (3.121)

where fT, operates on spins and the explicit matrix
operates on U5„U5„. The i is introduced so that X is
real in keeping with Eq. (2.55) since S+=—S. The
spin-orbit matrix is easily diagonalized by the band
functions

(U,+iU „)J, (U„—iU „)t
Eso= X1

v2 v2

Q a 2=1. (3.115)

The a's are constants satisfying the normalization.
(U5. RU5,)l—(U5*+iU5.)f

ESQ — X j
v2 v2

(3.122)

Since the 2t.'; in (3.112) are real as shown in Sec.
II C 1(g), the a's and tt2's can be taken to be real.

We can write down an effective strain Hamiltonian
for the multiplet tlt5, t corresponding to (3.111)with the
D's everywhere replaced by S's. Using Eq. (3.114) the
relation between the two sets of D's is given by Hso= X (3.123)

The double degeneracy is of Kramers type.
We can transform to the representation given by

(3.122) where the spin-orbit energy is diagonal. The
transformed Hamiltonians are

+11 Dll

X)3'= Dg',

L53t {(alt)2 (a2t)2+(a3t)3 (a t)2}DR

&5'= {(a1')' —(aR')' —(a3')'+(a4t)2} D4.

0 1~
(3 116) H„,=D1'e1'I+D, 'e1'I+D3e3

0)

0 —iDte4, —(3.124)
0

Note that, by Eq. (3.115) we have the inequalities

We may write the wave functions to erst order in the
strain in the form

0 1
IIKF=Rg'Tg'I+Rg'Tg'I+R3T3

i 0tPt5z —$ t+e Q t3+e P t4

O'""=43'—eRA "+e445
" (3.117) (0 —i—2t'4T4I . (3.125)

0In the left-hand side of these equations the symmetry
label is put in the superscript position to indicate that
the symmetry designation is correct only if we transform
e as well as tp. From these equations the optical matrix
elements are easily calculated using the symmetry
relations (U5 RU5tt)$ (U5 +RU5tt) t

v2 V2&oIP5 105')=«IPR. IA.')= ~P5t (3»g)

These two by two matrices refer to a basis consisting of
the functions

Spin orbit splitting We w-ri.te the spin-orbit Hamil-
tonian in the form (ignoring the spin of the hole)

II„=S.e, (3.119)

S5,=S„,
S5~= —S„ (3.120)

S2——S,.
According to Koster's tables, only the S~ component

where the e are the Pauli spin matrices and S is an
operator transforming like an axial vector which oper-
ates on the orbital wave functions. We can write S in
irreducibly transforming form

The basis set

(U,.+iU,„)J(U,.—i, U5„)$

v2 V2

is uncoupled to the spin-up basis set and possesses a
Hamiltonian which is the complex conjugate of B.t,,
and HKE. The states in the spin-down set are Kramers
degenerate with states in the spin-up set. We will only
discuss the spin-up states explicitly.

Assuming that the spin-orbit splitting is large com-
pared to the exciton binding energy we neglect the oB-
diagonal matrix elements in (3.125) and obtain the
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A, '
A»'
A, '
(e1')'

(eI')'

ea'

e4'

e5*
r

est,
'

(O,o,ko)

A,
A„
As
(e1')

e4
el
e5&

(O,k0,0}

As
A,
A„
(e1')

vS—)el ——ee
2

VS—e1 —$es
2

(k„O,O)

Av
A,
Ag
(e1')

vS—geI +—ee
2

&s ge
2

efiy

el
ea

optically allowed eigenfunctions

(Us, i Us—„)f
fs = Ps

(Us.+iUss)f
t ~1t

(3.126)

The envelope functions and exciton binding energies of
states fs', fr' are identical because the kinetic energy
operator, Eq. (3.125) is the same for both bands when
off-diagonal terms are neglected. To first order in strain
the energy may be written

@s'=& +E'+De'es'+ Deserts,
(3.127)Ss'= X+E'+ D, 'e—g'+ D,seg.

The subscripts 6 and 7 are Koster's notation for the
double group of C4..

In the large spin-orbit splitting limit given by (3.126)
and (3.127) the exciton states behave just like non-
degenerate states with the energy spectrum shifting "as
a whole" under strain. The oG-diagonal strain terms
connecting Ps' and Pr' give an energy shift which is
second order in the strain and will be neglected. How-
ever, the wave function is changed by an amount linear
in the strain which we wish to consider even though the
eGect vanishes in the limit ) -+ ~. In practice, this
limit is seldom well approximated.

