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Photoelectrons emitted by Cs vapor exposed to circularly polarized light with 2750 &~ 3150
A should have spin orientation ~ 85/o parallel to the light's angular momentum. Measurements

of this orientation along the spectrum may be represented by aparameterx defined theoretically
in terms of a Hilbert transform of the spectrum of unperturbed dipole matrix elements

weighted by the effect of spin-orbit interaction. The theory of this parameter is adapted from
Fermi's interpretation of doublet intensity ratios and from Seaton's related interpretation of
photoabsorption minima. Semiquantitative estimates are drawn from experimental data on

photo absorption,

I. INTRODUCTION

Considerable efforts have been devoted recently
to the production of spin-oriented electrons by
collision with atoms and molecules, ' utilizing the
spin-orbit interaction, and by photoeffect on spin-
oriented atoms. ' The experimental study of these
processes can provide information on the dynamics
of electrons in atomic systems. The possibility
of providing intense sources of spin-oriented elec-
trons for high-energy accelerators has lent par-
ticular interest to these efforts.

This paper points out that, owing to a eornbina-
tion of known circumstances, irradiation of Cs
vapor by a broad spectral band of circularly po-
larized light must yield photoelectrons with nearly
complete spin orientation. This spectral band ex-
tends from the proximity of the photoelectric
threshold (say, from-3150) to -2'150 A. The ef-
fect results from the influence of the (weak) spin-
orbit coupling on the light absorption in the con-
tinuum adjoining the principal series, an influence
that has been studied long ago by Fermi' for the

discrete spectrum and by Seaton4 for the continuum.
Operationally, the phenomenon considered here
differs from that observed in Ref. 2 through re-
placement of the preorientation of target atoms
by the prepolarization of the incident light beam
light polarization ean be efficient in the range of
quartz optics. This phenomenon should occur in
all alkali vapors and perhaps in other materials;
Cs merely seems to afford the most convenient
opportunity for observations.

A criterion for selecting circumstances that
favor the production of spin-oriented electrons
has been emphasized by Kessler. ' Orientation
by elastic scattering occurs when the scattering
amplitude approaches zero. The approach to zero
magnifies the relative difference between the am-
plitudes for alternative mutual orientations of
spin and orbit, a difference that otherwise tends
to escape attention. Indeed, these two scattering
amplitudes have small values of oPPosite sign over
a limited range of scattering angles near their
points of zero, thus enabling their interference to
suppress one of the spin orientations in the labor-
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atory frame. Similar circumstances occur in the
photoabsorption by alkalis (or other atoms') whose
amplitude is known to pass through a point of zero
along the energy spectrum. 4~' Here again differ-
ent amplitudes occur for alternative spin-orbit
couplings; their interference can suppress photo-
emission with a particular spin orientation.

As noted above, parameters describing the in-
fluence of spin-orbit coupling on the photoabsorp-
tion by alkali vapors have been identified and eval-
uated by Fermi' and Seaton. Observation and
measurement of the spin orientation of photoelec-
trons along the spectrum should provide a much
more detailed determination of these parameters.

A comprehensive discussion of the relationships
among different observables, presented in Sec. 3
in the current framework of atomic theory, may
be warranted in advance of experimental verifica-
tion.

The main treatment in this paper ignores inter-
actions with the nuclear spin, which tend to re-
duce the degree of electron-spin orientation.
These interactions should have a small effect in
view of their weakness. Relevant data are pre-
sented in the Appendix to this paper together with
an indication of procedures suited to treat the in-
fluence of multiple interactions upon the electron-
spin orientation.

II. SPINARIENTATION FORMULA

To calculate the spin orientation yield we consider the matrix of the dipole operator x+iy = rsin8 exp(ip)
which interacts with circularly polarized light. The relevant matrix elements pertain to transitions of
a single electron from the 6s discrete ground state of Cs to ep continuum states, with alternative values
of the initial and final spin-orientation quantum numbers mz and mz'. The Schrodinger equation for the
continuum states, including the influence of spin-orbit interaction is separable for eigenstates of the total
angular momentum j'. However, degenerate eigenstates with j'=2 and 2 exist for each energy eigenvalue

The final states of interest to us, with specified values of m~' can be constructed by superposition of
states with the alternative values of j'. [The final-state orbital number m&' is not of interest, since even-
tual integration over all directions of photoemission is implied, but its value is anyhow fixed at 1 —(me'
—m, ). ]

Spin-orbit coupling is absent in the initial s state, of course. Nor does it affect the angular integration
over the sin8exp(imp) factor of the dipole operator. This integration connects the initial s state with mf =0
to a p state with mf = 1 and contributes to the complete matrix elements of a spin-independent factor (—,)'I'.
The radial integral,

