
P H YS I CAL R EV I E W VOLUME 178, NUM BER 3 15 FEBRUARY 1969

Electron Shielding in Heavily Doped Semiconductors*
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The ionization energy of an electron bound to a donor atom is calculated as a function of the number of
electrons in the conduction band and the temperature assuming Thomas-Fermi screening. The results are
compared with a previous numerical calculation performed for InSb. We also show that it is possible to
induce a Mott transition by applying stress to a degenerately doped many-valley semiconductor, with a
resulting change from a metallic to an insulating phase.

I. INTRODUCTION AND CONCLUSIONS besides finding a smoother N dependence near the
critical concentration. Finally, we show that it is

possible to induce a Mott transition by applying stress
to a degenerately doped many-valley semiconductor
with a resultant transition from the metal phase to
the insulating phase.

'N the usual calculation of the energy levels of an
~ ~ electron bound to a donor atom in a doped semi-
conductor, ' the binding energy relative to the con-
duction-band minima is obtained for a single impurity
atom in the crystal. However, it is well known experi-
mentally that the binding energy of the electron
decreases as the number of donors increases until at
some critical impurity concentration there is no ob-
served activation energy. '

A possible explanation of this phenomenon arises
from the interaction between electrons bound on
different impurity centers. ' As the average distance
between donors is decreased because of increasing
impurity concentration, the wave functions of electrons
on different donors will significantly overlap. For small
overlap, the impurity levels will be broadened, but for
strong overlap this electron-electron repulsion can
destroy the bound state. However, it has been observed
by Li et ul. ' that this effect cannot explain the fact that
the electron binding energy vanishes for impurity
concentrations as low as 10'4/cm' for Insb. In order to
account for this, these workers calculated, considering
only 5-wave scattering, the Hartree self-consistent
field that an electron experiences due to the singly
ionized impurity atom and the screening from con-
duction-band electrons. They calculate the ionization
energy over a wide range of conduction-band electron
concentrations and for several different temperatures.
Most significantly, they find that for n=6X10"/ 'cm
donors, the binding energy becomes zero.

In this paper we wish to point out that the latter
result is a special case of a more general statement
given by Mott, ' developed in the course of his investi-
gations on the insulator-metal transition. We have
generalized Mott's calculation to obtain the ionization
energy as a function of X (the concentration of con-
duction-band electrons) and the temperature, and find
a different T dependence from that given by I.i et al. ,

II. CALCULATION

Instead of numerically calculating the self-consistent
field, we note that, in the light of the variational
principle for the ground-state energy, we expect that
the binding energy will not be very sensitive to the
exact form of the screening potential, but rather will

depend on its general over-all variation. Consequently,
we shall take, with Mott, the Thomas-Fermi potential
as a good approximation to the potential of the singly
charged donor screened by the conduction electrons,
i.e.,

V(r) = —(e'/er)e &"

where ~ is the static dielectric constant and q is the
Thomas-Fermi inverse screening length. We note that
in the limit of zero activation energy this approximation
satisfies the Friedel sum rule' ' if the Born approxi-
mation for the scattering is valid, and it has been shown7

that q need be changed by only (10% from the
Thomas-Fermi value in order for the Friedel sum rule
to be satisfied when the phase shifts are calculated
exactly.

We also note that, according to Li et ul. , a simple
hydrogenic variational solution gives essentially the
same binding energy as more complicated variational
wave functions. Thus we seek the ground-state energy
of the Schrodinger equation

e'~——e '"P=qk
2m* rcr

as a function of q, and hence as a function of the
number of electrons in the conduction band. Then
taking the variational solution as
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2 G. L. Pearson and J. Bardeen, Phys. Rev. 75, 865 (1949).' C. Hilsum and A. C. Rose-Innes, Sensicondgcting III-V Com-

Pognds (Pergamon Press, Inc. , New York, 1961), p. 73.' S. P. Li, W. F. Love, and S. C. Miller, Phys. Rev. 162, 728
(1967).' N. F. Mott, Phil. Nag. 6, 287 (1961).
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Case (b): i/0
Here it is convenient to treat Eq. (2) as a quadratic

equation in P with 2P+p given. Thus, for a definite

2P+p, we immediately obtain P, and hence the p
corresponding to that P. Retaining only those solutions
having physical significance, i.e., P, y)0, we obtain
e/eo from Eq. (1). Figure 1 is a graph of the results.
We can again relate these results to the corresponding
Fermi wave number and the temperature, for T much
less than the degeneracy temperature T&, by noting
that q'= qo'(1 —(~'/12) (T/T&)'], where qo is the zero-
temperature result. Thus,

-.8

«9

-l.00 .I .2 .5 .4 .5 .6 .7 .8 .9 I 0

Fxo. I. Graph of the binding energy 5 versus the inverse screen-
ing length q, in terms of dimensionless quantities. eo is the mag-
nitude of the binding energy for zero screening, and u0 is the radius
of the Grst Bohr orbit in the semiconductor.

we obtain

where e~=m*e'/2h'~' is the magnitude of the binding
energy for q=0 and the dimensionless quantities P and

p are defined by

where a~A'e/m~e' is the radius of the first Bohr orbit.
Minimizing the energy with respect to P gives