Treating (3.124) by erst-order perturbation theory
we may write the wave function to terms linear in the
strain as

(esDs iesD4)—
1i,ls —f I+/ t

2X

(—ed)s —ie~s)
ii

t7 —f t+f I

2A,

(3.128)

The very simple form of (3.128), wherePs' is only mixed
with its spin-orbit split "twin" fs', results from rpq' being

TmLE I. EGective irreducible components of the stress tensor
and vector potential for points in the star of Q=(0,0,ko). The
ea'ective components are primed and are given in terms of the
true components for (0,0,k0).

(3) Star of ks= (0.0.k)

The star of ks consists of (k,0,0), (O,k,0) and (0,0,k)
together with their negatives mhich we need. not con-
sider since hp and —Irp have identical strain splittings
and squared optical matrix elements. We use the device
discussed in Sec. II C 2 and sum over the star of kp by
th&»ing of hp as fixed while A and e vary. We present
the apparent components of A and e in Table I.The ap-
parent components are primed, the actual components
are unprimed. The two sets coincide for ks= (0,0,k).

(a) U& ba~s The sim. plest case to treat is the non-
degenerate case first discussed in Sec. III B 1.With the
help of Table I, Eqs. (3.12) to (3.21) and (3.97) to
(3.102) we can use (3.107) and (3.109) to compute the
energy shifts and matrix elements of the exciton states
summed over the star of kp. The results are presented in
Table II. States degenerate in energy are not listed
separately. Their dielectric contributions have simply
been added together in the table. Dielectric tensor com-
ponents not listed are zero.

There are no matrix element terms linear in the strain
because the band is not degenerate. Actually, linear
terms mould arise if we considered the strain mixing
between the Ug bands and other bands at kp. These
terms will generally be small compared to the terms we
have considered except mhere there is a near degeneracy
of two bands. If the energy separation of the states in
Table II is not resolved, the results reduce to the limits

TAsLE II. Energy and diagonal dielectric tensor form factor
F for the nondegenerate U~ band in the d direction. States de-
generate in energy have their F factors summed over. Lour strain
approximation. Principal axes of F are parallel and perpendicular
to the stress.

Energy P, Dielectric form factor

f001) Stress
Et+DI'gI+DI3gg P t —ft0
E'+DI'g1 —)DPgl Pt —Pt —fCO

E'+DI'g1
f111j Stress

P t —Pt —Pt —ft0

f110|Stress
Et+DI'gI —)D13gg P t —ft0
~'+DI'gI+4DI'g3 F t —Pt —ftO

the same in both bands. For the same reason we have
the optical-matrix-element relations

(O~A P~P s')=(A, —iA„)(Ps'

&O~A p~y, )=(A.+sA„)as. (3.129)

The simple form of Eqs. (3.128) and (3.129) has the
consequence that matrix-element change eEfects can be
described in terms of the "band-edge" deformation
parameters D~ and D4. For the degenerate band with-
out spin-orbit splitting the wave functions are given in
(3.117) and there is no simple relation between fs, ',
fs,", and Ps„"
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Tmxx III. Energy and diagonal dielectric tensor form factor
F for the degenerate U6 band in the 6 direction. States degenerate
in energy have their F factors summed over. Lour strain approxi-
mation. Principal axes of F are parallel and perpendicular to the
stress.

Energy F, Dielectric form factor

t 001j Stress

E'+De'gl —Dl~+—Ss'ns
2 2

Et+Dl'gl —Dl'——Sscgs
2 2

E'+Dl'pl+ Dl'ns

t

titan

Et+Dl'pl+ S4cg6

E'+Dl'gl —S4cg6

I ii0$
96

Et+Dl'gl —Dls—+)S4tg6
2

Qs
Ec+Dllgl-Dls —)S&cg6

2
qs

Ec+Dllyl+'Dls ———Sst
4

vS
Et+Dllql+Dls —+—Sstqs

4 4

p t —2fto+2flgs

P t —P c~ fto ftsgs

Pt —Pt —fto

Stress
F,'= 2fto+2ft6&6

p, c p, c )fco+)fc6&6
p t F t gfco fft6~

Stress

F, t —fto+)ft6~6

p „t—fto )ftsg6

p t —2fto fts~s

p „t p „t fco+)fcs~

given in Eqs. (3.24) to (3.26) except that the term Ws
is equal to zero. This fact should be very helpful in
identifying this case.

(b) Up bartds. We sum over the star of hp with the use
of Table I. Equations (3.97) to (3.102) together with

the strain Hamiltonian in (3.111), the wave functions
in (3.117) and the optical matrix element symmetries in

(3.118) can be used to compute the entries in Table III.
In contrast to the nondegenerate case there is now an
energy shift term proportional to g6 which comes from
splitting the double degeneracy of U6. The splitting
coefEcients S~t and $6t are altered from the Dft and D4

of the band edge and depend on the exciton state t as
indicated in Eq. (3.116).