R(e,j') = f S (epj'; r)xP(6s ';x)dr-
0

does instead depend on j, since spin-orbit coupling in the interior of the atom draws in the nodes of the
wave function with j'= & to some extent and pushes out those for j'= —', . The desired matrix elements, in
a representation with spin and orbit uncoupled, result from a superposition of transition matrix elements
to j'= —,

' and & weighted by Wigner coefficients,

(m 'm ' )xsin8e )Om )=Q, (12m 'm ' ll& j'm')R(ej')(1& j'm' [121m )0 —',

We enter in this formula the values of the Wigner coefficients, leave out the factor (—,), simplify the
1/2

notation by defining

R, =R(e, -', ), R, =R(e, —.'),

and rewrite the right-hand side of (2) in matrix form:

1
2

1/2 1/2 1/2 1/2

(l ) R, (l ) + (l) R,(l) 0 (R, + 2R, )i3

Notice how, in the absence of spin-orbit interaction, R, and R, would be equal and (3) would be propor
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tional to the unit matrix and would yield no spin selection. Eull spin selection, with exclusion of m
= —&, results on the contra, ry when

R, +2R, =R(e, -', }+2R(e,—.') =D .

According to (3) the degree of spin orientation is

( —,'~x. .(D } -( —;(,f, ~Dm
jp=

',m&' -', (x+fy IDm )'+ (m&' ——', (x+ fy (
Dm )'

R +g(R —R )~-~g(R +2R )2 2(R —R )(2R +R )+(R —R )2 1+2x

x(e) = (2R, + R,)/(R, —R,) = [2R(e, —,') +R(e, —,')] /[R(e, -', ) —R(e, —,')]
may serve as the main parameter that characterizes the spin orientation.

The trend of I'(x) is shown in Fig. 1 and by the following values

x: (-x»1) —2 —1 —— D —' 1 2 3»1
po -2/x --,' --,' D —,',' 1 ~5 —;, 2/x .

Figure 1 also shows a tentative scale of photon wavelengths (i. e. , of e) paralleling the scale of x, esti-
mated from data discussed in Sec. 3. The immediate purpose of experiments would be to measure I' as
a function of c and thereby to determine x(e) by solving (5). The significance of x will be discussed in
Sec. 3.

Notice also, for purposes of analysis, that the total cross section for photoabsorption is proportional
to the denominator of (5) and can be represented by

o(~) (2R, +R,)'+2(R, —R,)'=(R, -R,)'(2+x') .
Thus the total cross section measures in effect the sum of two terms, while the spin orientation measures
their ratio; analogous circumstances occur in electron scattering.

IH. DISCUSQON

Ab initio calculation of the separate radial inte-
grals R3 and R, and thereby of the orientation pa-
rameter x(e} is, of. course, possible. However the

EStl 80$8d 2400 2650 2900 5l50 ) (g)
SC0le6, '6, '0 '5 ' & (6V}

n -t

FIG. 1. The orientation function P(x), Eq. (5);
seal.e of x estiInated in Sec. 3.

integration over z involves extensive cancellations.
The attendant loss of accuracy appears more severe
in view of our particular interest in the difference
R3 A I 8ecent extensive analysis' & ' show s that
even the theoretical calculations of total photoab-
sorption for Cs and for related atoms in the range
of interest are only in qualitative agreement with

expel lment.
The alternative approach of Fermi and Seaton

aims directly at the evaluation of the difference
3, —A, in terms of the level splitting and of related
effects of spin-orbit coupling. Besides removing
an obvious source of inaccuracy, this approach
points up the direct connection between the observ-
able parameter x(e) and the spin-orbit interaction.
It also emphasizes how x(e}depends critically not

only on this interaction but also on the spectrum of
photoabsorption.

Here we compare briefly the characteristics of
the continuum wave functions with j'= & and —,

' which
make the integrals R, and 8, appreciably different
from one another and then adapt the Fermi-Seaton
approach to the calculation of x(e). Only a semi-
quantitative estimate of ~ will be made.

