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The electronic band structure and optical constants of Mg2Si, Mg2Ge, and Mg2Sn are calculated using
the empirical pseudopotential method. The results are compared with experiment.

I. INTRODUCTION

HE empirical pseudopotential method' (EPM)
has been used to calculate the band structures

and optical constants of many different types of crys-
tals' ' with much success. One advantage of using this
method is that it yieMs optical constants which can be
directly compared with optical measurements. Recently,
good reQectance and electroreQectance data on the
family of compounds Mg~Si, Mg~Ge, and Mg2Sn were
obtained by Scoulerlo and Vazquez et p

therefore, used the EPM to calculate the band struc-
tures and optical constants for these materials in an
attempt to understand the optical structure.

Using potentials obtained in previous band-structure
calculations, we have computed the electronic band
structures for Mg~Si, Mg~Ge, and Mg~Sn on a mesh of
points in the Brillouin zone. From these points the
imaginary part of the dielectric function e2(~) is ob-
tained, " and from s~(a&) the reflection coefficient is
calculated. The derivative of the reQection coeflicient is
also obtained to compare with electroreQectance data.

Lee" and Folland" have previously calculated band
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structures for Mg2Si, and Lee also gave the results for
Mg2Ge; however, neither calculation gives optical
constants for these compounds, and the two results for
Mg~Si do not agree with each other. We have compared
our results with these calculations and we have used a
critical-point analysis of the interband energy contours
to identify the structure in the e~(&o) curves in terms of
interband transitions. Our analysis shows that the
previously existing calculations cannot yield optical
constants that are consistent with experiment to within
1 eV. Our results, however, agree very well with experi-
ment; the discrepancy between theory and experiment
over the entire region of interest (0—10 eV) is within
0.4 eV for all three compounds.

We also found that the peak heights in our calculated
optical spectrum agree well with experiment. The
agreement is better than that obtained in more ionic
crystals. ' ' We believe that this agreement results from
the lack of excitonlike binding between the electron
hole pair because of the large static dielectric constants
of these crystals.

This paper is divided into three sections. Section II
discusses the pseudopotential Hamiltonian and the
form factors. In Sec. III, the results are given and com-
parison with experiment is made in the following order:
reQectance, electroreQectance, and energy gap measure-
ments. Section III concludes with a comparison of our
results with those of Lee and of Folland.

II. CALCULATIONS

The EPM involves the variation of pseudopotential
form factors to 6t optical data. ' In this work, we im-
posed two further restrictions: The form factors were
chosen to yield close agreement not only with optical
data, but also with existing form factors for the indi-
vidual constituent elements: the group-IV elements, "'
and Mg."Furthermore, the same pseudopotential was
used for the Mg ion in the three compounds. The
success of the calculations indicates the correctness of
associating a pseudopotential with an ion, independent
of its chemical state. Screening effects should modify the

» A. 0. E. Animalu and V. Heine, Phil. Mag. 12, 1249 (1965).
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TABLE I. Psendopotential form factors {in Rr) for MgrX; V&= (fix/4») Vx( IGl) &s= (21IMs/oon) &~(IGl)
and G is in units of 2x/u, where a is the side of the cube for tire Mg~X lattice.

(111)
(200)
(220)
(311)
(222)
(400)
(331)
(420)

11
12
16
19
20

V(l G l)

V1—Vg

V1+ Va

Vg

V1—Va

Vi+ Vs

V1

V1—Vg

—0.03
0.06

0.04
0.025

0.01

MggSi
Vsi

—0.33
—0.215
—0.015

0.039
0.055
0.079
0.056
0.04

—0.03
0.06

0.04
0.025

0.01

Mg~oe
VGe

—0.34
—0.203
—0.043

0.035
0.05
0.052
0.01
0

—0.045
0.07

0.049
0.035

0.015

—0.23
—0.215
—0.01

0.02
0.02
0.006
Q

0

V(r)=Q V(G)e 'o' (2)

where G is a reciprocal lattice vector. For the com-
pounds MggX, where X is Si, Ge, or Sn, the structure is
cubic Quorite. The lattice is fcc with three atoms per
primitive cell. The element X occupies a lattice site, and
the magnesium atoms are at &n, where n= (s,s,x)u,
and u is the length of the cube. Thus we can write

~cell cell

V(r)e'o'd r

1
~

~Vx(r)eio rds»

~cell X

+ Q e'"'o VMs(r)e' 'd'r l, (3)
pm+] MN )

where Q.,~~ is the volume of the primitive cell. Writing
6= (k,k,l)2s/a, we have

V(6) = (1/0„11)(Qx Vx (6)+20Ms V"s(6)
XcosLrss (k+0+i)j), (4)

where Q~ and QM~ are the volume per atom of X and
Mg, respectively; Vx(6) and VM'(6) are the cor-
responding pseudopotentials. We will assume spheric-
ally symmetric atomic pseudopotentials and thus
V(6)= V(l6l).