When spin-orbit splitting is considered and is assumed
to be large compared to exciton binding energies and
strain splittings the strain dependence becomes that of
a simple nondegenerate band. However, the polariza-
tion dependence is diBerent since Ul states and U~

states couple to orthogonal polarization modes. For
6nite spin-orbit splittings the linear strain admixture of
wave functions between the spin-orbit split states is
usually signiicant. With the use of Eqs. (3.128) and
(3.129) the dielectric tensor has been calculated to
terms linear in the strain as given in Table IV. The
strain-dependent terms have opposite signs for +X
states. It wiH be noticed that Table II lacks the linear
strain terms in Table IV. This qualitative difference
depends on neglecting admixtures of other band states
into the band edge function Ug. The neglected terms

are first order in strain but will generally be of order
X/~ smaller than the linear strain terms in Table IV
where ) is the spin-orbit splitting and 6$ is the smallest
energy band separation between U~ and another band
at ko.

e&+ —= (e &+e +e&)/v3 (3.131)

ep +'—= (—e„—e»+2e..)/g6= es (Os), (3.132)

ere+'= (e„——e»)/M =epe(Os), (3.133)

ep~s
—= (—e„—e„,+2e,„)/g6,

ess+s= (—e.,+e„,)/VZ.

(3.134)

(3.135)

The numerical subscript is the representation under
DI~ in Koster's notation. "The superscript is the corre-
sponding representation of e in 0~ which is used to
identify repeated representations.

TABLE IV. Energy and diagonal dielectric tensor form factor
p for the degenerate U6 band in the tl direction mth spin~rbit
splitting induded. States degenerate in energy have their p
factors summed over. Lour strain approximation. Principal axes
of F are parallel and perpendicular to the stress.

Energy F, Dielectric form factor

L001) Stress
f" na

p t —pt — ~ fts
2 2

Ip c /co~&ppp

+X+Et+Dl'gl —)Dlsgs

~X+Ec+Dl'gl+Dlsgs
fSO

P '=F '=—
2

~X+Et+Dl'yl

L111)Stress
Q6

t
P,t —P,t —fCO~ ft6

2
P,t—fto~ ~6ft6

$1101Stress
fcO

p „t—p „t— ~g~sfts
2

~X+ Et+ Dllgl+)Dlsgs
P t —fto~ fts

2

~X+Ec+Dllgl —$DIsgs

ft6 —fCOD4/g

v3Ds
fcs —fto

2X

fto
p „t— +fgsft6

2
fto

p „C— +bsft6
2

C. L Point; kp= (2pp/a) (f,f,$)

The L point is always a critical point in the diamond
structure. The symmetry group is DI&. In this group the
irreducible components of the strain tensor may be
written

et+'—=(e„+e»+e„)/VS=et(os), (3.130)
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/
—1 0~ /0 1

+D&' e3 'I I+eon'~
'E 0 1 &1 0Am= (A +A„+A.)/vS—=A.. .

Ag = (A,—A„)/v2—=A, ,

(3.136)

(3.137) (—1 Oi 0 1
+D ' e~.'I I+e»'

0 1/ 1 OjAmp
=—(Ag+A„—2A,)/+6=A„. (3.138)

The vector potential may also be decomposed into HIt, D&——'e&'+DPersI
irreducibly transforming components

(3.144)

0~ 0
+~8 23a

~
)+2»

0 1i 1 0

These results show that we need only consider pair GEE Rf Ty'I+Ry'Ty'I
bands of symmetry U2 and U3 since they are the only
symmetries which will couple strongly to light.

$t D le 1+8 5e 6+gt (3.139)

where Et is the exciton binding energy in the absence of
strain as determined from the eBective-mass Hamil-
tonian with the kinetic-energy operator

H KE——Rg'Tg'+ Ri'T j'. (3.140)

(1) U2 Bands

Since this is a nondegenerate case it is very simply
treated. The exciton energy can be written

(3.145)

+R3 T3 +Tep

We can use (3.142) and (3.143) to construct irre-
ducibly transforming exciton wave functions in the
absence of strain. (We must change the parities in
(3.142) but this is very easy since (r

~
J) commutes with

all group operations so that the parity designation may
be treated as a multiplicative factor. ) The wave func-
tions are

The matrix element depends on the exciton state but is
independent of strain.