(2P+v)' —12P(2P+v)+160'= o (2)

Case (a): s=Q

Setting the right-hand side of Eq. (1) equal to zero,
solving for 2P+y in terms of P, and substituting the
result into Eq. (2) immediately gives

which is Mott's result. For a single-valley conduction
band at T=O, this can be written as

where we have used

agk=-,'s, (4)

q'= (%re'/e)g(er),

where g(e~) is the density of states at the Fermi energy
and k is the Fermi wave number. For InSb, uo ——0.64
X10 ' cm, ' and using fq'=k'/3s', we obtain from Eq.
(4) E=6.2X 10"/cm' as the density necessary to make
the binding energy equal to zero, which is precisely
the result of Li et al.

where ko is the Fermi wave number at T=O.

III. DISCUSSIOH OP RESULTS

Our results are significantly different from those ot
Li et al. in three respects when applied to InSb. First
of all, they predict a much smaller change in the binding
energy in the low-S case. Their results are probably
more accurate than ours in this regime, because in this
case the wavelength of conduction-band electrons is
long compared to the Bohr radius of the bound electron,
and thus the conduction electrons are scattered from
a weak and relatively well-localized center, thus satis-
fying their assumption that only S-wave scattering is
important. The Thomas-Fermi approximation really
neglects the presence of the bound electron and thus
attributes too large a screening effect to the conduction
electrons.

Secondly, they predict that, for a given number of
electrons in the conduction band, the magnitude of
the binding energy decreases as the temperature is
increased, whereas we find the opposite using Thomas-
Fermi screening. We believe, however, that any
realistic theory of screening must yield the results
that as the temperature increases, the average kinetic
energy of a conduction-band electron increases, and
consequently the screening due to these electrons must
decrease because they cannot be made to "linger"
about the impurity center as easily as when they moved
more slowly. This effect, however, is difhcult to obser ve
experimentally because experiments are not performed
with constant E and variable T but are performed
with constant number of donor atoms and variable T,
and as T increases more donors are ionized, giving rise
to higher densities in the conduction band.

Finally, Li et a/. find that the ionization energy goes
to zero extremely sharply at the critical density,
whereas we find a much smoother variation of the
binding energy as a function of X. It is dificult to
understand how one might obtain such a rapid variation
of the binding energy for small change in the con-
duction-band concentration, since the screening is a

8 R. Mans6eld, Proc. Phys. Soc. (London) 698, 76 (j.956).
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slowly varying function of S. In fact, if E changes by
1 jz, then the screened potential changes by =1% on
the average, and if p~ is the exact solution for the wave
function for E elect:rons/cm' in the conduction band,
then by the variational theorem the expectation value
of H in the state pN overestimates the energy when B
corresponds to the system containing 1V+6$ elec-
trons/cm' in the conduction band. Thus, if X changes
by only 1%, then the change in e is less than the average
change in V, which is less than 1% of V, which is thus
of the order of 1% of eo. Thus a slow variation of V
with S leads necessarily to a slow variation of e with
S. One should not, however, infer from this argument
that the Mott transition is not sharp as a function of
the number of donor atoms. The supposed sharpness of
the Mott transition is due to the fact that as the number
of donors is increased, the density of conduction-band
electrons increases very much more rapidly. In fact,
if the donor density is 1/o of the density necessary to
produce zero ionization energy, then the broadening of
the impurity levels is not sufBcient to raise more than
a small fraction of the donor electrons into the con-
duction band at T=O. However, when the dopant
density is raised by a factor of 100 to the level of
degenerate doping, all the electrons move into the
conduction band and thus E increases by many factors
of 100. In general, E increases more rapidly than the
number of donors until degenerate doping is achieved,
because the decrease in the electron binding energy is
a cooperative effect, i.e., as more electrons are detached,
there is more screening, which tends to produce more
free electrons, etc. Experimentally one could observe
whether the binding energy is a slowly varying function

of the number of conduction-band electrons by mea-

suring the ionization energy as a function of the Hall
constant for crystals having different donor densities.

In conclusion, we note that it may be possible to
observe the Mott transition by applying stress to a
degenerately doped many-valley semiconductor, with
a resulting transition from the many-valley metallic
state to the single-valley insulator state. This follows
from Eq. (5), where

g (ep) = s2X/eg.

If stress is applied, ' it is possible to lower the energy
of one valley with respect to the other valleys, with the
consequent emptying of all the electrons into the lowest
valley. When this happens, q decreases because e&

increases by a factor of v"', where v is the number of
originally equivalent valleys. Thus if the donor density
were only slightly larger than that required to make the
many-valley semiconductor degenerate, it would not be
s~cient to maintain degeneracy after stress was ap-
plied, and a transition to the insulating state would be
observed; or, if not all electrons would become bound
on donor sites, at least some would, and an ionization
energy would be observable. This result, although
obtained by assuming Thomas-Fermi screening, is
really independent of that assumption, its validity
depending only on the fact that when all the electrons
are moved into one valley, the exclusion principle
requires that they occupy higher energy states, and
fast electrons do not screen as effectively as slow ones.

9 P. J. Price, Phys. Rev. 104, 1223 {1956).