Taking the pseudopotentials of Si, Ge, and Sn from
Cohen and Bcrgstresscr' (CB) and that of Mg from
Animalu and Heine, " we And nonvanishing form
factors only for lGl'&20(2s/a)'. For the fcc lattice,
there are eight such form factors. Using Eq. (4), we can
write these form factors in terms of the atomic form

pseudopotential, but the diGerences are expected to be
small for similar nonmetallic compounds.

To calculate the band structure, we assume an energy-
independent pseudopotential, so that the pseudo-
Hamiltonian is

3.'= —(ks/2m) V'+ V (r) . (1)

The weak pseudopotential is expanded in the reciprocal
lattice

factors, as shown in column 3 of Table I. We note that
because the lattice constants of Mg2X are dift'erent
from the lattice constants of the elements, the values of
the atomic pseudopotentials are obtained by inter-
polation from a smooth curve drawn from the known
atomic pseudopotential form factors.

To calcu1ate the optical properties from the band
structure, we 6rst calculate es(&e). To do this we use the
expression

8%
es(co) = Q 8(E.(it)—E,(it) —Ate)

3~/A c,e

xl&v, ,.lvlv, ,,)l dk, (5)

where c and e stand for conduction and valence bands,
and Ui, ,„ is the periodic part of the nth band wave
function. We approximate the exact Uj, , by the eigen-
function of the pseudo-Hamiltonian, Eq. (1). The
numerical evaluation of this expression for the fcc
lattice is discussed elsewhere. '

The function el (ca) is obtained from es(ru) by using the
Kramers-Kronig (KK) relations with an approximate
tail function for co&co., where co. is the largest au for
which es(a&) is calculated. The reflection coefilcient is
Obtained frOm et(&o) and ss(te).

III. RESULTS

The band structures obtained using the form factors
in Table I for MglSi, Mg~Ge, and Mg~Sn are shown in
Figs. 1-3 for symmetry directions of the Brillouin zone.
In Figs. 4-6 we plot the calculated and experimental
es(te) fol' tile till'cc compounds. Tllc cxpcrllllcntal ss(co)
was obtained from re6ectivity data by KK transforma-
tion. In Fig. 7 we plot the pseudopotential form factors
used in the calculations for the group-IV elements and
magnesium. For the group-IV elements we compare the
form factors with those of CB. We see that for Si and
Ge, a smooth curve can be drawn through the pseudo-
potential form factors used here and those of CB.
However, for Sn, we were forced to change the pseudo-
potential of CB slightly. The differences in energy of
0.02 Ry, however, is smaller than the spin-orbit coupling
energy for Sn which we neglected. For magnesium, we
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compared our potential with the potential calculated by
Animalu and Heine" and that used by Kimball, Stark,
and Mueller. "

Inspection of Figs. 1—6 illustrates that the band
structures and the e~(ru) curves for the three compounds
axe similar. %e shall first discuss their common features,
and then discuss these band structures individually by
comparison with reflectivity data (Sec. III 3), electro-
reflectance data (Sec. III C), energy-gap measurements
(Sec. IIID), and the existing band-structure calcu-
lations of Lee and of Folland (Sec. III E).

A. Cow~on Features

The valence-band maximum is at I', with symmetry
F~5, and the conduction-band minimum is at X. The
fundamental energy gap is thus indirect. The syjxunetry
of the conduction-band minimum is either X~ or X3, but
these two levels are close together. These features best
exhibit themselves in electrical measurements.