(2) Ug Bands

The primary source of symmetry information is the
reduction of the outer product U3 *XU3 into irre-
ducibly transforming combinations. Koster ef al,"use
a complex representation. A real unitary Clebsch-
Gordan matrix p may be written

Wg+
W~
We+
W3p+

Uo -V3—
1/v2
0

—1/M
0

U3~ V3p U3p Voe U3p V3p

0 0 1/N
1/VZ —1/v2 0

0 0 1/v2
1/v2 1/VZ 0 . (3.142)

We also record the y matrix for the product of U~
with U3 .

U3 -V2+
0

U3p U~

0. (3.143)

With the use of (3.142), the strain- and kinetic-
energy matrices can be immediately written down

The deformation potentials D~' and Di' are not altered
by the exciton binding since the energy band shifts "as
a whole" under strain. The efI'ect of ac strain is to take
an energy derivative of the unperturbed dielectric
function.

The optical-matrix element is

(3.141)

Q» —al pl+ U» +a2,P2+ U3a—

f 'p3a+ U»— +»+ U3a-
+a, 'i + . (3.147)

v2 v2

Other symmetry types have zero optical matrix ele-
ments because they do not contain the symmetrjc
envelope function q~+. The q's are orthonormal. The
a's are scalars with the normalization

Z (a')'=1
j=1

(3.148)

The functional form of the p's is determined by solving
the Coulomb problem with the kinetic-energy operator
given by Eq. (3.145).The cp's and a's may be taken to be
real. The superscript t is a repetition index for the repre-
sentation $3 .

We can use (3.146) and (3.14/) to write down an
effective-strain operator for the multiplet $3 ' which is
the exact analog of (3.144) with X), replacing D,. The
connection between the deformation constants may be
written

+11 Dll

Sg'= DP
&~'= {(a~')' —(a ')'}D3'

~ 5—((a g)2 (a t)2)D 5

(3.149)

43a— al t/1+ U3a— a2 0 2+ U31—

~3-+'U3= v»+'U3s)-
+a,

~

— + ~, (3.146)
v2 v2 )
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Hy (3.148) we have the inequalities

(3.150)

(1 0)
&so=)/

Eo
(3.156)

We may write the wave functions to first order in the
strain in the form

( es~—'ps~ '
espouse ')

=A- +I -+
esagsa — espouse —) (3.151)

vZ v2

es~'Psp ' espQs~ ')

es~Qsp ' espQs~ —')
(+ + I (3 152)

K2 W2 )

From these equations the optical-matrix elements are
easily calculated using the symmetry relations

(0IPs.-lA--')= &olPsp —lAp-'&=—&s'. (3 153)

Spin orbit spii-tting We r.efer to the spin-orbit
Hamiltonian of Eq. (2.57) and neglect the spin of the
hole. The irreducibly transforming components of the
axial vector S are

H, t,,=Dj.'e j.'I+D j'eg'I

t('0 1 rt 0 i
+Ds' —es 'I +esp'I

&10 k —zO
(0 1 0

+D,s —es.s/ +e,p' /, (3.157)
o —z 0&

H KE——Rg'Tg'I+Rg'Tg'I

(0 1~ ( 0 i)+&' -T -'I i+T.p'I
E1 Oi E-z Oi

(0 1 ( 0 i
+R,s —Ts 'i +Tsp'i . (3.158)

k1 0 t i 0—
These matrices refer to a basis consisting of the band
functions

(Us —iUsp )f (Us +zUsp )f
v2 v2

The basis set

(U=+zU p-)l (U--—zU p-)l

Sz+——(S,+S„+5,)/VS—=S,
Ss += (5 —5„)/V2=—S,.
Ssp+= (5,+S„—25,)/+6=—5„..

Equation (3.142) indicates a coupling to both the repre-
sentations W2+ and We+. However, lV3+ is incompatible
with time reversal and so must be thrown out. Under
time reversal 5»= —S, hence by Eq. (2.55) the coeK-
cient multiplying p must be pure imaginary which con-
victs with the requirement of Hermiticity for the rep-
resentation 8'3+.

The spin-orbit matrix may be written

oiq(oiq
(-z 0) k-z 0)

since all other quantities are real. The states in the spin-
down basis set are Kramers degenerate with the corre-
sponding spin-up states. We will only discuss the spin-
up states explicitly.

If the spin-orbit splitting is large compared to the
exciton binding energy we can neglect the ofI'-diagonal
components of the kinetic energy operator. The kinetic-
energy Hamiltonian then takes the simple form

0
&so =X~* —z 0&

(3.155)

corresponds to a Hamiltonian which is the complex
(3.154

conjugate of Eqs. (3.157) and (3.158). The only differ-
ence is that

The i is introduced to make X real. a, is the spin com-
ponent in the L111j direction as indicated by Eq.
(3.154). The explicit matrix in (3.155) operates on the
orbital functions. 0,. is a Pauli matrix operating on the
spin functions.