The radial integrals R for the alkalis have small
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values in atomic units, because continuum (or
discrete) wave functions P(epj '; r) have a node in
the region of their maximum overlap with the
ground-state wave function P(ns; r); extensive can-
cellation results in the course of integration. The
coordinate x~ of this node decreases with increasing
energy &. It passes through some critical value

z~ such that 8 = 0 at an energy not far in excess
(-1eV) of the photoelectric threshold, for all alka-
lis from Na to Cs. As the wave functions P(epj '; r)
oscillate with increasing r, the function with j'= —,

lags in phase with respect to j'= ~, because the
spin-orbit interaction potential which acts in the
region of small x is attractive for j'= —,

' and repul-
sive for j '= —,'. Accordingly rn(e, —,) exceeds rn(&, —,')
at each & and will reach the critical value r for a
higher value of E, which we call &„ than the value
e, corresponding to j '= —,'. We conclude that R(&, ,)
and R(e, —,}differ primarily by a, shift in their en-
ergy scale of amount -&, —&, &0. The phase lag
of P(&p &,

' r) also brings about a quantum def ect lag

av (e )=~(np-,')- T(np-,')
n

(8)

Fermi then utilized perturbation theory to calculate
the difference

between the doublet P levels in the discrete spec-
trum, which amounts to 0.03 for Cs.

Fermi's work' on the relative intensities of alka-
li doublet lines interpreted the experimental fact
that the intensity ratio of the Cs 7P doublet lines
approaches 4 instead of having the usual statistical
weight value of 2. This fact implies that

R, - v 2R„ i. e. , x -10 at e = e, = -1.2 eV. (9)

Seaton4 interpreted the occurrence of a deep but
nonzero minimum of photoabsorption in terms of
Eq. (7); he pointed out that insofar as R, —R, varies
slowly with e the minimum of o(e) nearly coincides
with the zero point of 2R, +R, . The tentative as-
sumption R, —R, -const in the proximity of 2R,
+R, = 0 enables one to establish a scale of x(e) in
this proximity by fitting (7) to experimental data.
Curve 2 on p. 115 of Ref. 8 shows a(e) to have its
minimum at e -0.78 eV, corresponding to A. = 2660 A,
and to increase by -20/o within 0.3 eV on either
side. This datum implies Idx/de I-2(eV) ' and

I dx/dA. I
-0.004 A '„ the latter value has been used

most tentatively in Fig. 1. The inaccuracy of any
extrapolation of this scale is pointed up by the dis-
crepancy between (9) and the value suggested by
the scale for x(- 1.2 eV).

Fermi interpreted, in effect, the expression
2R, +R, as the radial matrix element obtained by
replacing in Eq. (1) P(epj '; r) with a wave function
Po(ep; r) calculated disregarding spin-orbit cou-
pling. This amounts to setting

2R(e, —.')+ R(e, —,') = 3R,

= 3f P, (ep; r)rP(6s ,'; r)dr. (10-)
0

R3-R =R(e, l)-R(e, l)

=Q 'R (n)(e —e ) 'f P (np;r)
n 0 8 0

P, (ep; r) = r (1+ ~ ~ ) .k+1

These wave functions exist in the range of small to
moderate r values for all energies E, in the con-
tinuum and discrete ranges, and are practically in-
dependent of energy variations ~E in the range of
r where &+ V(r)»&e. With such wave functions
one could calculate the matrix element

2
)T'(a', a)= —

( f p)f'p;v)
0

1 dV-
x— P, (ep; r)d—r.

~d~
(13)

Fermi's argument implies that 5' is independent
of & and E' over a rather wide range because
r 'dV/dr is significant only where V(r) is large.
Accordingly we shall treat 8' as a constant.

Wave functions with the usual normalization
equal the P, for the relevant value of & multiplied
by appropriate constants,

P (np; r)=N P (e p; r),nO n'
(14)

P (ep;r)=N P (ep;r)

We can also set

R (n)=N R (& )~On
=N f"P (e p;r)rP(8s ,';r)dr, -

Pl 0 8

so that (11)becomes

(15)

R —R =Q 'R (e )N '(e —e ) 'WN .
3 1 n 0 n n n

(18)

At this point the product N~'W is recognized as the
doublet splitting which can also be expressed in
terms of the quantum-defect lag (8),

3 h 1dVX— —P—(ep; r)dr,
4 mc

mdiv

0

where the Qn' includes the continuum as well as the
discrete spectrum with exclusion of the zero point
of e —en and where —V(r) represents the electron's
potential energy. Finally Fermi considered that
r 'dV/dr is appreciable only for small r where the
wave function's shape depends hardly at all on the
electron's energy, to an extent negligible for the
present purposes. Thereby he expressed the inte-
gral in (11}in terms of the experimental doublet
splitting by an argument which can be formulated
as follows.