The optical structure of these compounds can best be
identified by a critical-point analysis. If one examines

carefully the band structure and its associated e~(~)
curve, it is possible to identify the interband transitions
between valence and conduction states contributing to
e2(u&): The important transitions come from pairs of
bands for which the joint density of states is near a
singularity. The singular points of the zone are called
critical points (cp s), and they give rise to structure in
eg(&u). An analysis of these cp's explains the general
similarities of the em(&o) curves for the three compounds.
For example, we find that the fourth and fifth bands
along Z, the fourth and sixth bands along 6, and the
fourth, fifth, and sixth bands along A. are almost
parallel over a large region of the zone for all the three
compounds; thus the joint density of states is large
there. Furthermore, the X4 6 gap is at about the same
energy as the Z4 5 cp. The main peak, which results
mainly from the Z4 & transitions, thus has a large
magnitude. Another important fact to notice is that the
energy separation of the fourth and fifth bands along A.

is always below the main peak, whereas that of the
fourth and sixth bands along A is always above. These

12 -L3
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of Mg&Ge.
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"J.C. Kimball, R, W. Stark, and F. M. Mueller, Phys. Re&. IQ, 600 (1967).
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three main contributions to em(co) therefore dictate the
general three-peak shape of the ~2(a&) curve (though the
first peak merges with the main peak in Mg2Si and
Mg, Sn).

We shall next discuss the optical structure of each
compound separately.

B. Re6ectance

1. 3fggi (Figs. 1 and 4)
The experimental em(co) curve starts with an indirect

tail at about 0.6 eV. These indirect transition contri-
butions are not included in the calculations, however:
The theoretical eq(co) curve starts at 2.1 eV resulting
from the F1~~ I'& transition with an associated cp of
Mo symmetry. This structure can be identified with the
sharp rise at about 2 eV in the experimental e~(&o).

The following is a discussion of the major contribu-
tions to the theoretical e, (ru); a comparison of the cp's
in the experimental and theoretical em(s&) curves as a
function of energy for all three compounds is given in
Table II.

l I I I I I l l I

Above the threshold for the direct transition there is
the 2.2-eV L3' —+ L1 transition, which is closely foHowed

by the 2.4-eV h.3~3.& transition. The associated cp's
have Mo and M3 symmetry, respectively. The main
peak starts at about 2.6 eV; the transitions responsible
are Xg'~ Xg, Xg'~ X3, and E4~ E&, all having Mo
symmetry. As stated earlier, the large region of the zone
along b, , the h~ —+ dg' transitions, gives a large con-
tribution above the X~' —+ X3 gap of 2.6 eV. The peak
structure of the main peak is a result of M2 and M3 cp's
arising from z4 —+ z~ and h~ —+ h~' transitions, respec-
tively, at about 3.0 eV.

Above the main peak the next structure is a peak at
3.7 eV which arises from L3'-+ L3, and AS-A. 3 transitions
of types M2, M3, 65-hp transitions also contribute an
M3 in this region. Above this peak there are a large
number of diferent regions in the zone contributing to
em(&u). We can associate part of the contributions from
4.5-5 eV to the 6~~41, E1.~E~, E3~E1, and
X4'~ Xq transitions (see Table II). These contribu-
tions give rise to a bump at around 5 eV.

Inspection of Table II and Fig. 4 shows that there is
good agreement between theory and experiment both

60—
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Mg&Si
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40—

t 1 I l I I I
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30- 30 ~
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~ I ~

106 8
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FIG. 4. Calculated and experimental imaginary part
of the dielectric function e~(ao) for Mg~Si.

Fzo. 5. Calculated and experimental imaginary part
of the dielectric function ~(co) for Mg~oe.
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Fzo. 6. Calculated and experimental imaginary part
of the dielectric function ~g(~) for Mg2Sn.

for the magnitudes and positions in energy of the
structure in e2(ra). Even the last bump at 5 eV shows up
well in the experimental curve,

-0.3—

-0.4—

-0.5

Z. M'gmGe (Figs Zond. 5)

For Mg2Ge the experimental indirect taH starts at
0.7 eV, which compares fairly well with our calculated
value for the indirect gap of 0.92 eV. The theoretical
threshold arises from the F~~ —+ I'~ transition at 1.5 eV
with a cp of type M0. At higher energies the Mo and
Mq cp's arising from L3' ~ Lq (2.0 eV) and the A3 ~ A~