If H„ is to be treated by perturbation theory, Eq.
(3.155) is in a convenient form. However, if the spin-
orbit interaction is large compared to the strain-
splitting or the exciton-binding energy (which is
usually the case), one wants to diagonalize the spin-
orbit interaction and leave the strain- and kinetic-
energy operators nondiagonal. The Kramers degeneracy
permits us to write

HIE= Rg'T j'I+Rg'Tg'I. (3.159)

The optically interesting eigenfunctions are then

cps'(Us~ —zUsp )f

z s'(Us -+zUsp-)f

v2

(3.160)

Because of the simple form of the kinetic-energy opera-
tor in Eq. (3.159), the envelope functions for both
bands are identical for corresponding states t. The en-
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TABLE V. Effective irreducible components of the stress tensor and vector potential for points in the star of k0= (2m/a) ($,$,$).The
e8ective components are primed and are given in terms of the true components for ($,$,$).

A, .
A„.
As.

(e1')'

(e ')'

(eg. )'
(e0p')'

(el ')'

(egp&)

Al

A3p'

A
A„
As
ell

e16

eea I
eap'

ela 5

A2

(k, -k, -k)
A—A„—A,
e I

v2 vt2 e10

ea + elp
3 v3 3

eea 3

esp'

—3ega ——eg p
——e1

1 V2—eg '+—e1'
vS vS

v2 v2—$Ag+—Ag +—AIp
v3 3

1
Q-,'Ag+ —Alp

VS

—Ag+ —A 0
——',Alp

3 V3'

(—k,k, —4)
—A,

A„—A,
e 1

v2 v2——eea' ——e3p' —Je1'
3 vS

esa
elp'

1—-', ega'+ —elp' ——e1'
v3 3

—el '——e1'
vS v3

v2 v2—$Ag ——AI +—Alp
v3 3

1—g-,'Ag ——Alp

v2 1—Ag ——Aea ——,'Alp
3 V3

{—k, —k,k)

—A,—A„
As
e 1

e3 e1

ee 3

egp'

2'
lee +—e1

3

—eapg

2v2—)A2 ——Alp
3

2@2——
A 2+)A gp

3

ergies are also identical apart from the spin-orbit shift

8 '=X+E'+Dg'eg'+DPeP
h '= —X+E'+Dg'eP+DPeP.

(3.161)

%e have used the simple designations plus and minus
rather than the double group notation. Minus corre-
sponds to the double group symmetry I'4 while plus
is a mixture of the Kramers degenerate symmetries
1'~ and I'g .

TABLE VI. Energy and diagonal dielectric tensor form factor F
for the nondegenerate Ug band at the I point. States degenerate
in energy have their F factors summed over. Low strain approxi-
mation. Principal axes of F are parallel and perpendicular to the
stress.

In the large spin-orbit splitting approximation of
Eqs. (3.159) through (3.161) the exciton states behave
just like nondegenerate states with the energy spectrum
shifting "as a whole" under strain. The off-diagonal
strain terms connecting P+' and f ' give a contribution
to the energy which is second order in the strain but
they contribute a term in the wave function which is
linear in the strain. %e wish to include these terms even
though they vanish in the limit ) ~ because they
represent the dominant eGect of the strain components
e3, e3p which otherwise have no eEect on the spectrum.
We use (3.157) in lowest order perturbation theory for
the wave function. %e take advantage of the ortho-
gonality of the p&' in (3.160) for diiferent t We may.
then write

Energy

Dl Ql

D1'q1+V3D1 g0

D1'gg
Dl gl

VS
D1'g1+—D10q0

2

D1'g1 ——Dg yg
2

p, Dielectric form factor

$001j Stress
P t —P t —Pt —)ft0

$111)Stress
P, t —ft0

f'to

P, t —P, t —)ft0 P,t—
3

t 110j Stress

P „t—)ft0 ~ F t —& ft0

P „t—)ft0. P t —Ift0

D 8

0'+=0 '+0 ' — (&3 '+M3p')a

D3'
(ea '+~op')

2X
(3.162)

tD 3

=i& '+&+' (ee ' bless')—
2X

Dg'
+ (e, ' ie~s') . —(3.163)

2X

(3.164)

In using these equations to determine optical-matrix
elements we note the symmetry relations

(Al mals)
(OIA 1I4~')=

v2
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Equations (3.162) through (3.164) permit the matrix-
element changes to be expressed in terms of the "band-
edge" deformation parameters Da' and D3'. This result
is much simpler than Eq. (3.151) for the zero spin-orbit
splitting case. We remark that 6's' in Eq. (3.164) will
not be equal to the (Ps' in Eq. (3.153) because the en-

velope functions q y will not be the same.