Consider wave functions Po(ep; r) normalized at
the originby aconvention independent of e, e. g. ,
such that
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~~ =(de /dn)~~(~ )=X WX.
n n n n n

Substitution of (17) in (16) and of (15) in (10) also
causes N& to eaneel out of the final result

x(e)=SR (~)
0

47' -0.03 «1 but actually unnecessary. If the spin-
orbit interaction operator, (8/mc)'r 'dV/dh, were
not treated as a small quantity it should be re-
placed in the ealeulations of 8, —R, and of ~En by
a reaction operator K which represents the inter-
action effect to all orders. The dependence of x(e}
on &r(e ') would remain unchanged because all
normalization factors would still cancel out. "

de /dn-'
'R (e )&t(e )

n 0 n n
(ls) APPENMX. TREATMENT OF MULTIPLE

INTERACTIONS'~

The factors R0(en) and b,v(en) have been utilized
in this expression of x(e) because they are smooth
functions of En throughout the discrete spectrum
and far into the continuum. [In the continuum 4v(&)
represents the phase shift difference 6(e, —,') —6(e, —,')
in units of v. j However R, and dr may not be re-
garded as constant rvithin the x ange of & that con-

tributes effectively to the Qn' in (18). Indeed the
main information to be derived from polarization
measurements concerns the value of this sum.

The factor den/dn in (18) represents the slope of
a smooth curve drawn through the points of a plot
of &n versus n, where n is an integer rather than
the effective quantum number n —v'. ~ The expres-
sion &n = - I&/(n - v)' leads to Seaton's formula"

The interaction between the optical electron of
Cs and the nuclear-spin momentum I causes the
radial wave functions of aIlgular-momentum elgen-
states in (1) to depend not only on the electron
quantum number j' but also on the combined quan-
tum numbers Ii and F'(F = j+ I) pertaining to the
es and &p states. The procedure utilized in Eqs.
(2)-(5) for averaging over alternative values of j',
with weights determined by veetox-coupling co-
efficients, becomes involved when additional mo-
menta have to be coupled.

An altex"native and speediex' procedure, which
relates the desired spin orientation P more di-
rectly to the fine and hyperfine splits observed
in spectra, is suggested by the treatment of the
radial integral R(s,j) in Sec. III, Kqs. (10) and

(11). This integral can be expressed as
2I 2I

dn (n - ~)' (n - ~}' de R(e, j) = R,(~) + 21 s &(&)/3, (21)

The factor den/dn is designed so that the continuum

portion of Qn becomes the principal part disper-
sion integral

tp 1'Ro (e ')&7 (e ')de '/(e —e ').

This integral form suggests that the expx'ession
(18) of x(e) be described as the ratio of 8R,(e) to
the Hilbert transform of the product Ro(& ')&w(e ').
As expected, smallness of the doublet splitting &v

magnifies the slope of a plot of x versus & and thus
narrows the spectral band within which spin orien-
tation occurs. On the other hand, a rajid' varia-
tion of Ro(e) along the spectrum is essential to
make the Hilbert transform of 80~7' appreciable
and therefore x(e) small within that band. This
interpretation of the parameter x(c) is viewed as
the main conclusion of the present discussion, even
though it was implicit in Fermi's perturbation
formula.

No evaluation of (18}is available at this time.
Fermi calculated, in effect, the value of Q„'f ro
& = &, by disregarding all of its terms but the dom-
inant one n= 6. For & in the continuum, this term
mill be less important. Notice finally that the key
approximation of the present tx eatment lies in the
assumption that W(& ', &) is effectively a constant.
The perturbation appx oach is vrell founded since

where R,(e) is defined by (10), b =R, —R, is rep-
resented by (11)or by (15) or by the expression
in the brackets of (18) and where 1 and s are the
orbital and spin-angular-momentum operators of
the electron in, units of 5. The features of (21)
relevant to us are: (a) The coefficient &(&) of
l s is proportional to 47, the observed fine-
structure spbt of the ej quantum defect. (b) The
factor l ~ s need not be expressed explicitly in
terms of the alternative values of j', as required
by the averaging procedure of Sec. II; an equiva-
lent averaging of 1 ' s is performed automatically
in a calculation of I' by the method of operator
traces. "

In the presence of nuclear-spin interactions,
(21) should be replaced by a longer sum of terms,
proportional to various scalar products of l, s&
and I. The coefficients of terms with a factor I
will contain hyperfine-structure factors (&7')hf
analogous to the Lr =0.08 in (8) and (18) but

. smaller than it in the ratio of the hyperfine and
fine structures observed in the spectx'a. Existing
data" yield (&v)hfs = 3 && 10 ' for the ss and (4~)hfs
=2x10 ' for the p states of Cs. Accordingly, the
terms to be added to (21) —and hence to the ori-
entation I' in (5) —owing to nuclear-spin interac-
tion include coefficients at least three orders of
magnitude smaller than 4.
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