(2.2 eV) transitions contribute as in Mg2Si. The main
peak, however, does not start until about 2.9 eV, where
we have an %II cp coming from X~' —+ X3 transitions.
The large separation in energy between the IA contri-
butions and the start of the main peak results in a JA.
peak (Fig. 5) instead of a LA shoulder (Fig. 4) as in the
Mg2Si case. The 85 —+ h2' transitions again contribute,
but not as much as in the Mg2Si case because these
bands do not give a cp. The peak structure arises
partially from Mp cp s of the E4 ~E~ and X~' ~ Xj.
transitions at 3.0 eV, and the main contribution comes
from the M2 cp of the Z4 —+ Z~ transition. The M3 cp of
the I'~~~ F25' transition is at 3.2 eV. The last peak,

-0.6
0
(Mp oniyI G/2k F

FIG. 7. Pseudopotentials of the elements Si, Ge, Sn, and Mg;
a is the lattice constant for the semiconductor element and kg is
the Mg Fermi momentum. The open circles are the form factors
used in the calculations. For Si, Ge, and Sn the closed circles are
the form factors of CB. For Mg, the closed circles are the form
factors of Kimball, Stark, and Mueller; the smooth curve is that
of Animalu and Heine.

from 3.9 to 4.2 eV is again the result of hq ~ hq (Ms),
Lm'~ I3 (312), and As~As (His) transitions. Finally,
we again have a group of cp contributions creating a
bump at 5.2 eV.

The comparison between theory and experiment can
now be made by looking at Table II and Fig. 5. There is
good agreement between the curves for the positions in
energy of the structure in e2(ru) Howeve. r, the magni-
tude of the 6rst JA peak is appreciably bigger on the
experimental curve. Although part of this discrepancy
may have been the result of using pseudomatrix ele-

TABLE II. Calculated transition energies for Mg&Si, Mg2Ge, and Mg&Sn and their identi6cations.
The e~rimental transition energies, when identified, are shown in parentheses.

Transition

~is ~ ~x
L3' —+ Jg
Ae ~Ay

Xp' -+ Xg

X6' ~ Xg
(E'4 ~ ICy)4p
~IS ~ ~2S'

La'~ Lo
he~Ay
bp~df

(Ej -+ Eg)2S

X4' —+ Xg
(&I~ &z)op

MggSi

Mo
Mp
Mg
Mp
M3
Hap
Mp
Mp
Mg
Mg
M3
M3
Np
Mp
MI
kI)
Mp

Type of singularity
Mg2Ge

~p
Mp
Mg
ufo

no cp
Mp
~p

Ne or Mp
Mm

M2
Mo
Mg
Mp

no cp
no cp

Mg
Mp

Mg2Sn

Mo
Mp
MI
Mo

no cp
Mg
Mp
Mp
M2
M2
Mg
Mp
Mp
No

Mg
Mp

Mg2Si

2.06 (2.1)
2.15
2.39
2.62 (2.5}
2.81
2.74
2.74
2.80
3.01 (2.7)
3.59 (3.7)
3.79
3.87
4.59
4.60
4.63
5.03
5.06

Energy (eV)
Mg~Ge

1.49 (1.6)
1.99 (2.1)
2.22
3.01

~ ~

2.84
3.03
3.20
3.16 (3.0)
4.08 (4.1)
4.22
3.94

~ ~ ~

5.37
5.29

1.06
1.97
2.03
2.35 (2.3)
~ ~ ~

3.02
2.69 (2.5)
2.94
2.83 (2.7}
3.52 (3.4}
3.71
3.24
4.16
4.23
4.29
4.27
4.55
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Transition
MggSi Mg~Ge

Theor Expt Theor Expt
Mg2Sn

Theor Expt

r„r,
Ag~AI

Xll' —+ XI
K4-+ KI
Z4~Z)

e ~ ~

AI ~AS

2.05 2.27
2.4 2.51

~ ~ ~ ~ ~ ~

2.9 2.78
3.18 3.05
3.4 3.28
3.7 3.8

1.7 1.64
2.3 2.37
~ ~ ~ ~ 4 ~

3.1 2.71
3.3 2.88
3.7 3.31
4.1 4.03

1.3 e ~ ~

2.1 1.96
2.35 2.24
2.8 2.48
3.1 2.70
3.25 2.96
3.60 3.60
3.8 3.86

TABLE III. ElectroreQectance structure and its comparison with
theory between 1.5 and 4.5 eV. The identifications are also given.
Some structure is found both in the theoretical and experimental
curves; however, these do not appear to be associated with a single
critical point.

Mg~Si

Mg~Ge

MgmSn

Calc. indirect gap Expt gap

0.53 0.78
0.80
0.77
0.690
0.65

0.92 0.69
0.74
0.67~
0.76
0.33
0.36
0.23

0.64

Ref.