Tml.E VII. Energy and diagonal dielectric tensor form factor
F for the degenerate Ua band at the I. point. States degenerate
in energy have their F factors summed over. Low strain approxi-
imation. Principal axes of F are parallel and perpendicular to the
stress.

Energy

D1'q1+ &3"na

D1'g1 —Sataqa

F, Dielectric form factor

$002) Stress
&p t —p t —Xfto+$g fta

l
8 8

P t —fto+ ~afta

3 3
P~t P c—2fto 2gafts

{ 111)Stress
D1'F1+@3'D15g5

1 2'
D1'g1 ——D1sgs+—&atsgs

v3 vS

242
D1'q1 ——D1'gs — +a"vs

vS

p, ! p, t —fto

fto 'g6

p, C —p, t — + fC3

6 6

8 8
P st —fto+ ~Sfi3

3 3

F,t —P, t —$f to ggsfta

$110) Stress
v3

D11~1+ Dlsps+$+3 pa +$at ps Fc', t —2jto+pafta kqsfis
2

D11g1——D1sgs+$&ata&a+kg&Sea&5 F ~ t = 2fto+&af ta+ &agsf ts

2

P „t xfto $~ fca+$~sfts
D1'g1+—D1'gs —$Sa"ga+Q-,' $3"qs

2 F t —)fco a~sfta+~sfts
p „t—Rfto $~ fta $~ fts

D,1~, Ds~s )X)ata~a g)Satanas
2 P t —)fto ~&~afta rafts

(3) Star of ks ——(Zs./a)(sr, sr, rs)

The star of ks consists of (-'„-'„-',), (rs, —sr, —sr),

(—-'„~s —~s) and (—~s, —-'„-,'). We sum over the star
of ko by summing over the effective components of A
and e as given in Table V.

The results for the nondegenerate U2 bands are
given in Table VI. States degenerate in energy have
been summed over. Components not listed are zero.
The linear-strain terms in the matrix elements have been
neglected since the band is nondegenerate. The strain
component q3 does not appear in the table. This char-
acteristic feature serves to identify a nondegenerate
critical point in the (ke,ke, ke) direction.

The results for the degenerate U3 case are given in
Table VII. Because of the degeneracy, the p3 strain com-
ponent appears both in the energy-shift and the matrix-

Tmrx VIII. Energy and diagonal dielectric tensor form factor
F for the degenerate Ua band at the I. point with spin-orbit
splitting included. States degenerate in energy have their p
factors summed over. Low strain approximation. Principal axes
of F are parallel and perpendicular to the stress.

Energy

EC~X+D11~1

F, Dielectric form factor

[001j Stress
8

P t —P t —fto~ )~ajta
3

8 8
P c —fto~ ~afta

3 3

[111]Stress
E +D 'q +VSD 'q P, t —P,C —fto

5
Prt Pet —f to~)~Sf ts

31
Et&X+D1'g1——D1sg5

v3 8 8
P, t —fco+ f~sts

3 3

I 110) Stress
IP

sftS
F „t—$jto+ ~ fts

2 6
vS

EC~X+D1'g1——D1'qs
2 Fv"C=2jto+l~sf

2

v3'

Et~g+D11g1+—D15g5
2

P t —$fto~ ~sfts+ ~&~ fts

P " =2f 0~&~55f 5+ f
2

rafts
P „t—& fto~ + fta

2 6

P t —fjto~~sfts~~&~afca

Da' 2' Das
fta — fto fts — fto

VS X

element terms. Furthermore, if the strain splittings are
not resolved one obtains formulas identical with (3.24)
through (3.26) with finite values of Ws which arise
from both energy-shift and matrix-element change
contributions.

When spin-orbit splitting is included, the strain de-
pendence is indicated in Table VIII. The results for the
two spin-orbit split bands are identical except for the
strain dependence of the optical matrix element which is
equal and opposite for the two bands. This simple result
is a consequence of assuming that the spin-orbit splitting
is large compared to the exciton binding energy so that
the nondiagonal »netic energy terms in Eq. (3.158) can
be neglected.