18
21
17
22
10
19
17
22
10
20
17
10

TABLE IV. Calculated and experimental fundamental energy
gaps for Mg2Si, Mg~Ge, and Mg~Sn. Unless otherwise specified,
these values are given for O'K.

ments in the calculation of ee(co), the large experimental
peak may have been caused by the tail function used in
the KK transform of the reQectivity. "Finally, as for
Mg2Si, we again see the bump at 5.2 in the experimental
e'i (cd) .

3. Mg gSei (Figs. 3 and 6)

The experimental tail starts at a low value of 0.2 eV,
which does not compare very favorably with our value
of 0.64 eV for the indirect gap. However, the data were
taken at 77'K, and at this temperature the fundamental

gap should be almost 0.03 eV below its value at O'K. '~

The discrepancy is therefore only about 0.4 eV.
The threshold for the direct transitions again arises

from I'~5-+ I'j. transitions. The cp is of type Mo and its
energy value is 1.1 eV. Above this energy we have the
usual JA contributions at 2.0 eV which come from the
M0 and Ms cp's from the L3' —+ L~ and A3 —+ A~ transi-
tions, respectively. The Xs' —+ X& and E4~ E& cp's,
which in both the Mg2Si and Mg2Ge cases are coincident
with either the X5' —+ X3 cp or the main peak, are here
distinct. These Mo cp's are at 2.4 and 2.7 eV, respec-
tively, thus creating two extra bumps on the low-energy
side of the main peak. It is unfortunate that these fine
points in the structure are smoothed out in the ei(c0)
plot and cannot be seen.

The main peak structure itself comes from Z4~ Z~
transitions with an M~ cp at 2.8 eV. The 65 —+ 62'
transitions, as in the Mg~Ge case, do not have a cp, and
so the magnitude of the main peak is of the same size as
that of Mg2Ge and is appreciably smaller than that of
Mg&Si. The hz ~ 62' transitions contribute mostly near
F and X; the Mo of I'~~ ~ I'25' at 2.9 eV and the M~ of
Xg'~ X3 at 3 eV contribute to the main peak.

The last important peak is again a LA peak, except
here the h~ ~ A~ contribution has moved down to the
main peak, and so only Li' —+ Li (Me, 3.5 eV) and
Ac~he (Mi, 3.7 eV) contribute. Above this peak we
again have a group of cp contributions from about 4.2
to 4.6 eV creating a bump at about 4.4 eV.

A comparison of theory and experiment (Fig. 6 and
Table II) shows good agreement in the positions of the

"U. Winkler, Helv. Phys. Acta 28, 633 (1955).

~ At 1$ K.

principal structure in the ee(ce). The larger magnitude
of the experimental ee(ce) on the low-energy side of the
main peak can be attributed to the indirect transitions
which we have neglected. They are more important here
than in the previous cases because the indirect gap is
much smaller here. Finally, we again find the bump (at
3.9 eV) above the last LA peak in the experimental
ee(ce); however, in this case the agreement in energy
between theory and experiment is not as good as in the
previous cases. One factor which may be responsible for
this discrepancy is our neglect of the spin-orbit coupling,
which is larger for Sn than for either Ge or Si.

C. Electroreflectance

While it is generally possible to see most of the cp's
in the e&(ce) curve, they show up much clearer in the
first derivative of ee(ce). The reason is that the slope of
e&(ce) at a cp is infinite. This derivative technique is used
experimentally in electroreAectance measurements.

For the Mg2X compounds, V6,zquez et u/. "have made
electroreQectance measurements in the range 1.5—4.5 eV.
We can make an approximate comparison between
their data with our calculations by identifying the cor-
respondence between the structure in the hR/R curve
in the electroreflectance measurements with (dR/dce)/R
of our calculations. In Table III we tabulate the results.
The agreement is seen to be good. Some of the structure
missing in the ee(c0) can easily be identified.

D. Energy-Gap Measurements

The fundamental gaps for these three compounds
have been measured electrically and optically. " ~ In
Table IV we compare our results with experiment. The
agreement is within 0.4 eV. We remark that for Mg~Si

' R. G. Morris, R. D. Redin, and G. C. Danielson, Phys. Rev.
109, 1909 (1958).

Io R. D. Redin, R. G. Morris, and G. C. Danielson, Phys. Rev.
109, 1916 (1958).

2' R. F. Blunt, H. P. R. Frederikse, and W. R. Hosier, Phys.
Rev. 100, 663 (1955).

2' M. W. Heller and G. C. Danielson, J. Phys. Chem. Solids 23,
601 (1962).

~ A. Stella and D. W. Lynch, J. Phys. Chem. Solids 25, 1253
(1964).
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an exponential tail function which vanishes at about

I
k I

=2.4 a.u. for
I k I &2k» was used. Thus Lee's effec-

tive pseudopotential Li.e., V(I G
I ) in Table I] is bigger

on the average, resulting in bigger energy differences.
We would, therefore, expect an em (a&) curve derived from
Lee's band to be similar to ours in shape, but the main
structure would have higher energies compared with
our result. Inspection shows that the shift in energy is
about j. eV.

In conclusion, we would say that our calculations
quite successfully explain the data on Mg2Si, Mg2Ge,
and Mg2Sn. The band structures were calculated to fit
optical structure using potentials which are consistent
with those used in existing calculations for other
crystals. Ke note that the minor structure in the meas-
ured optical spectra are also reproduced in the calcu-
lations.

we can raise the calculated gap to agree with experiment
if we raise the energy of the main peak also. For Mg2Ge
and Mg2Sn we notice that the gaps are both bigger than
the experimental values, but since the spin-orbit inter-
action lowers these gaps, the agreement with experi-
ment will be better if spin-orbit eGects are included.
The calculations show that the fundamental gaps are
indirect; for Mg2Si and Mg2Ge, this appeared to be
consistent with experiment. "

E. Comparison with Existing Calculations

If we compare our results with the two existing calcu-
lations for Mg2Si, we find that our results are radically
different from Folland's"; however, we find that Lee' s"
results are similar to ours with some shifts in the ener-
gies. The energy diGerences can be traced in part to the
magnesium potential which was used in the two calcu-
lations. If we look at Fig. 7 and Table I, we see that
there is considerable contribution from the magnesium

)
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Longitudinal Anisotropy of the High-Field Conductivity
of n-Type Germanium at Room Temperature
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New pulse measurements of the high-Geld conductivity of e-type germanium at room temperature have
been performed. Contrary to previous measurements, the conductivity is anisotropic above the Ohmic Geld
range. The highest current for a given field is found along the (100}crystallographic axes; the (110}current
is as much as 9% lower, and the (111)current 14% lower than the (200}current. The maximum anisotropy
is found at a Geld of 3 kV/cm. No region of constant drift velocity is found; current increases with field up
to 30 kV/cm, the highest Geld applied.

1. INTRODUCTION
' 'N contrast to the situation in the low-field, Ohmic
~ - region, the magnitude of the current for a given
high field is expected to, and has in general been found
to depend on current direction in n-type Ge. Several
measurements of the longitudinal anisotropy of the
high-Geld conductivity of n-type Ge have been re-
ported. ' 4 This anisotropy is a result of the many-valley
conduction-band structure of Ge, and the eBective-mass
anisotropy of the individual valleys. The rate at which
electrons absorb energy from the electric field depends
on the relative orientations of the valley and field,
being highest when the field is along an "easy, "or low-

' R. Barrie and R. R. Burgess, Can. J. Phys. 40, 1056 (1962).
~ M. Z. Nathan, Phys. Rev. 130, 2201 (1963).
I V. Dienys and J. Pozhela, Phys. Status Solidi 17, 769 (1966).' M. Dienene, V. Dienys, and J. Pozhela, Lietuovos Fiz.

Rinkinys 6, 431 {1966}.

mass direction of the particular valley. The high-field
mobility is a decreasing function of electron tempera-
ture, so the rate at which the contribution of electrons
in a particular valley to the total current deviates from
Ohmic behavior depends on the orientation of that
valley relative to the field. In the low-field region, the
anisotropic parts of the single-valley conductivities
cancel, and the total conductivity is a scalar. Since the
single-valley mobilities have diferent field dependences,
this cancellation does not continue into the high-field
region, and the high-field conductivity is not, in general,
isotropic.

The above discussion has implicitly assumed that the
electrons are evenly distributed among the four equiva-
lent (111)valleys of the conduction band, which is not
necessarily true. This distribution can be shifted by
equivalent intervalley scattering. In relatively pure Ge,