The energy shift terms have the same form as for the
nondegenerate Um case in Table VI. The eGect of an
ge strain component on the energy shift terms is zero.
However, the ql strain does aBect the matrix elements
and hence will contribute a ~vite value to the 8"s com-
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TABLE gX. Energy and diagonal dielectric tensor form factor F for the nondegenerate Ul, U2, and U3 bands in the Z direction. States
degenerate in energy have their p factors summed over. Lour strain approximation. Principal axes of F are parallel and perpendicular
to the stress.

Energy
P, Dielectric form factor

E'+nlD1'+n3DI'
fl3

Et+ ~IDl 1 D13
2

~ +gl Dl +$5D1
P'C+ytlDll q5D 5

t 001j Stress
Pt Pt jCO

P t —P t —ft0. P t —2jt0)

$111) Stress
Pz' =Fy' =$j ' F t= 2fto
P, t —P, t —)ft0

L110] Stress

P „!—ftO

P t —2fto

P t —P t —2jt0

P, t —P, t —P, t —ft0

P t P, t —F,t —ft0

P t —ft0

P t —P t —jtO

P t —P t —ft0 P t —2ft0

F*'=Pv'= 2fto
P, t —P, t —3 jt0 P, t —2ft0

P „t—ft0

n3
E'+ yil Dl' ——Dl' —gg~15

2
n3

E'+~IDl'+—Dl'
4

P „t—ft0

P„t—P„t—ftO

P c —2ft0

P t —ft0

pz&l pylr f

P „t—ft0

Fz.) t =Pq" t =fCO

F,c—2fto

ponent of the dielectric function. The contrast of this
result to that of the nondegenerate U2 case is more
quantitative than qualitative. There should be linear-
strain terms in the U2 case also if we had considered
mixing eBects from higher bands. Mixing with a Ue
band would lead to matrix element changes propor-
tional to r1s. In general, the Up (ks) —Us (ks) separa-
tion is likely to be a good deal larger than the spin-orbit
splitting of the Us bands. The coefficient f" is in-
versely proportional to this separation which justifies
the approximation we have made except for unusual
cases of accidental near degeneracy.

ets=—e,„=es,„(Os),

es ——(e„+e„,)/V2',

es ——(e„—e»)/VZ = esz(Os),

e4 ——(e.,—e„,)/v2,

A t ——(A,+A „)/v2—=A „",
Ag ——3„
As= (A,—A„)/V2=—A, ~ .

(3.167)

(3.168)

(3.169)

(3.170)

(3.171)

(3.172)

(3.173)

D. X Direction; les ——(ks, les, Q)

The symmetry group of the X direction is C2, . Ke
follow the I' notation of Koster et cl. but we label our
axes according to the cubic notation so that our choice
of x, y, s disagrees with his. In our notation, the syrn-
metry operations are o,—= (xyz), o,.—= (yxz), Cs=—(yxz).
The irreducible components of the strain tensor and the
vector potential may then be written

et'—= (e +e»+e..)/v3=et(Os), (3.165)

et'= (—e, —e»+2e„)/g6= es (Os), (3.166)

All Z bands are nondegenerate. According to (3.171)
through (3.173) only Ut, Us, Us bands couple to light
in lowest order, Since the bands are nondegenerate
U;XU, =I'&, hence only the symmetric strain terms
shift the bands. The strain- and kinetic-energy Hamil-
tonians are easily written

Hog& = ey Dy +e~'D~'+ e~'D~',

&Km = &t'Dt'+ 2't'Dt'+ Tt'Dt', (3.174)

TABLK X. Comparison of the notation of this paper (Koster's}
with that of Bouckaert, Smoluchowski, and Wigner and also
Elliot t.

Koster

F1+
F2+r„
F4+r„
Fl
F2
F3
r,
F5

Koster
r,
F2
r,
r,

1K=0
BSW

r,
r,r„
r 15'r„.
Fl
r,.
F12'
F16
F26'

Elliott
r~
F7p
r~

BSW
Zl
Z4
Z2
Z3

Koster

F2+r„
F2
r,

Koster
Fl
F2
F3
F4
F5

FO
F7

k=L
BSW

L2
L3
Ll
L2

Klliott
L~
L~
L~

BSW

~1~
b, 2

Klliott
b, 6
b, 7

where the definition of the irreducibly transforming T
components is the same as for e.

The effects of spin-orbit interaction can be ignored
since the bands are nondegenerate and we ignore mixing
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TAN.E XI. Comparison of the notation of this paper for the
deformation potential parameters, d;, with that of Kleiner and
Roth, Pikus and Bir, Herring and Vogt, and Brooks.

This
paper

k=0
Kleiner Pikus

and Roth and Bir

(t+2m)
d1 =&Dg" =+V3a=

v3

Pikus
and Bir

2
dg ————D„=v3b

v3

2'
dg ————D„=Md

v3

1
=—(l—m)

v3

between different bands. The Hamiltonian (3.174) is
valid for any symmetry type U, . The optical matrix
elements are different for different symmetry types,
however.

&o~a p~y, &=~,6, ; ~.=1, 2, 3. (3.175)

The star of kp consists of the six points (kp, ~kp, 0),
(kp, 0, &kp), (0, kp, &kp) together with their six nega-
tives which need not be considered separately. We sum
over this star in the manner of Secs. III 8 and III C to
obtain the results listed in Table IX. Only energy shift
terms appear since we neglect mixing of different bands
U. The different symmetries U&, U&, Ue have different
polarization dependences. The constants fJP naturally
depend upon U; but we have not indicated this ex-

plicitly to simplify the notation.
If the individual states are unresolved the dielectric

function has the general form given in Eqs. (3.24)
through (3.26). Note that the term in Wp would be zero

This
paper

ko=0
Dresselhaus, Kip,

and Kittel

1 V3y1
r1 =—

(,L+2M) (2/jP) =-
43 mk'

1 2v3yg
ri ———(L—3f){2/A') =—

mk'

Luttsnger

v2
r =—X(2P')

v3

2+6ys

~; k, =(o,o,ko)

1(1 2)"=—
I

—+—
I

V3 (fall mJJ

%f1 1)
rig

vS(mII mJ&

2Ã

a

1/1 2
rJ'= —

]
—+-

VS &mII mJ

2 1 1)
r 5—

V3 Sl l l S1g)

Z; kp = (ko,ko,o)

1(1 1 1
, =—

i
—+—+

a&m„mJp m„.]

TmLE XII. Comparison of the notation of this paper for the
reciprocal mass parameters r; with that of Dresselhaus, Kip,
and Kittel and that of Luttinger.
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for a band of U2 syrronetry. This is similar to a non-
degenerate band in the 6 direction. The symmetry
types U~ and Ug give finite values for IVY, S'I, and W&

and could not be distinguished from a general point in
the zone.

IV. NOTATION

We have adopted the group-theoretic notation used
by Koster et a/. "rather than the notation of 3ouckaert,
Smoluchowsti, and Wigner and also Elliott" which is
more standard in energy-band theory. In Table X we
indicate the correspondence between the two notations.
We reserve x, y, s exclusively for the cubic axes. We
also use axis systems oriented along the L111$ and

'4L. P. Bouckaert, R. Smoluchowski and E. signer, Phys.
Rev. SO, 58 (1936);R. J.Elliott, ibid. 96, 280 (i954).
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[110]directions as defined in Eqs. (3.1) and (3.2). Note
that for the group of Z, Koster uses x, y, z to refer to
the [110]axis system. We have reserved the subscript
position as much as possible for group theoretic informa-
tion pertaining to the group of ko but we have permitted
a few exceptions to conform to standard notation. For
the strain tensor and the associated deformation poten-
tial parameters the subscript position denotes the rep-
resentation in the group of ko. When a repetition index
is required the representation in the group of k=o is
used as a superscript.

A number of authors have introduced notation for
the deformation potential parameters and the exactly
analogous eBective mass parameters. The de6nitions
have been more or less arbitrary and no two agree. We
have adopted a unique procedure based on Eqs. (2.24)
and (2.26) together with Koster's tables. "The e; in
Eq. (2.24) transform irreducibly under the group of ko
and are related to the standard stress tensor components
e,„, etc., by Koster's unitary Clebsch-Gordan matrix
p. Similarly, the reduced matrix elements of the opera-
tor h, in Eq. (2.26) are given by the Clebsch-Gordan
matrix p. Equation (2.26) is the crystal analog of the
Wigner-Eckart theorem. "

The deformation parameters D; and the reciprocal
masses R, so de6ned are strictly two-band parameters
and so do not correspond to any standard notation
which all relates to single-band properties. We introduce
exactly analogous de6nitions for single-band parameters
which we call d; and r, .Table XI relates these quantities

to the notation introduced by Herring and Vogt, by
Kleiner and Roth, by Brooks, and by Pikus and Bir."
In Table XII we give the analogous relations for the
reciprocal mass parameters compared to those used by
Dresselhaus, Kip, and Kittel and by Luttinger. "

The relations between the single-band d's and the
two-band D's can be worked out with the use of Eq.
(2.23). When one of the bands transforms like the iden-
tity we have the simple relations given in Eq. (2.29). In
general, the relations are more complex.
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